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Abstract: Practitioners in various fields are often confronted with the task of assessing the ability
of a diagnostic test to correctly assign one of two labels (healthy/diseased or low/high credit risk) to
each observation in a collection of observations. An ordinal dominance curve (ODC) describes the
functional relationship between the proportions of correct assignments to the labels. In this paper
we derive a semi-parametric confidence band for the ODC and evaluate some of its properties by
Monte Carlo simulation. The methodology is illustrated by application to data from a credit risk
environment.

1. Introduction

Practitioners are often confronted with the task of assessing the ability of a diagnostic test to ac-
curately assign one of two labels to each observation in a collection of observations. The inherent
discriminatory capacity of any diagnostic test depends on the extent to which the probability dis-
tributions of the realised outcomes are separated or overlap. There are numerous application areas
mentioned in the literature wherein the development of a diagnostic test that correctly classifies its
subjects into distinct groups is of utmost importance. For example, the quality of a medical diagnos-
tic test is primarily measured by its ability to distinguish with high precision between healthy and
diseased individuals. A relatively more recent application area that is gaining momentum is credit
risk assessment. The global financial crisis of 2008 has led to increased scrutiny of the risk profile of
potential and existing applicants for loans or credit facilities. In assessing the credit worthiness of a
client, scorecards (rating systems) are designed with the specific purpose of distinguishing between
low risk and high risk applicants.
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The measurements emanating from a diagnostic test in the two groups are realizations of random
variables X and Y which we will assume have continuous and strictly increasing distribution func-
tions F and G respectively. The ordinal dominance curve (ODC), ϕ(t), 0 < t < 1, is constructed by
plotting t = G(c) on the horizontal axis against F(c) = FG−1(t) on the vertical axis for−∞ < c < ∞.
Thus,

ϕ(t) = F
(
G−1(t)

)
= P(G(X)≤ t).

A typical ODC is displayed in Figure 1. The 45
◦

line depicts a situation in which the diagnostic test
has no predictive value i.e. classification is equivalent to flipping an unbiased coin.
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Figure 1: A typical ODC plot.

An obvious non-parametric estimator of ϕ(t) based on data{
X(1) < · · ·< X(m),Y(1) < · · ·< Y(n)

}
(1)

is
ϕ̂(t) = F̂

(
Ĝ−1(t)

)
(2)

where F̂ and Ĝ denote the empirical distribution functions of the X and Y data:

F̂(a) =
1
m

m

∑
i=1

I(X(i) ≤ a)

and

Ĝ(a) =
1
n

n

∑
i=1

I(Y(i) ≤ a),

−∞ < a < ∞, with I denoting the indicator function.
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Clearly, both ϕ(t) and ϕ̂(t) remain unchanged if a common strictly increasing function is ap-
plied to all the data. This fact has led to the formulation of semi-parametric models in which it is
assumed that an unspecified transformation, H, exists which makes the distributions of H(X) and
H(Y ) members of a location-scale family generated by a distribution with known CDF Ψ. That is,

ϕ(t) = Ψ
(
µ +σΨ

−1(t)
)
, (3)

-∞ < µ < ∞, σ > 0. It is important to note that there is no assumption here that the X and Y
data themselves come from the location-scale family generated by Ψ. The popular bi-normal model
(Hanley, 1996) specifies that Ψ is the standard normal CDF Φ. Another model, which may be re-
ferred to as the bi–exponential model, has Ψ as a standard exponential cdf on (0,∞) with µ = 0
and σ > 0 in (3). In this paper we construct a simultaneous confidence band for the ODC in such a
semi-parametric setup and assess its performance by Monte Carlo simulation. Our interest centres
on the construction of a simultaneous confidence band with specified nominal coverage probability
1−α . By this is meant that we seek functions L̂(t) and Û(t) of t and the data (1) with the property
that

P
(
L̂(t)< ϕ(t)< Û(t), for all 0 < t < 1

)
≈ 1−α,

or, perhaps less ambitiously,

P
(
L̂(t j)< ϕ(t j)< Û(t j), for j = 1, . . . ,k

)
≈ 1−α

where 0 < t1 < · · ·< tk < 1 and k > 1.
Section 2 of the paper describes the methodology underlying construction of our semi–parametric

band. Section 3 presents some Monte Carlo simulation results. Section 4 discusses the relation to
other non-parametric approaches and identifies two topics for further research. In Section 5 an ap-
plication to credit scoring data is given and Section 6 summarizes our results.

