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Abstract: In this paper we study sparse high dimensional additive partial linear models with
nonparametric additive components of heterogeneous smoothness. We review several existing algo-
rithms that have been developed for this problem in the recent literature, highlighting the connec-
tions between them, and present some computationally efficient algorithms for fitting such models.
To achieve optimal rates in large sample situations we use hybrid P-splines and block wavelet penal-
isation techniques combined with adaptive (group) LASSO-like procedures for selecting the additive
components in the nonparametric part of the models. Hence, the component selection and estimation
in the nonparametric part may be viewed as a functional version of estimation and grouped variable
selection. This allows to take advantage of several oracle results which yield asymptotic optimality
of estimators in high-dimensional but sparse additive models. Numerical implementations of our
procedures for proximal like algorithms are discussed. Large sample properties of the estimates and
of the model selection are presented and the results are illustrated with simulated examples and a
real data analysis.

1. Introduction

Nonparametric regression methods encompass a large class of flexible models which provide a
means of investigating how a response variable Y depends on one or more predictor variables
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236 AMATO, ANTONIADIS, DE FEIS & GOUDE

X1, . . . ,X p, without assuming a specific shape for the relationship. However, as dimension p in-
creases, these techniques suffer from the curse of dimensionality; moreover, the ability to visually
inspect estimated relationships is often lost when p > 2. An elegant solution to these problems is
provided by additive models, an important family of structured nonparametric problems, first sug-
gested in Friedman and Stuelze (1981) and popularised in Hastie and Tibshirani (1986). They model
a random sample {(Yi,Xi)}n

i=1 by

Yi = β0 +
p

∑
j=1

f j(X
j

i )+ εi, i = 1, . . . ,n,

where Xi = (X1
i , . . . ,X

p
i )

T and the errors εi form a sequence of i.i.d. random variables with mean 0
and variance σ2 independent of the predictor variables X j. This additive combination of univariate
functions—one for each covariate X j—is less general than joint multivariate nonparametric models,
but can be more interpretable and easier to fit. Moreover, since all of the unknown functions are
unidimensional the difficulty associated with the curse of dimensionality is substantially reduced. In
the past three decades, there has been a considerable amount of research to study additive regression
models since they meet three fundamental aspects of statistical models: flexibility, dimensionality
and interpretability. However, in such models, the predictors are often assumed to be continuous.
Although discrete predictors can be included as indicator variables, their corresponding nonparamet-
ric effects are essentially of parametric form. Treating them as nonparametric components increases
the computational cost and leads to efficiency loss in theory. This motivates us to look into high
dimensional regression problems within the framework of additive partial linear models (PLAM).
PLAM extends linear and additive models by modelling the effects of some predictors through a
linear function and the effects of the other predictors through additively smooth functions. The ad-
ditive partially linear model (PLAM) is a realistic, parsimonious candidate when one believes that
the relationship between the dependent variable and some of the covariates has a parametric form,
while the relationship between the dependent variable and the remaining covariates may not be lin-
ear. PLAM models are more flexible than parametric models and more efficient than nonparametric
models because they combine both parametric and nonparametric components.

Hereafter we consider a random sample {(Yi,Xi,Ti)}n
i=1, related through the partially linear

additive model (PLAM)

Yi = XT
i β +

q

∑
j=1

f j(T
j

i )+ εi, i = 1, . . . ,n, (1)

where Xi = (X1
i , . . . ,X

p
i )

T is a p-dimensional covariate vector representing the linear regression
component, β is the p× 1 vector of corresponding regression coefficients, f j’s are unknown func-
tions of T j

i where Ti = (T 1
i , . . . ,T

q
i )

T is the q-dimensional nonlinear covariate vector and the errors
εi form a sequence of i.i.d. random variables with mean 0 and variance σ2 independent of the pre-
dictor variables X j and T k. In this model, the response variable Y is linearly related to covariates X ,
while its relation with covariates T is not specified up to any finite number of parameters.

The additive model is a particular case of the PLAM when only a constant linear covariate is
considered. Procedures that achieve simultaneous consistent variable selection and estimation in
sparse additive models have been thoroughly discussed in Amato, Antoniadis and De Feis (2016)
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and will not be reviewed here. The interested reader is referred to the above mentioned paper.
The partially linear model (PLM) is a basic (and one of the most studied) semiparametric models.
See Hardle, Liang and Gao (2000) for a comprehensive review of partially linear models (PLM),
a special case of model (1), which has only individual variables in the linear part and only one
nonparametric component f . A lot of efforts have been devoted to estimation in this area and some
of them will be reviewed in this paper. Examples include the partial spline estimator (Wahba, 1984;
Engle, Granger, Rice and Weiss, 1986; Heckman, 1986) and the partial residual estimator (Robinson,
1988; Speckman, 1988; Chen, 1988). As for the estimation of the nonparametric component in
PLM most of existing methods are based on smoothing splines regression techniques and have been
employed in particular by Green and Yandell (1985), Engle et al. (1986), Rice (1986), Chen (1988),
Chen and Shiau (1991) and Schick (1996) among others. Kernel regression (see, e.g. Speckman,
1988) and local polynomial fitting techniques (see, e.g. Hamilton and Truong, 1997) have also been
used to study partially linear models. An important assumption by all these methods for the unknown
nonparametric component f (t) is its high smoothness. But in reality, such a strong assumption may
not be satisfied. To deal with cases of a less-smooth nonparametric component, some wavelet based
estimation procedures have been also proposed in the literature and will be briefly reviewed in this
paper since our general methodology is inspired by those developments.

When, in PLM, p is large in the sense that p→ ∞ as the sample size n→ ∞, but p < n, some
penalised methods have been proposed to estimate β and f , see, for example, SCAD penalised esti-
mator (Xie and Huang, 2009). One may achieve for many of these methods, under some regularity
conditions, consistency in terms of variable selection and estimation simultaneously for the linear
and nonparametric component. However, most of these studies do not discuss variable selection and
estimation in high-dimensional setting, in the sense that p� n and are mainly concerned with only
individual variable selection in the linear part. Liu, Wang and Liang (2011) studied variable selection
in PLAM when the number of linear covariates is fixed and the nonparametric components are of
similar regularity. Compared with the existing semiparametric methods, the method we propose in-
novates in the following aspects: (i) it can perform estimation and variable selection simultaneously
on both the nonparametric and parametric components; (ii) the parametric part can have dimensions
diverging with the sample size; and (iii) the nonparametric part can have a large, but fixed number of
additive components of heterogeneous smoothness. Moreover, the component selection and estima-
tion in the nonparametric part is viewed as a functional version of estimation and grouped variable
selection.

The rest of the article is organised as follows. Section 2 briefly reviews existing results and
procedures for fitting PLMs and PLAMs without variable selection with nonparametric components
that are supposed to be smooth. Section 3 is concerned with existing procedures in PLMs with much
less regular nonparametric components via wavelets, explores their connection with M-estimation
and their use in variable selection in the linear part. Section 4 addresses the problem of variable
selection in PLAMs with nonparametric components that are smooth. Section 5 establishes the main
results addressing a general hybrid wavelet and spline regression methodology for estimating the
additive components by linear combinations of basis functions selected from multiple libraries to
model various features of the additive components, e.g. spline representers for smooth components
and wavelets for less regular components. It also addresses variable selection results for sparse
PLAMs by square-root group LASSO and two-step penalisation methods. In each Section and,
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whenever it is useful, we discuss some computational algorithms that are used for the numerical
implementation of the procedures and simulations investigate the finite sample performance of the
procedures in terms of prediction, variable selection and estimation accuracy. Some concluding
remarks are given in Section 6.