In order to keep the typography concise, we generally suppress the dependence of quantities on
the sample sizes m and n. Thus, we write ϕ̂(t) rather than the more explicit ϕ̂m,n. We also mention
here that the ODC is a variant of the well known receiver operating characteristic (ROC) curve
1−ϕ((1− t). Thus, the confidence bands developed in this paper will, with obvious modifications,
also be applicable to ROC estimation. The latter field has recently been thoroughly reviewed by
Kranowski and Hand (2009).

2. Construction of a Semi-Parametric Band

We first give an expression for the difference between the empirical ODC

ϕ̂(t) = F̂
(
Ĝ−1(t)

)
and its semi-parametric counterpart ϕ(t) from (3). In fact, from Theorem 2.2 of Hsieh and Turnbull
(1996), we deduce that for 0 < t1 < t2 < 1,

sup
t1≤t≤t2

∣∣F̂ (Ĝ−1(t)
)
−ϕ(t)

∣∣≈ 1√
m+n

sup
t1≤t≤t2

|κ(t)| (4)
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in distribution for large m and n, where

κ(t) =
√

λ +1B1 (ϕ(t))−ϕ
′(t)

√
λ +1

λ
B2(t)

with 0 < λ = limm,n→∞n/m < 1 and B1 and B2 are independent Brownian bridges. Let the constant
Cα satisfy the relation

P

(
sup

t1≤t≤t2
|κ(t)| ≤Cα

)
= 1−α. (5)

Then, by (4),

P

(
sup

t1≤t≤t2
|ϕ̂ (t)−ϕ (t)| ≤ Cα√

m+n

)
≈ 1−α (6)

for large values of m and n. Thus, with

L̂(t) = max
{

0, ϕ̂ (t)− Cα√
m+n

}
, Û(t) = min

{
1, ϕ̂ (t)+

Cα√
m+n

}
(7)

we potentially have a simultaneous confidence band of very simple form, provided we can solve for
Cα from (5). Lombard (2005) gives the following result that can be used to this end.

Lemma Let κ(t), 0 < t < 1, be a path-continuous Gaussian process with covariance function

C (ε, t) =Cov(κ(t),κ(t + ε)) .

Suppose there exist continuous functions ς(t)> 0 and τ(t) such that

C (ε, t) = ς(t)− τ(t)ε +o(ε)

as ε → 0. Set

hCα
(x) =

{ (
2πx3

)−1/2 Cα exp
(
−C2

α/2x
)
,

0,
x > 0
x = 0.

Then,

P

(
sup

t1≤t≤t2
|κ(t)| ≥Cα

)
∼ 2

∫ t2

t1
|τ(t)|hCα

(ς(t))dt, (8)

for small values of α and t1 and t2 close to 0 and 1 respectively, where ∼ means that the ratio
of the two sides tends to 1 as α tends to 0.

The approximation in (8), which does not involve the sample sizes m and n, is quite accurate
whenever α is less than 0.1. In our applications the right hand side of (8) is often indeterminate
at t1 = 0 and t2 = 1, in which case we take t1 = 0.001 and t2 = 0.999 or t1 = 0.01 and t2 = 0.99.
However, the approximation is typically not good for t1 = 0.1 and t2 = 0.9.

A Taylor expansion around ε = 0 shows that the covariance function of the Gaussian process
κ(t) from (2) has the form

Cov(κ(t),κ(t + ε)) = ς(t)− τ(t)ε +o(ε) ,
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as ε → 0, where

ς(t) = (λ +1)ϕ(t)(1−ϕ(t))+
(

λ +1
λ

)
t(1− t)ϕ ′(t)2, (9)

and

τ(t) = (λ +1)ϕ(t)ϕ ′(t)+
(

λ +1
λ

)
tϕ ′(t)2−

(
λ +1

λ

)
t(1− t)ϕ ′(t)ϕ ′′(t). (10)

Under the semi-parametric specification (3), there are analytic expressions for the derivatives of ϕ

in terms of just two parameters, µ and σ . Denoting by ψ the density function of Ψ, straightforward
calculation gives

ϕ
′(t) = σ

ψ
(
µ +σΨ−1 (t)

)
ψ (Ψ−1 (t))

(11)

and

ϕ
′′(t) =

ϕ ′(t)
ψ (Ψ−1 (t))

(
σ

ψ ′
(
µ +σΨ−1 (t)

)
ψ (µ +σΨ−1 (t))

−
ψ ′
(
Ψ−1 (t)

)
ψ (Ψ−1 (t))

)
.