2. Estimation and Inference in Partial Linear Models

Given the observations {(Yi,Xi,Ti)}n
i=1, where Yi is the response, Xi = (X1

i , . . . ,X
p
i )

T and Ti =

(T 1
i , . . . ,T

q
i )

T are vectors of covariates, the partially linear model assumes that

Yi = b+XT
i β + f (Ti)+ εi, i = 1, . . . ,n, (2)

where b is the intercept, β is the p× 1 vector of unknown coefficients for linear terms, f is an
unknown function from Rq to R and the εi’s f are i.i.d. random variables with mean 0 and variance
σ2 independent of the covariates. In order to ensure that the model is identifiable, we have to require
that the linear covariates are centred and that an identifiability condition

∫
f (t)dt = 0 holds. In

practice, the most used model for (2) is the following special case when q = 1:

Yi = b+XT
i β + f (Ti)+ εi, i = 1, . . . ,n. (3)

For example, in longitudinal data analysis, the time covariate T is often treated as the only non-
linear effect. As we already mentioned in the introduction, model estimation and inference for (3)
have been actively studied under various smooth regression settings, including smoothing splines,
penalised regression splines, kernel smoothing and local polynomial regression. Interesting applica-
tions include the analysis of city electricity (Engle et al., 1986), household gasoline consumption in
the United States (Schmalensee and Stoker, 1999), a marketing price-volume study in the petroleum
distribution industry (Green and Silverman, 1994), the logistic analysis of bioassay data (Dinse and
Lagakos, 1983), the mouthwash experiment (Speckman, 1988), and so on. In this section we briefly
survey some of the most important of these developments from our perspective. We will not attempt
to review the many applications of PLMs since they have become too numerous to review in the
limited space available here. The monograph by Hardle et al. (2000) gives an excellent overview on
partially linear models, and a more comprehensive list of references can be found there.

There are many methods to estimate the components of a PLM model. Kernel regression, includ-
ing local constant (Speckman, 1988) and local linear techniques (Hamilton and Truong, 1997; Op-
somer and Ruppert, 1999) have been used to study the partially linear models. A remarkable char-
acteristic of the kernel-based methods is that under-smoothing has been sometimes imposed in or-
der to get a root-n estimator of β (Green and Yandell, 1985; Opsomer and Ruppert, 1999), but
the under-smoothing restriction is unnecessary in many settings (Speckman, 1988; Severini and
Staniswalis, 1994). These can be confusing, and it may not be clear for users which strategy of
smoothing parameter selection is appropriate. We present here a way of clarifying the essential
differences by reviewing the profile-least-squares-based estimator, briefly mentioning backfitting
estimator, and analysing the reasons for applying under-smoothing and regular smoothing.

The estimation approaches for the PLM are essentially based on the idea that an estimate β̂

can be found for known f (·), and an estimate f̂ (·) can be found for known β . This leads to a
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profile least squares approach which converts the PLM to a classical linear regression model which
is mainly a two steps estimation. Indeed note that, given some conditional moment assumptions on
the covariates, one has, for a PLM model (2):

E(Y|T) = b+E(X|T)T
β + f (T).

It follows then by differencing

Y−E(Y|T) = {X−E(X|T)}T
β + ε,

which is a standard linear model if E(Y|T) and E(X|T) were known. An intuitive estimator of β

may then be defined as the least-squares estimator after appropriately estimating E(Y|T) and E(X|T)
using a nonparametric regression setup.

For the remainder of this section we will assume that q = 1 and that T takes its values within
the interval [0,1] and that the function f ∈C2[0,1]. Extension to the multivariate case will be dis-
cussed at the end of this Section. There is a host of nonparametric methods for estimating these two
regressions, including higher degree local polynomial kernel methods, kernel methods with varying
bandwidths, smoothing and regression splines, etc. Following this route, large-sample results are
available for inference on β and f , when q = 1 and the nonparametric component is smooth (twice
continuously differentiable on its compact support) and is estimated using kernel regression or re-
gression splines. These results rely on classical smoothing techniques that are sometimes quite sen-
sitive to the specifics of their implementation in applications. Partially motivated by the poor finite-
sample performance of conventional smoothing techniques, a recent literature on penalised spline
estimation has emerged and is receiving considerable attention. Proposed by O’Sullivan (1986),
and later popularised by Eilers and Marx (1996), this alternative smoothing technique has generated
great interest because it is perceived as a very competitive alternative to classical nonparametric es-
timators. Therefore, we also review this approach in this section since it is relevant to the general
modelling that we are going to study later on. Without any loss of generality, we state all the results
conditionally in T , which amounts in assuming that the observed values of T define a non-stochastic
grid of n distinct points 0≤ t1 < · · ·< tn ≤ 1. Equation (3) in vector-matrix form becomes

Y = b1+Uβ + f+ ε (4)

for Y = (Y1, . . . ,Yn)
T , UT = [X1 . . .Xn], f = ( f (t1), . . . , f (tn))T and ε = (ε1, . . . ,εn)

T . To obtain a
nonparametric estimator of the smooth function f we will use a class of penalised splines based
on B-spline basis functions introduced by O’Sullivan (1986). O’Sullivan penalised splines are a
direct generalisation of smoothing splines, in that the latter arise when the maximal number of B-
spline basis functions is included. Like smoothing splines, O’Sullivan penalised splines possess the
attractive feature of natural boundary conditions (e.g. Green and Silverman, 1994). They have also
become the most widely used class of penalised splines in statistical analyses, as a result of their
implementation in the popular R function smooth.spline() and associated generalised additive
model software. For a brief description of O’Sullivan splines the reader is referred to Wand and
Omerod (2008). For an integer K, let κ1, . . . ,κK+8 be a knot sequence such that

0 = κ1 = κ2 = κ3 = κ4 < κ5 < · · ·< κK+4 < κK+5 = κK+6 = κK+7 = κK+8 = 1
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and let B1, . . . ,BK+4 be the cubic B-spline basis functions defined by these knots (see, for example,
pp. 160–161 of Hastie, Tibshirani and Friedman, 2009). Set up the n× (K+4) design matrix B with
(i,k)th entry Bik = Bk(ti), and the (K +4)× (K +4) penalty matrix Ω with (k,k′)th entry

Ωkk′ =
∫ 1

0
B(2)

k (x)B(2)
k′ (x) dx.

For a smoothing parameter λ > 0, we will use Sλ = B(BT B+ λΩ)−1BT to represent the n× n
smoother matrix. Note that the cubic smoothing spline arises in the special case K = n and κk+4 = tk,
1 ≤ k ≤ n, provided that the ti’s are distinct (e.g. Green and Silverman, 1994). Apart from giving
a smooth (twice continuously differentiable) scatterplot Sλ Y of the data Y without the parametric
term, the procedure leads to a smooth function f̂λ (·) estimate that has good numerical properties.
The basis functions are bounded and so not prone to overflow problems. Moreover, BT B is four-
banded, which leads to O(n) algorithms when K is close to n (e.g. Hastie et al., 2009). In addition
f̂λ (·) satisfies natural boundary conditions. We will therefore assume that such a linear smoother is
being used to conduct the spline smoothing transformations in all that follows.

If we assume that Ũ = (I−Sλ )U has full column rank and set Ỹλ = (I−Sλ )Y, the Speckman-
like profile least-squares estimators of the parameters in (4) are given by

b̂ =
1
n

1T Y

β̂ λ = (ŨT Ũ)−1ŨT Ỹλ

f̂λ = Sλ (Y− b̂1−Uβ̂ λ ).

If a value of f̂λ is required at a non design point t it is easy to get it using the corresponding B-splines
basis vector evaluated at t and applied on the spline coefficients estimates. If Ũ is less than full rank,
formulas above remain valid provided we interpret (ŨT Ũ)−1 as a generalised inverse.

Existing asymptotic results for the above semi-parametric partial linear model estimation pro-
cedure establish parametric rates of convergence for the linear part and minimax rates for the non-
parametric part, showing in particular that the existence of a linear component does not change
the rates of convergence of the nonparametric component and conversely. Assuming for example
that T is continuously distributed within [0,1] with Lebesgue density bounded above and below
from 0, that the nonparametric function f is twice continuously differentiable on [0,1], that the
knots sequence is asymptotically equidistant and controlled by the tuning parameter Kn → ∞ in
such a way that ln(Kn)Kn/n→ 0 and that E(ε4

i |(X,T )) and E(‖X‖4|T ) are bounded, then choosing
Kn = O(n1/5) and λn = O(n1/5) results in a square-root n consistent estimator for β and an opti-
mal rate of convergence for the penalised B-spline estimator (see, e.g. Claeskens, Krivobokova and
Opsomer, 2009; Holland, 2017).