(12)

The parameters µ and σ can be estimated
√

m+n-consistently by, for instance, a version of the
non-parametric minimum distance method developed by Hsieh and Turnbull (1996). In the present
context, this entails minimizing the expression

Q(µ,σ) =
n

∑
j=1

(
F̂
(

Ĝ−1
(

j
n+1

))
−Ψ

(
µ +σΨ

−1
(

j
n+1

)))2

over µ and σ .
Denote by ς̂(t) and τ̂(t) the quantities ς(t) and τ(t) in (9) and (10) after substitution of the

estimates of µ and σ into the expressions in (11) and (12). Cα is then estimated via the right hand
side of (8) by the random variable Ĉα , defined as the solution in x to the equation γ(x) = α/2, where

γ(x) =
∫ t2

t1
|τ̂(t)|hx(ς̂(t))dt. (13)

Replacing Cα in (7) by Ĉα results in a confidence band with lower and upper limits of a very simple
form,

L̂(t) = max
{

0, F̂(Ĝ−1 (t))− Ĉα√
m+n

}
, Û(t) = min

{
1, F̂(Ĝ−1 (t))+

Ĉα√
m+n

}
,

0 < t1 < t2 < 1.
In practice, equation (13) will be solved numerically. Our experience with the simulation results

reported in Section 3 indicates that it is typically sufficient to take t1 = 1− t2 = 0.001. (One cannot
take t1 = 0, t2 = 1 because the integrand is infinite there.) For an easily computable form of F̂Ĝ−1 (t),
denote by Ri the rank of X(i) in the data set (1). Then it is readily shown that

F̂(Ĝ−1 (t)) =
i−1

m
for

Ri−1− (i−1)
n

< t <
Ri− i

n
and 1≤ i≤ m+1,

with R0 = 0 and Rm+1 = ∞.
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3. Monte Carlo Simulation Results

We now assess the performance of the semi-parametric band by estimating its true coverage prob-
ability via Monte Carlo simulation. Under the model (3), the minimum distance estimators of µ

and σ are invariant under any strictly monotonic transformation of the data. In the simulations it is
therefore sufficient to restrict attention to data from a location-scale family Ψ((x−µ)/σ), provided
that µ and σ are estimated by a non-parametric method such as the minimum distance method (and
not by maximum likelihood using the given form of Ψ). As a measure of separation between the X
and Y distributions we use the "area under the curve"

A =
∫ 1

0
ϕ(t)dt = P(X < Y ) (14)

which is related to the well known Gini coefficient of inequality. We present here an extract of results
from a Monte Carlo study which involved the bi-normal and bi-exponential models.

First, data were generated from normal (0,1) and normal (µ,σ) distributions where, for given
σ , µ is chosen to give the area under the curve, A, in (14) a specified value:

µ =
√

1+σ2Φ
−1(A).

N = 2,000 Monte Carlo trials were run to estimate the true coverage probabilities. The results are
in Table 1, in which β denotes the nominal coverage probability. The results are reported for three
values of σ and three AUC values, the latter three being typical of what we have seen in practice.

Table 1: Estimated coverage probabilities in some bi-normal models.
β = 0.90 β = 0.95

AUC AUC
m = n = 500 0.6 0.7 0.8 0.6 0.7 0.8

1.5 0.91 0.91 0.92 0.96 0.95 0.96
σ 2.0 0.90 0.89 0.91 0.95 0.95 0.96

2.5 0.89 0.88 0.91 0.96 0.95 0.96
β = 0.90 β = 0.95

AUC AUC
m = n = 250 0.6 0.7 0.8 0.6 0.7 0.8

1.5 0.89 0.91 0.91 0.95 0.95 0.96
σ 2.0 0.89 0.90 0.92 0.95 0.96 0.96

2.5 0.89 0.91 0.91 0.95 0.94 0.96
β = 0.90 β = 0.95

AUC AUC
m = n = 100 0.6 0.7 0.8 0.6 0.7 0.8

1.5 0.91 0.93 0.94 0.95 0.97 0.97
σ 2.0 0.92 0.90 0.93 0.96 0.96 0.96

2.5 0.91 0.92 0.92 0.97 0.95 0.97

Next, data were generated from the scale parameter family of exponential distributions with
distribution functions 1− exp(−x/σ), x,σ > 0 in which the ODC is ϕ(t) = 1− (1− t)σ . Here, the
choice σ = A/(1−A) produces an AUC equal to A. The results are in Table 2.