The above asymptotic result seems to contradict the conclusion obtained by Opsomer and Rup-
pert (1999) for the backfitting estimator that one needs to under-smooth the nonparametric part to
get a root-n consistent estimator for the linear part. Recall that the backfitting method has been
suggested as an iterative algorithm to fit an additive model (see Hastie and Tibshirani, 1986; Buja,
Hastie and Tibshirani, 1989). Its main idea is to regress the additive components separately on partial
residuals. The PLM is again a special case, consisting of only two additive functions. To simplify
notation we may assume without loss of generality that the data are centred, since the empirical
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mean is an efficient estimator of b. Denote by P = U(UT U)−1UT the projection matrix from a
linear regression model and by Sλ the smoothing matrix as before. Then backfitting means to solve

Uβ̂ = P(Y− f̂)
f̂ = Sλ (Y−Uβ̂ )

as Y− f̂ are the residuals from a nonparametric fit and Y−Uβ̂ the residuals from a linear regression.
In this case no iteration is necessary and the explicit solution leading to the backfitting estimators
β̂ back and f̂back is

β̂ back = {UT (I−Sλ )U}−1UT (I−Sλ )Y
f̂back = Sλ (Y−Uβ̂ back)

These estimators differ from the Speckman-like estimators in only a subtle detail: the Speckman-like
estimator for β shows (I−Sλ )

T (I−Sλ ) instead of (I−Sλ ). And this is the main reason that for β̂ back
to be root-n consistent, under-smoothing for the nonparametric part is unavoidable. This was also
noticed by Rice (1986) who showed that the partial spline estimate of the parametric component
in a semiparametric regression model is generally biased and it is necessary to under-smooth the
nonparametric component to force the bias to be negligible with respect to the standard error. We
will not pursue further the discussion here.

In practice and for finite samples assuming the sequence Kn is fixed, the smoothing parameter λn

must be chosen in a data driven way. Let Hλ = Sλ + Ũ(ŨT Ũ)−1ŨT (I−Sλ ). To use the estimators
above one must select a value for the smoothing parameter λ .Two standard data-driven choices are
the minimiser of the generalised cross-validation (GCV) criterion

GCV (λ ) =
n‖(I−Hλ )(Y− b̂1)‖2

(n− tr(Hλ ))2

and the minimiser of the unbiased risk (UBR) criterion

R(λ ) = n−1(‖(I−Hλ )(Y− b̂1)‖2 +2σ
2tr(Hλ )).

The use of generalised cross-validation is feasible because the first-order properties of the cross-
validation function are basically not changed by the addition of a parametric term to the model
(Speckman, 1988). However for reasons to be seen later we also use the UBR criterion. Both these
criteria require computation of tr(Hλ ) but one may use an O(n) algorithm developed by Eubank,
Kambour, Kim, Klipple, Reese and Schimek (1998) for that purpose. However, for the computation
of the UBR criterion, appropriate estimates of the unknown variance σ2 are necessary. Here, we
suggest to apply an adaptation of a difference-based variance estimator due to Gasser, Sroka and
Jennen-Steinmetz (1986). This estimator has been successfully applied to kernel, smoothing spline
and wavelet regression (see e.g. Antoniadis and Lavergne, 1995).

To define the estimator first let

ai =
ti+1− ti

ti+1− ti−1
, bi =

ti− ti−1

ti+1− ti−1
, ci = (a2

i +b2
i +1)1/2,
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for i = 2, . . . ,n− 1. Then take D to be the (n− 2)× n matrix whose ith row has all zero entries
except for its ith, (i+ 1)th and (i+ 2)th entries which are aici, −ci and bici respectively. Note that
tr(DT D) = n−2, and hence the Gasser et al. (1986) estimator of σ2 is

σ̃
2 =

YT DT DY
tr(DT D)

. (5)

When f is smooth, Df is essentially 0 so that DY≈DUβ +Dε and σ̃2 in equation (5) will be efficient
in estimating σ2 when β = 0. To deal with the situation where β 6= 0 it suffices to make a simple
adjustment and define the modified estimator

σ̂
2 =

YT DT (I−Q)DY
tr(DT (I−Q)D)

,

with Q = DU(UT DT DU)−1UT DT . Under our assumptions on the design points and the smoothness
of f , Theorem 3.1 of Eubank et al. (1998) ensures that the above variance estimator has small bias
and is root-n consistent.

Remark 1 The parameters in the PLM model with q = 1 are mainly estimated in the procedures we
have described by least-squares profiling and may therefore be affected by the presence of outliers.
It is possible to use a more robust approach by considering the Huber-Dutter estimators of β , scale σ

for the errors and the function f respectively, using again a smoothing B-spline basis representation
for f , obtained by minimising

n

∑
i=1

ρ

{
Yi−b−XT

i β − f (ti)
σ

}
σ + vnσ ,

over b, β , σ and f approximated by its spline decomposition as before. The convex function ρ

is Huber’s loss function and vn is a suitable chosen sequence of constants. Under some regularity
conditions, it is shown in Tong, Cui and Zhao (2005) that the Huber-Dutter estimators of b, β and σ

are asymptotically normal with convergence rate n−1/2 and the B-spline Huber-Dutter estimator of
f achieves the optimal convergence rate in nonparametric regression.

We have conducted some small simulations, just to illustrate the results given above using some
standard R packages (see R, 2015). We generated data from the (2) model, with n = 256, b = 0,
β a p-dimensional vector with p = 4, β = (4,3,1,9)T , X a p-dim matrix whose columns are i.i.d.
realisations of standard normal distributed variables and T a regular design of n equidistant points
within [0,1]. We considered two nonparametric cases:

(a) f (t) = 5sin(5πt)+100(exp(−3.25t)−4exp(−6.5t)+3exp(−9.75t)) (smooth function)

(b) f (t) = 1.6603
(
10 t2I(t ≤ 0.2)− (2(t−0.65)2−0.15)I(t ≤ 0.7)I(t > 0.2)+

5(t−0.7)2I(t > 0.7)+0.2572
)

(non regular)

The second case was chosen in order to see how the standard PLM fitting with kernel or splines
behaves when the nonparametric component is not smooth. The functions are rescaled such that
an added normal noise with standard deviation of 2.5 produces a preassigned signal-to-noise ratio
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(SNR) of 3. Fitting was done for M = 100 replications. For each replication the estimation accuracy
of β̂ is measured by the mean squared error (MSE) defined as ‖β̂ −β‖2

2 and reconstruction of the
theoretical nonparametric component was measured by the mean squared error (MSE), calculated as

MSE( f ) =
1
n

n

∑
i=1

( f̂r(ti)− f (ti))2

where M is the number of simulation runs and f̂r the estimation of nonparametric component f in
the rth simulation run. Fitting of data was realised using the gplm R-package of Müller (2014) when
using splines and the package PMRModels when using kernel smoothing . For each simulation run,
the optimal values of the hyper-parameters are selected by means of the generalised cross-validation
procedure.

Figure 1 reports the simulation results in terms of MSE.
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Figure 1: Simulation results for the smooth function experiment (model (2)) with linear part
XT β and smooth nonlinear part (case (a)) f (t) = 5sin5t + 100(exp(−3.25t)− 4exp(−6.5t) +
3exp(−9.75t))): boxplot of the Mean Squared Error over 100 simulation runs for the linear part
(left), error variance (middle) and nonlinear part (right) using splines (R-package gplm) and kernel
smoothing (R-package PMRModels).

Figure 2 shows a typical fit of the nonparametric component by the two methods on one of the
simulations (case (a)).

However, when the nonparametric component in the model is not smooth (as the one for example
in case (b)), while the parameter β can still be estimated in a satisfactory way, the kernel or spline
smoothing estimation method produce much more erratic results as one can see in Figure 3.

Let us now again consider the general multivariate partial linear model stated in (2) but with
T being q-dimensional vector. As we saw earlier in this section, the case of q = 1 has extensively
been studied and we gave several references for this. The case where q > 1 has received much
less attention in the past. However, the general case with a high-dimensional nonlinear compo-
nent makes the analysis complicated because of the “curse of dimensionality” problem. Most of
the papers that discuss that model consider situations in which the nonlinear component is low-
dimensional; that is, q is relatively small. Still using the idea of profile least-squares the estimation
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Figure 2: Typical fit of a sample realisation for the smooth function experiment (model (2))
with linear part XT β and smooth nonlinear part (case (a)) f (t) = 5sin5t + 100(exp(−3.25t)−
4exp(−6.5t) + 3exp(−9.75t))). True function: broken line; spline estimate (R-package gplm):
blue solid line; kernel estimate (R-package PMRModels): red solid line.
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Figure 3: Typical fit of a sample realization for the nonregular function experiment (model (2))
with nonregular nonlinear part (case (b)) f (t) = 1.6603(10t2I(t ≤ 0.2)− (2(t−0.65)2−0.15)I(t ≤
0.7)I(t > 0.2) + 5(t − 0.7)2I(t > 0.7) + 0.252)). True function: broken line; spline estimate (R-
package gplm): blue solid line; kernel estimate (R-package PMRModels): red solid line.
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of the nonlinear component is realised using either multivariate kernel methods or marginal integra-
tion or local scoring and local polynomial methods (see e.g. Robinson, 1988; Samarov, Spokoiny
and Vial, 2005; Schick, 1996; Li, 2000). To our knowledge, for general q larger than 5, and without
further structural assumptions on f , the only papers that address the problem are the recent papers by
Cattaneo, Jansson and Newey (2016) relying on some earlier results by Donald and Newey (1994)
on series estimators, and the already cited work of Holland (2017) on penalised spline estimation
in the partially linear model. However, the “curse of dimensionality” is still mirrored in the derived
asymptotic rates. To get rid of this curse, the regression modelling using PLMs can be extended
to partial linear additive models (PLAM), where the nonparametric function f in the nonlinear part
is now substituted by a sum of q univariate smooth functions of the underlying components of T.
Since this type of models will be studied in Section 4 together with variable selection, we postpone
the derivation of the estimation procedures for such models to this later section.

3. Wavelets for PLM (q = 1)

In this section we consider again the regression problem stated in (3), but this time with a non-
stochastic equidistant design ti = i/n, i = 1, . . . ,n of size n = 2J for some positive integer J, noise
variables εi that are i.i.d. Gaussian N (0,σ2) and with a potentially non-smooth function f that may
present a wide range of irregular effects. There is not any loss of generality to assume that b = 0
since this parameter can always be estimated with a root-n rate by the empirical mean of the obser-
vations. We will therefore assume that the data has been centred. To deal with cases of a less-smooth
nonparametric component, several wavelet based estimation procedures have been developed in the
literature (see e.g. Chang and Qu, 2004; Fadili and Bullmore, 2004; Qu, 2006; Gannaz, 2007; Anto-
niadis, 2007; Ding, Claeskens and Jansen, 2011) and we will review here the ones that are the most
relevant to our work. Using wavelets allows the nonparametric component to be parsimoniously
represented by a limited number of coefficients. Models for the nonparametric component of the
PLM model, that allow a wide range of irregular effects, are through the sequence space representa-
tion of Besov spaces. The (inhomogeneous) Besov spaces on the unit interval, Bs

π,r([0,1]), consist
of functions that have a specific degree of smoothness in their derivatives. The parameter π can be
viewed as a degree of a function’s inhomogeneity while s is a measure of its smoothness. Roughly
speaking, the (not necessarily integer) parameter s indicates the number of the function’s (fractional)
derivatives, where their existence is required in an Lπ -sense; the additional parameter r is secondary
in its role, allowing for additional fine tuning of the definition of the space. For a detailed study
on (inhomogeneous) Besov spaces we refer to, e.g., Donoho and Johnstone (1998). To capture key
characteristics of variations in f and to exploit its sparse wavelet coefficients representation, we will
assume that f belongs to Bs

π,r([0,1]) with s+1/π−1/2> 0. The last condition ensures in particular
that evaluation of f at a given point makes sense. To adopt a wavelet-based model specification of
the PLM model we will first present in the next subsection some relevant facts and notation about
wavelet decompositions of such functions.
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3.1. Wavelet series expansions and discrete wavelet transform

Throughout the paper we assume that we are working within an orthonormal basis generated by
dilatations and shifts of a compactly supported scaling function, φ(t), and a compactly supported
mother wavelet, ψ(t), associated with an r-regular (r≥ 0) multi-resolution analysis of

(
L2[0,1],〈·, ·〉

)
,

the space of squared-integrable functions on [0,1] endowed with the inner product 〈 f ,g〉=
∫ 1

0 f (t)g(t)dt.
For simplicity in exposition, we work with periodic wavelet bases on [0,1] (see, e.g., Mallat (1999),
Section 7.5.1), letting

φ
p
jk(t) = ∑

l∈Z
φ jk(t− l) and ψ

p
jk(t) = ∑

l∈Z
ψ jk(t− l), for t ∈ [0,1],

where φ jk(t) = 2 j/2φ(2 jt− k) and ψ jk(t) = 2 j/2ψ(2 jt− k). For any given primary resolution level
j0 ≥ 0, the collection

{φ p
j0k, k = 0,1, . . . ,2 j0 −1; ψ

p
jk, j ≥ j0; k = 0,1, . . . ,2 j−1}

is then an orthonormal basis of L2[0,1]. The superscript “p” will be suppressed from the notation for
convenience. Despite the poor behaviour of periodic wavelets near the boundaries, where they create
high amplitude wavelet coefficients, they are commonly used because the numerical implementation
is particularly simple. Therefore, for any f ∈L2[0,1], we denote by c j0k = 〈 f ,φ j0k〉 (k= 0,1, . . . ,2 j0−1)
the scaling coefficients and by d jk = 〈 f ,ψ jk〉 ( j ≥ j0; k = 0,1, . . . ,2 j− 1) the wavelet coefficients
of f for the orthonormal periodic wavelet basis defined above; the function f is then expressed in
the form

f (t) =
2 j0−1

∑
k=0

c j0kφ j0k(t)+
∞

∑
j= j0

2 j−1

∑
k=0

d jkψ jk(t), t ∈ [0,1].

The approximation space spanned by the scaling functions {φ j0k, k = 0,1, . . . ,2 j0 − 1} is usually
denoted by Vj0 while the details space at scale j, spanned by {ψ jk, k = 0,1, . . . ,2 j− 1} is usually
denoted by Wj.

In a statistical settings, we are more usually concerned with discretely sampled, rather than
continuous, functions. It is then the wavelet analogy to the discrete Fourier transform which is of
primary interest and this is referred to as the discrete wavelet transform (DWT). Given a vector of
real values e = (e1, . . . ,en)

T , the discrete wavelet transform of e is given by d =Wn×ne, where d is
an n×1 vector comprising both discrete scaling coefficients, s j0k, and discrete wavelet coefficients,
w jk, and Wn×n is an orthogonal n×n matrix associated with the orthonormal periodic wavelet basis
chosen. In the following we will distinguish the blocks of Wn×n spanned by the scaling functions
and the wavelets, respectively. The empirical coefficients s j0k and w jk of e are given by

s j0,k ≈ 1√
n

n

∑
i=1

eiφ j0,k(ti) for k = 0, . . . ,2 j0 −1

w j,k ≈ 1√
n

n

∑
i=1

eiψ j,k(ti) for
{

j = j0, . . . ,J−1,
k = 0, . . . ,2 j−1.

When e is a vector of function values f = ( f (t1), ..., f (tn))T at equally spaced points ti, the corre-
sponding empirical coefficients s j0k and w jk are related to their continuous counterparts c j0k and
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d jk (with an approximation error of order n−1) via the relationships s j0k ≈
√

nc j0k and w jk ≈
√

nd jk.
Note that, because of orthogonality of Wn×n, the inverse DWT (IDWT) is simply given by f=W T

n×nd,
where W T

n×n denotes the transpose of Wn×n. If n= 2J for some positive integer J, the DWT and IDWT
may be performed through a computationally fast algorithm (see e.g. Mallat, 1999, Section 7.3.1)
that requires only order n operations. Hereafter, the coarsest wavelet decomposition level j0 will be
chosen to be the closest integer to log2(log(n))+1, as suggested by Antoniadis, Bigot and Sapatinas
(2001).