SEMI-PARAMETRIC SIMULTANEOUS CONFIDENCE BANDS FOR AN ODC 279

Table 2: Estimated coverage probabilities in the bi-exponential model.
β = 0.90 β = 0.95

AUC AUC
0.6 0.7 0.8 0.6 0.7 0.8

m = n = 500 0.91 0.90 0.91 0.95 0.96 0.97
m = n = 250 0.91 0.91 0.91 0.96 0.96 0.96
m = n = 100 0.92 0.93 0.93 0.96 0.96 0.96

These results, which are representative of a general picture, indicate that the (Monte Carlo esti-
mated) true coverage probabilities are generally sufficiently close to the nominal values for practical
use when both sample sizes are large. In almost all such instances the estimated and nominal cov-
erage probabilities differ by less than 0.01. The true coverage probabilities consistently exceed the
nominal values (by 0.01) at the higher value of A. In fact, the difference becomes even larger when
A = 0.9 or 0.95, which is indicative of near perfect separation of the distributions. This is easy to
understand if account is taken of the form of the ODC in such cases. With A = 0.8 and σ = 1.5 the
bi-normal ODC is effectively equal to its maximum value of 1 for all t ≥ 0.7. The true coverage
probability over the range t ≥ 0.7 is therefore effectively 1−α/2, which is larger than the nominal
1−α . The effect is greater at the smaller sample sizes m = n = 100 because the band is then so wide
that the upper (lower) limit at A≥ 0.7 becomes effectively equal to 1 (0) for t ≥ .0.6 (t ≤ 0.1). How-
ever, in the credit risk applications that we have encountered, AUCs in excess of 0.8 are extremely
rare, as are samples of size less than 250.

4. Discussion

In a fully distribution-free setup, Horváth, Horváth and Zhou (2008) use a version of (6) and estimate
Cα by the application of a smooth bootstrap. Horváth et al. (2008) evaluate their bootstrap method
by Monte Carlo simulation on data generated from an exponential distribution and report, without
providing numerical details, that it performs satisfactorily in that particular instance. Li, Tiwari and
Wells (1996) also provide a bootstrap approach to the more complex problem when censored data
are involved and find it to be satisfactory when the data come from a Weibull distribution. However,
in the context of finding a confidence interval at a single point, t, Hall, Hyndman and Fan (2004)
find that the success of the bootstrap is critically dependent on a correct choice of certain smoothing
parameters. If the form of the underlying distributions is known, then presumably the correct choices
can be made. It is not clear, however, how successful a fully non-parametric bootstrap would be.

The level of technical expertise required for such bootstrapping in each individual instance limits
somewhat the possibility of automated and routine application in a typical credit scoring environ-
ment. For a possible alternative approach, we note that the right hand sides in (9) and (10) involve
derivatives of the non-parametric ODC ϕ(t) = F(G−1(t)), namely

ϕ
′(t) =

f (G−1(t))
g(G−1(t))
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and

ϕ
′′(t) =

f ′(G−1(t))−g′(G−1(t))ϕ ′(t)
g2(G−1(t))

.

In a fully distribution-free setup, and if sufficiently large samples were available, the densities and
their derivatives could be estimated by a fully automated procedure and substituted into the right
hand sides of (9) and (10). This would lead to a fully non-parametric band that does not require
bootstrapping or an assumption about the parametric form of the ODC. This possibility certainly
merits further investigation.