3.2. A wavelet-based model specification of the PLM model

We will adopt the vector-matrix form of the centred PLM model, given by (4) with b = 0:

Y = Uβ + f+ ε,

for Y = (Y1, . . . ,Yn)
T , UT = [X1 . . .Xn], f = ( f (t1), . . . , f (tn))T and ε = (ε1, . . . ,εn)

T . After applying
a linear and orthogonal wavelet transform, the discretised above model becomes

Z = A β + γ + ε̃,

where Z = Wn×nY, A = Wn×nU, γ = Wn×nf and ε̃ = Wn×nε . The orthogonality of the DWT matrix
Wn×n ensures that the transformed noise vector ε̃ is still distributed as a Gaussian white noise with
variance σ2In. Hence, the representation of the model in the wavelet domain not only allows one to
retain the partly linear structure of the model, but also to exploit in an efficient way the sparsity of
the wavelet coefficients in the representation of the nonparametric component.

We already mentioned several methods from the partially linear wavelet model literature. Both
methods proposed by Chang and Qu (2004) and Fadili and Bullmore (2004) rely upon backfitting
and therefore present the same asymptotic weaknesses as the backfitting procedures when smoothing
splines are used. The difference between these two procedures is the choice of the thresholding
parameters chosen at each iteration, with the Fadili and Bullmore algorithm significantly improving
the performance. The Bayesian wavelet-based algorithm for the same problem was proposed by
Qu (2006). However, we found that the implementation of that algorithm is not robust to different
simulated examples and initial values of the empirical Bayes procedure, therefore, we omit it from
our discussion. The procedure based on Gannaz (2007) is a wavelet thresholding based estimation
procedure solved by the proposed LEGEND algorithm and the interested reader is referred to that
paper for details. The formulation of the problem is based on an `1-penalised mean-shift linear
model, penalising only the wavelet coefficients of the nonparametric part, but the solution is faster
than backfitting. The algorithm by Ding et al. (2011) addresses variable selection in the linear part
and thresholding in the wavelet part by adopting again an `1-penalised mean-shift linear model as in
Gannaz (2007), but with an extra LASSO penalty on the linear parameters. No asymptotic results
are discussed in their paper.

In what follows we will review the `1-penalised mean-shift linear model approach of Antoniadis
(2007) and its connection with robust estimation via proximal maps since these are the ones that will
be extended to the general case later. With the above notation, consider the `1-penalised mean-shift
linear regression

min
β ,γ

Qn(β ,γ),
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where

Qn(β ,γ) =

{
1
2
‖Z−Aβ − γ‖2 +λ

n

∑
j=1

w j|γ j|

}
,

for β ∈ Rp and γ ∈ Rn and w j are given weights. When β is fixed, the objective function 1
2‖Z−

Aβ − γ‖2 becomes 1
2‖r− γ‖2 where r := Z−Aβ and the minimisation problem of Qn(β ,γ) with

respect to γ is separable. To solve it we need only to deal with the univariate case

min
γ

{
(γ− r)2

2
+ pλ (w|γ|)

}
. (6)

When pλ (·) is a (closed) convex function, the solution of (6) is unique, and defines the proximal
mapping or proximal operator of pλ given by (see e.g. Antoniadis, 2007):

Proxpλ
(r) = argmin

u

{
(u− r)2

2
+ pλ (w|u|)

}
. (7)

While proximal operators are well studied for convex functionals, the non-convex case has been of
interest to researchers recently (see Hare and Sagastizabal, 2009). Very often, even when pλ (·) is
non-convex, problem (7) results in a unique solution and allows us to define an appropriate proximal
map. When pλ (·) = λ | · | (`1 penalty) the corresponding proximal map is the soft-thresholding
operator (Antoniadis, 2007)

Θsoft(r;λ ) =

{
0, if |r| ≤ λ

r− sgn(r)λ if |r|> λ .

Recalling that r := Z−Aβ , finding the optimal estimate β̂ requires the minimisation of the profile
loss function

Qn(γ̃(β ),β ),

where γ̃(β ) denotes the estimate obtained by applying soft-thresholding component-wise on w jr j.
One can then show (see Gannaz, 2007) that

Qn(γ̃(β ),β ) = ρλ (diag(w)r) ,

where ρλ (·) is Huber’s loss function and one sees here the connection with the Huber-Dutter esti-
mates of β and f outlined in Remark 1. We will exploit this connection later in this section.

Using Donoho and Johnstone (1998) universal threshold λ (n) = σ
√

2logn one can show, under
appropriate conditions on the design (see Theorem 1 of Gannaz, 2007) that

‖β̂ −β‖2 = OP

(√
logn

n

)
and that

‖ĝ−g‖2 = OP

((
logn

n

) s
2s+1
)
.

Therefore even in the case of much less regular component f , the rates of convergence are similar to
the case where f is twice continuously differentiable, but an extra logarithmic factor will appear in
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the rates of the parametric part and nonparametric parts, mainly due to the fact that our smoothness
assumptions on the nonparametric part are weaker. A good estimate of σ is required. Gannaz
(2007) makes use of an estimator that does not require estimation of β and uses a half-quadratic
regularisation algorithm (LEGEND) for estimating the parameters. However the computational time
of the LEGEND algorithm can be quite long.

Remark 2 Wang, Brown and Cai (2011a), inspired by Gasser-like difference-based estimators and
their use in semiparametric regression by Yatchew (1997) have analysed the PLM model using a
difference based approach. Their procedure estimates the linear component based on the mth-order
differences of the observations and then estimates the nonparametric component by a wavelet thresh-
olding method using the residuals of the linear fit. It is shown that both the estimator of the linear
component and the estimator of the nonparametric component asymptotically perform as well as if
the other component were known. The estimator of the linear component is asymptotically efficient
(root-n consistent) and the estimator of the nonparametric component is asymptotically minimax rate
optimal. However the asymptotic results require that the order m→ ∞ which is difficult to achieve
in practice.

The connection between the minimisation of the profile function Qn(γ̃(β ),β ) and soft-thresh-
olding to get the estimates of the wavelet coefficients and Huber’s loss has been thoroughly dis-
cussed by She and Owen (2011) which outline the inherent difficulty of `1-penalised regression. In
particular, they stress out the fact that Huber’s method cannot handle even moderate leverage points
well (Huber, 1981, p. 192) and is prone to masking (failing to identify outliers) and swamping
(mistaking clean observations for outliers) in outlier detection. Its breakdown point is 0. They advo-
cate using instead hard thresholding which corresponds to a mean truncation loss, which solves the
masking and swamping problems noted before. One could also use SCAD thresholding (Antoniadis
and Fan, 2001; Fan and Li, 2001) which is a special case of Hampel’s rule (see Antoniadis, 2007).
Whatever method is used, the issue of tuning the thresholding parameter λ still remains.

3.3. Tuning the parameter by square-root LASSO

A promising way to remain robust and to improve the tuning of λ is to adopt a different objective
function as in Antoniadis and Fan (2001). Let us formulate the model in the wavelet domain as a
high-dimensional linear regression model

Z = [AIn](β
T

γ
T )T + ε̃ = Ξθ + ε̃,

with Ξ = [AIn] and θ = (β T
γT )T . Note that the dimension of θ is larger than n and therefore

estimation of σ is nontrivial and remains an outstanding practical and theoretical problem. To
estimate θ and eventually σ one may then use square-root LASSO procedures suggested first in
Antoniadis (2010) and studied in Belloni et al. (2011). Belloni et al. (2011) have shown that for
a Gaussian or sub-Gaussian regression model with constant but unknown variance, the square-root
LASSO with a deterministic value of the penalty parameter that depends only on known parameters
achieves near-oracle performance for estimation and model selection of the mean. In our PLM case,
the square-root LASSO estimation of θ eliminates the need to know or to pre-estimate σ . Using
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λ = 1.1n−1/2Φ−1(1−0.05/(2(n+ p))) in

θ̂ = argminθ

(
‖Z−Ξθ‖2

2
√

n
+λ

n+p

∑
j=1
‖Ξ·, j‖2|θ j|

)

one obtains a consistent estimator of θ together with a root-n consistent estimate of σ :

σ̂ =
1√
n
‖Z−Ξθ̂‖2.

The minimisation problem leading to θ̂ can be solved by a Second Order Cone Program (SOCP).
Just for illustration, Figure 4 illustrates a fit of the same simulated dataset fitted by splines in

the previous subsection (see Figure 3), but obtained this time via some of the wavelet procedures
described in this Section. Since we have used periodic Symmlets of order 7 to obtain the estimation,
we display the fits within the interval [0.07,0.94] to get rid of the boundary effects since the function
in case (b) is not periodic.
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Nonparametric Wavelet PLM component estimation
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Figure 4: Typical fit of a sample realization for the nonregular function experiment (model 2)
with nonregular nonlinear part (case (b)) f (t) = 1.6603(10t2I(t ≤ 0.2)− (2(t−0.65)2−0.15)I(t ≤
0.7)I(t > 0.2)+ 5(t− 0.7)2I(t > 0.7)+ 0.252)). True function: black solid line; wavelet estimate
using proximal SCAD: broken red line; wavelet estimate using SQRT LASSO: broken blue line.

A distinguishing feature of the proposed algorithm is that it can also be used for variable se-
lection. The method proposed by Ding et al. (2011) was also developed for variable selection in
the linear part of the PLM. Concerning the estimation of the nonparametric part of the PLM, their
algorithm applies an iterative backfitting-like algorithm as well as soft thresholding. To do so they
propose minimising the following double penalised least-squares criterion to estimate β and γ:

Rn(β ,γ) =

{
1
2
‖Z−Aβ − γ‖2 +λ1

n

∑
j=1

w j|γ j|+λ2

p

∑
i=1

τi|βi|

}
, (8)
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where w j and τi are given weights and where the threshold value λ1 controls the sparsity of nonpara-
metric estimates, while for the purpose of variable selection they impose the weighted `1 penalty
on the linear coefficients β and use λ2 to control the sparsity of the parametric part of the model.
For any fixed λ1 and λ2 they use an iterative backfitting like algorithm to solve the above estimation
problem. The tuning parameters λ1 and λ2 are chosen in a data-driven way (GCV for λ1 and BIC
for λ2 which again needs a consistent estimator of σ2). While there is no asymptotic analysis and
study of their procedure we believe that the same drawback of smoothing splines holds here leading
again to suboptimal consistency rates for the estimators of the nonparametric component.

Remark 3 The methodology proposed in this Section, is designed for treating dyadic samples of eq-
uispaced data. The application of a wavelet analysis to irregularly spaced samples has been a subject
of study for more than ten years. Most methods in the area work with a pre- and/or post-processing
of the data in order to translate the problem into an equispaced one. Cai and Brown (1998) decom-
pose the non-equispaced data into a warped wavelet basis and then project this decomposition onto a
regular wavelet basis. Antoniadis and Pham (1998) implement a direct discretisation of a continuous
wavelet analysis on the irregular grid to find numerical values for wavelet coefficients correspond-
ing to regular basis functions. Kovac and Silverman (2000) interpolate the irregular observations
in intermediate regular locations before starting the wavelet analysis. These and other methods re-
quire user-driven preprocessing, that might become difficult or even fail in case the data are “very”
non-equidistant. As we will see in later sections it is also possible to use wavelet basis functions
evaluated on irregular grids as in Antoniadis and Fan (2001) and Wand and Omerod (2011) which
provide a way of handling nonequispaced predictor data.

4. Splines for Estimation and Variable Selection in Additive Par-
tial Linear Models

We have already mentioned that partially linear additive models (PLAMs), which are a special case
of additive nonparametric models, retain the parsimony and interpretability of linear models and the
flexibility of nonparametric additive regression, by allowing a linear component for some predictors
which are presumed to have a strictly linear effect, and an additive structure for other predictors, thus
reducing the problem known as “curse of dimensionality”. While PLAMs have become widely used
since their introduction, their applicability has until recently been limited to problem settings where
the number of covariates is modest relative to the number of observations. The last decade has seen
the emergence of large data sets with big sets of variables that are more and more commonly col-
lected in modern research studies. In such large data sets it is often fair to assume that a large number
of the measured variables are irrelevant or redundant for the purpose of predicting the response and
this has stimulated vast developments in efficient procedures that can perform estimation variable
selection on such large data sets. Wang, Liu, Liang and Carroll (2011b) consider PLAMs, restricting
to variable selection for the linear part only. Liu et al. (2011) developed a SCAD-based variable
selection procedure to identify significant linear components using the smoothly clipped absolute
deviation penalty (SCAD), using a spline based approximation for the nonparametric components.
In the same spirit, Wei (2012) applies group variable selection for the linear parameter in high-
dimensional PLAMs with a fixed number of nonparametric components using an adaptive group
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LASSO and spline approximation of the nonparametric components. Du, Cheng and Liang (2012)
introduced a penalisation procedure with penalty that combines the adaptive empirical L2-norms of
the nonparametric component functions and a SCAD penalty on the coefficients in the parametric
part to simultaneously achieve estimation and model selection for both nonparametric and parametric
parts in PLAMs with diverging dimensions of parametric components. When no linear components
are present, this method is related to SpAM (Ravikumar, Liu, Lafferty and Wasserman, 2009) or
additive model selection procedures studied in Amato et al. (2016). This is the method that we will
review in this Section.

We suppose that the observed data (yi,xi, ti), i = 1, . . . ,n is modelled by a semiparametric regres-
sion model as in (1) with q > 1. Hereafter, we also suppose that the responses Yi have been centred
by subtracting the sample mean Ȳ = 1

n ∑
n
i=1 Yi. Also, under our assumptions on the nonlinear co-

variates, there is no loss of generality in considering that E( f 2
j (T j)) is proportional to

∫ 1
0 f 2

j (x)dx or
‖f j‖2

n (if n is large), where E denotes expectation with respect to the distribution of the covariates in
the random design case or with respect to the empirical distribution of the covariates in the determin-
istic design case. We will assume that the unknown nonparametric (smooth) additive components f j

belong to the subspace of centred functions within the Sobolev space of order m. We briefly recall
that the Sobolev space of order m is defined as

W m
2 =

{
f : [0,1]→ R| f , f (1), . . . , f (m−1) are absolutely continuous and f (m) ∈ L2([0,1])

}
.

There are many possible norms that can equip W m
2 to make it a Hilbert space (see e.g. Adams,

1975). When dealing with mean zero functions f ∈W m
2 one may consider the Sobolev norm ‖ f‖m =√∫ 1

0
(

f (m)(x)
)2 dx.

4.1. Partial splines, SpAM and SCAD

Marra and Wood (2011) have addressed some estimation procedures for PLAMs, when the additive
nonparametric components f j are represented via regression spline bases, with associated measures
of function roughness which can be expressed as quadratic forms in the basis coefficients. Given
such bases, model (1) can be estimated as a GAM, but to avoid overfitting it is necessary to estimate
such a model by penalised least squares in which roughness measures are used to control overfit.
We will therefore start the estimation procedure with an initial additive spline smoothing estimate
defined as:

(β̃ , f̃1, . . . , f̃q) = argmin
β∈Rp, f j∈W m

2 ; j=1,...,q

1
n

n

∑
i=1

(
Yi−xT

i β −
q

∑
j=1

f j(Ti j)

)2

+λ

q

∑
j=1

J( f j)

 , (9)

where the f j are represented via regression spline bases and the penalties J( f j) are quadratic in the
spline coefficients, that are good approximations of the Sobolev norm ‖ f j‖2

m and measure therefore
the roughness of the smooth functions. The parameter λ is a smoothing parameter that controls the
trade-off between fit and smoothness, and can be selected by minimisation of the generalised cross
validation (GCV) score, the generalised Akaike’s information criterion (AIC), and restricted maxi-
mum likelihood (REML) estimation, to name a few. The computational methods of Wood (2006)
implemented in the R-package mgcv are available to estimate β , f1, . . . , fq minimising (9). It can
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be shown (see Du et al., 2012, Proposition 2.1) that under appropriate conditions on the covari-
ate designs and the distribution of the noise and the covariates, with a dimension of the parametric
component possibly diverging but remaining smaller that n while keeping the dimension q of non-
parametric components fixed, if λ ∼ n−2m/(2m+1) and pn = o(n1/2), then the initial solution of (9)
has the following asymptotic rates :

‖β̃ −β‖= OP(
√

pn/n) and ‖ f̃ j− f j‖2 = O(
√

pn/n∨n−2m/(2m+1)p2
n),

for any 1≤ j≤ q. Thus f̃ j is consistent together with β̃ if we further assume that pn = o(nm/(4m+2)).