The approach we have followed is of a hybrid nature in that a fully non-parametric estimator is
being compared with an estimated semi-parametric model. The advantage in this lies in the fact that
the latter model has dimension equal to 2 — two parameters, both of which can be efficiently esti-
mated from a limited amount of data — while a fully nonparametric model is infinite-dimensional.
A fully semi-parametric approach could presumably be based on a probability statement such as

P
(
supa<t<b

∣∣Ψ(µ̂ + σ̂Ψ
−1(t)

)
−Ψ(µ +σΨ

−1(t))
∣∣≤ cα

)
≈ 1−α.

However, it is not immediately clear how cα could be determined since the stochastic process
Ψ
(
µ̂ + σ̂Ψ−1(t)

)
does not seem to have a tractable asymptotic limiting form. As a first approx-

imation one could take

Ψ
(
µ̂ + σ̂Ψ

−1(t)
)
−Ψ(µ +σΨ

−1(t))≈ (µ̂−µ)+(σ̂ −σ)Ψ−1(t)
ψ (Ψ(µ +σΨ−1(t)))

.

Then, the expression on the right hand side, multiplied by
√

m+n, converges to a Gaussian process
with a rather complicated covariance function — see Hsieh and Turnbull (1996, Theorem 3.2).

The question of whether a semi-parametric model such as (3) can reasonably be assumed to hold
in any specific application seems not to have received much attention in the literature. However,
Hanley (1996) concludes that the use of the bi-normal model is widely justified. A simple diagnostic
consists in seeing whether the estimated semi-parametric curve is wholly contained in the confidence
band we have constructed.

5. Application to Credit Scoring Data

Credit risk is the potential financial loss that lenders may incur owing to unexpected changes in the
credit quality of obligors. Credit risk assessment has gained increased popularity since the advent
of the global financial crisis in 2008/2009. Lending institutions are particularly concerned with
understanding the risk profile of their existing and potential client base. Risk assessment superiority
directly translates into competitive advantage. Once lenders are able to understand the risks that they
are faced with, informed decisions can be made with regards to price setting, loan specifications and
loan agreements. Credit providers typically use scorecards (sometimes referred to as rating systems)
to assess the credit worthiness of a client. Characteristics of the client believed to be indicative of
risk are summarized by the scorecard. The scorecard translates the client information into a score.
Typically, scorecards are constructed such that low risk clients receive a high score and high risk
clients receive a low score. To judge the efficacy of a scorecard, one approach is to relate the credit
score of an individual who has been granted credit to the occurrence of default on the obligation.
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Represent the credit scores of defaulters and non-defaulters generically by X and Y with distribu-
tion functions F and G respectively. The data, available upon request from the second author, consist
of credit scores of m+n = 750 obligors, m = 370 of whom were defaulters. Figure 2 is a plot of γ(x)
from (13) against x for the bi-normal model using t1 = 0.001 and t2 = 0.999. This gives Ĉ0.05 = 3.23.
The non-parametric ODC estimate (2), the estimated bi-normal curve, Φ

(
0.94+0.96×Φ−1(t)

)
and

the 95% confidence band are shown in Figure 3. Since the estimated bi-normal curve is wholly con-
tained in the band, the indication is that the bi-normal assumption is reasonable.
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Figure 2: Illustrating the solution to the equation γ(x) = α/2 for γ(x) defined in equation (17) and
α = 0.05.

Figure 4, on the other hand, shows these plots for the bi-exponential model

ϕ(t) = 1− (1− t)µ

which comes from the choice Ψ(x) = 1− exp(−µx) in (3) and for which we find µ̂ = 3.16 and
Ĉ0.05 = 1.38. Notice that the estimated bi-exponential ODC lies outside the band at both lower and
higher values of t, which suggests strongly that the model is inappropriate. Since all the data are
positive, one may have expected the model to be appropriate, but this is not the case.

6. Summary

We develop a simultaneous confidence band for an ordinal dominance curve under a semi-parametric
specification. Such a curve is useful in assessing the efficacy of a diagnostic test that seeks to
correctly classify subjects into distinct groups. For instance, credit scorecards are often used to
classify applicants for credit into high or low risk categories. The band developed in this paper is
easy to implement and exhibits satisfactory performance. Application of the method is illustrated on
data from a credit rating scorecard.
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Figure 3: Non-parametric and estimated bi-normal ODC together with 95% simultaneous confi-
dence band.
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Figure 4: Non-parametric and estimated bi-exponential ODC together with 95% simultaneous con-
fidence band.
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