4.1.1. Joint variable selection in nonparametric and parametric parts.

We now introduce the adaptive SpAM procedure to estimate the functions f j given the coefficient
vector β . Of course one could also use for this any of the procedures studied in Amato et al. (2016)
for additive model selection but we prefer here to stay close to the work by Du et al. (2012). The
additive component functions f j are estimated as the minimisers of

`β ( f1, . . . , fq)) =
1
n

n

∑
i=1

(
Yi−xT

i β −
q

∑
j=1

f j(Ti j)

)2

+λ

q

∑
j=1

w j‖ f j‖n, (10)

for f j ∈ W m
2 and where w j’s are weights chosen in a data-adaptive way. When an initial estimator

f̃ j is available, a choice of w j could be w j = ‖ f̃ j‖−s
n for some s > 0. Note that when w j = 1, ∀ j and

β = 0, (10) reduces to the SpAM model proposed in Ravikumar et al. (2009). It is easy to show,
following Theorem 1 in Ravikumar et al. (2009) that the minimiser f j in (10) is given by

f̂ j =

[
1−

λw j

‖Pj‖n

]
+

Pj,

where [·]+ denotes the positive part and Pj is the projection of the residual R j = Y−∑k 6= j fk(Tk)−
XT β on the space generated by the jth regression spline basis. A backfitting algorithm can then be
used. Given estimates f̂ j of f j, the parameter β̂ is estimated by minimising the penalised profile
least squares

` f̂1,..., f̂q
(β ) =

1
n

n

∑
i=1

(
Yi−xT

i β −
q

∑
j=1

f̂ j(Ti j)

)2

+
p

∑
k=1

pλk
(|βk|), (11)

where pλk
(| · |) is the SCAD penalty.

Thus the complete algorithm for the semiparametric variable selection and estimation procedure
for PLAM is as follows.

Step 1 Start with the initial estimate β̂
(0)

= β̃ .

Step 2 Let β̂
(k−1)

be the estimate of β before the kth iteration. Plug β̂
(k−1)

into (10) and solve for
the nonparametric components by solving the adaptive SpAM problem of minimising (10).
Let f̂ (k)j , j = 1, . . . ,q be the estimates thus obtained.

Step 3 Plug f̂ (k)j , j = 1, . . . ,q into (11) and solve the corresponding minimisation problem. Let β̂
(k)

be the estimate thus obtained.
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Step 4 Replace β̂
(k−1)

in Step 2 by β̂
(k)

and repeat Steps 2 and 3 until convergence to obtain the
final estimates.

In practice to select the regularisation parameters λ = (λ1,λ2, . . . ,λp) and λ in steps 3 and 2, one
may use 5-fold cross validation as in Zou and Li (2008) and GCV.

Remark 4 As noted in many other settings, penalised variable selection procedures can over-shrink
component estimates. To account for this, a common practice is, once only the selected components
are retained, to perform a refit using a standard non-penalised estimation procedure after the variable
selection step. Such refitting indeed improves the final estimation performance.

To end this section, we present some simulations used to illustrate the results given above using
relevant R packages (R, 2015). We generated data from model (1), with n = 200, b = 0, q = 8
and β a p-dimensional vector with p = 20. For the parametric part we have used the parameter
β = (1,0.8,1.4,0.6,1.2,0.9,1.1,1.2,0T

12)
T , where 0T

12 is the vector of zeros of length 12. The design
matrix X is a n× p matrix whose columns are i.i.d. realisations of standard normal distributed
variables, For the nonparametric part, the true functions were set

f1(t) =−2sin(2πt), f3(t) = 12t2−11t +1.5, f4(t) = 9exp(−(t−0.3)2)−8.03,

all other 5 nonparametric components being equal to zero. Note that all the f j’s integrate to 0 on
[0,1] for identifiability reason. The T j’s were generated independently from the uniform distribution
on [0,1] and the random errors εi were generated from a standard normal distribution, producing a
SNR of 2. For the above settings, we simulated M = 100 replications.

Estimation and model selection performance of the procedure was evaluated by computing the
following indicators:

• Root Mean squared Error (RMSE) as

RMSE =

√√√√1
n

n

∑
i=1

[
XT

i (β̂ −β )+
q

∑
j=1

(
f̂ j(Ti j)− f (Ti j)

)2
]
.

• Number of selected nonparametric components (NNPS)

NPNS := | ˆNPS|, ˆNPS = { j : f̂ j 6= 0}.

• Number of selected parametric components (NS). It is aimed at evaluating capability of the
method in preserving sparsity of the linear part:

NS := |N̂S|, N̂S = {k : β̂k 6= 0}.

Table 1: Average values and standard deviations based on m = 100 simulations with different noise
realisations.

NS FP FN NPNS FPNP FNNP

Stats 8.04 (0.2) 0.04 (0.2) 0 (0) 3.01 (0.1) 0.01 (0.1) 0 (0)
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• False positives (FP) of parametric components defined as

FP := |F̂P|, F̂P := { j : β̂ j 6= 0 and β j = 0}.

• False positives (FPNP) of nonparametric components defined as

FPNP := | ˆFPNP|, ˆFPNP := { j : f̂ j 6= 0 and f j = 0}.

• False negatives (FN) of parametric components defined as

FN := | ˆFN|, ˆFN := { j : β̂ j = 0 and β j 6= 0}.

• False negatives (FNNP) of nonparametric components defined as

FNNP := | ˆFNNP|, ˆFNNP := { j : f̂ j = 0 and f j 6= 0}.

Figure 5 plots the retained estimated nonparametric components for a typical simulation run and
also a boxplot of the RMSE over the M fits. As one can see, the estimation performances of the
procedure are pretty good.
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Figure 5: Estimates of selected nonparametric components for the partially linearly additive model
at the end of a refitting procedure by a standard non-penalised estimation procedure after the variable
selection step: from left to right functions −2sin(2πt), 12t2− 11t + 1.5 and 9exp(−(t− 0.3)2)−
8.03. True functions: red lines; estimates after refitting: blue lines. Rightmost panel (a) displays a
boxplot of the root mean squared estimation error for Y over the 100 simulation runs.

The other results are summarised in Table 1. From Table 1 we can see that the model selection
performances of the procedure are good with most of the time correctly specified linear and nonlinear
effects.
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5. PLAM with Hybrid Splines and Wavelets

In the previous section the additive components were assumed to posses a similar degree of regular-
ity: they were either belonging to Sobolev paces or to Besov spaces. The methods we reviewed could
handle a large variety of shapes for the nonparametric components of PLAMs, either regular (based
on penalised regression splines) or non-regular (based on wavelet decompositions) as illustrated in
the examples used. A limitation of the nonparametric regression procedures that we reviewed was
the use of a single class of basis functions, either splines of a given regularity for smooth PLAMs
or wavelets for PLAMS with irregular components. However, a loss of efficiency occurs when the
additive part is composed of both smooth functions and functions with much less regularity, a class
of models that we are going to call hybrid PLAM models. Our main contribution in this section
is to combine the methods used in the previous sections and obtain an estimator that can deal with
and overcome the difficulties given from the non-linear part of such hybrid partial additive models.
The basic idea is to process such models by exploring the advantage of using a hybrid fitting for the
additive part combining regression splines and wavelets together, and use advanced model selection
methods for solving the estimation and variable selection problems.

The hybrid partial linear additive models that we are going to study in this section are of the
form (2). Hereafter we consider a random sample {Yi,Xi,T

(1)
i ,T(2)

i }i=1,...,n, related through the
hybrid partially linear additive model (HPLAM)

Yi = XT
i β +

qs

∑
j=1

f (1)j (T (1)
i j )+

qw

∑
j=1

f (2)j (T (2)
i j )+ εi, i = 1, . . . ,n, (12)

where Xi = (X1
i , . . . ,X

p
i )

T is a p-dimensional covariate vector representing the linear regression
component, β is the p×1 vector of corresponding regression coefficients, f (1)j s are unknown smooth

functions of T (1)
i j where T(1)

i = (T (1)
i1 , . . . ,T (1)

iqs
)T is a qs-dimensional nonlinear covariate vector with

values in [0,1]qs , f (2)j s are unknown non-smooth functions of T (2)
i j where T(2)

i = (T (2)
i1 , . . . ,T (2)

iqw
)T is a

qw-dimensional nonlinear covariate vector with values in [0,1]qw and the errors εi form a sequence of
i.i.d. Gaussian random variables with mean 0 and variance σ2 independent of the predictor variables
Xi and T(k)

i , k = 1,2. Gaussian errors is quite a strong assumption, but is not unusual. Regardless,
this condition can be easily relaxed to sub-Gaussian errors. Again, for identifiability reasons we
assume that E( f (k)j (T(k)

j )) = 0, k = 1,2, for all j.

To approximate each smooth nonparametric additive component f (1)j , j = 1, . . . ,qs, we use its

expansion on O’Sullivan splines basis functions {B( j)
` }`∈N:

f (1)j (t)≈
m( j)

∑
`=1

α
( j)
` B( j)

` (t) for j = 1, . . . ,qs,

where m( j) is an appropriate truncation index that is allowed to increase to infinity with n. Through-
out this section we assume that the B( j)

` are in canonical form (see e.g. Wand and Omerod, 2008,

Section 4). Under reasonable smoothness assumptions, the f (1)j (t) can be well approximated by
the above expansions and their estimation is therefore equivalent in estimating the coefficient vec-
tor α( j) = (α

( j)
1 , . . . ,α

( j)
m( j))

T . When the additive components are not smooth we will approximate
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them using instead wavelet bases. Hence, to approximate each non smooth nonparametric additive
component f (2)j , j = 1, . . . ,qw, we use its expansion on wavelet basis functions {W ( j)

` }`:

f (2)j (t)≈
K( j)

∑
`=1

γ
( j)
` W ( j)

` (t) for j = 1, . . . ,qw,

where K( j) is again an appropriate truncation index that is allowed to increase to infinity with n.
Under reasonable non smoothness assumptions, the f (2)j (t) can be well approximated by the above
expansions and their estimation is therefore equivalent in estimating the wavelet coefficient vector
γ( j) = (γ

( j)
1 , . . . ,γ

( j)
K( j))

T .
Using the O’Sullivan basis construction described in Wand and Omerod (2008) it is easy to

compute, for each j = 1, . . . ,qs, the corresponding regression n×m( j) matrices of the O’Sullivan
basis functions evaluated at the observations of the corresponding predictors, i.e.

B( j) =


B( j)

1 (T (1)
1 j ) . . . B( j)

m( j)(T
(1)

1 j )
...

. . .
...

B( j)
1 (T (1)

n j ) . . . B( j)
m( j)(T

(1)
n j )

 .
Similarly to the spline case, as alluded to in Antoniadis and Fan (2001) and implemented in Wand
and Omerod (2011) we can also define the design matrices containing wavelet basis functions eval-
uated at the predictors (for the sake of completeness we give in the appendix a brief description of
such a construction). Again, using this construction, for each j = 1, . . . ,qw, we will denote by W( j)

the corresponding wavelet regression n×K( j) matrices of the wavelet basis functions evaluated at
the observations of the corresponding predictors, i.e.

W( j) =


W ( j)

1 (T (2)
1 j ) . . . W ( j)

K( j)(T
(2)

1 j )
...

. . .
...

W ( j)
1 (T (2)

n j ) . . . W ( j)
K( j)(T

(2)
n j )

 .
Adopt again a vector-matrix form of the HPLAM model, given by (12) to get:

Y≈ Uβ +
qs

∑
j=1

B( j)
α
( j)+

qw

∑
j=1

W( j)
γ
( j)+ ε, (13)

for Y = (Y1, . . . ,Yn)
T , UT = [X1 . . .Xn] and ε = (ε1, . . . ,εn)

T . To simplify notation we will suppose
that for all j = 1, . . . ,qs the truncation index is the same, i.e. m(1) = m(2) = · · · = m(qs) = m and
also K(1) = K(2) = · · · = K(qw) = K for the univariate approximations of the non-regular additive
components. Each jth function in the smooth nonlinear part of the approximate hybrid partial linear
model above is characterised by the m-dimensional coefficient vector α( j) while each jth function
in the non-smooth nonlinear part is characterised by K-dimensional coefficient vector γ( j). Thus
the component selection and estimation in HPLAM models using the approximation (13) may be
viewed as a functional version of estimation and grouped variable selection, since each nonparamet-
ric component can be expressed as a linear combination of a set of basis functions whose coefficients
must be either killed or selected simultaneously and then estimated.
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Let B be the n× (mqs) matrix obtained by stacking block-wise the matrices B( j), j = 1, . . . ,qs:

B =
[
B(1) . . .B(qs)

]
and let α be the long (mqs)-dimensional column vector α = (α(1)T

, . . . ,α(qs)
T
)T of spline coeffi-

cients. Use similar notation for the wavelet design matrices to define the W matrix of size n×(Kqw):

W =
[
W(1) . . .W(qw)

]
and the corresponding (Kqw)-dimensional wavelet coefficient vector γ = (γ(1)

T
, . . . ,γ(qw)

T
)T . With

such notation, (13) becomes
Y = Uβ +Bα +Wγ + ε, (14)

which is a high-dimensional linear model and the estimation task of the various components in a
HPLAM model is equivalent to estimating the vectors of unknown coefficients β , α and γ , respec-
tively. For the variable selection task, it is important to recall that the inclusion or not of a covariate
affecting the nonlinear part of the mean is to be brought back to a vector of coefficients, instead of to
a real-valued parameter. The nonzero additive components can therefore be selected and estimated
using a group penalised method following an approach similar in spirit to those in, for example,
Antoniadis, Gijbels and Verhasselt (2012) and Amato et al. (2016). To do so, let G = [BW] be the
n× (mqs +Kqw) matrix obtained by stacking block-wise B and W and let θ = (αT ,γT )T be the
vector of unknown coefficients. The linear regression model (14) becomes

Y = Uβ +Gθ + ε.

In a grouped linear regression setting, the mqs + Kqw nonlinear coefficients are partitioned into
q = qs +qw groups of variables, g1, . . . ,gqs ,gqs+1, . . . ,gq ⊆ {1, . . . ,mqs +Kqw}, with group sizes m
for the first qs and K for the remaining qw. Further assuming a sparsity structure in that only a small
portion of θ gk ’s are nonzero, where θ gk ∈ Rm or RK is the sub-vector of θ corresponding to the kth
group of features, estimation and selection that utilises the feature grouping (so that an entire group
of features is selected simultaneously) can be achieved by minimising with respect to β and θ the
penalised least squares criterion (group LASSO):

argmin
β ,θ

{
1

2n
‖Y−Uβ −Gθ‖2

2 +λ

q

∑
k=1

√
Mgk‖θ gk‖2

}
, (15)

where the `2 norm penalty on θ gk has been rescaled relative to the size Mgk of the group. Such a
penalty promotes sparsity at the group level; for large λ , few groups will be selected but within any
selected group, the coefficients will be dense (all nonzero). For any given θ , the β̂ that minimises
(15) is given by

β̂ (θ) =
(
UT U

)−1 UT (Y−Gθ) .

Let H = U
(
UT U

)−1 UT be the projection matrix onto the space spanned by the columns of U. The
penalised profile criterion for θ is then

1
2n
‖(I−H)(Y−Gθ)‖2 +λ

q

∑
k=1

√
Mgk‖θ gk‖2.
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More generally one may use more efficient penalties in terms of estimation and model selection
consistency as the ones discussed in Antoniadis (2007) which leads to objective function of the
following form:

1
2n
‖(I−H)(Y−Gθ)‖2 +λ

q

∑
k=1

~Pλk
(θ gk), (16)

where ~P(·) is now a multivariate penalty function, since all coefficient vectors θ g1 , . . . ,θ gq are vec-
tors. Again the penalties are scaled with the square root of group size to penalise larger groups as in
Meier, van de Geer and Bühlmann (2009).

Recall that an m-variate penalty function ~Pλ (·) is obtained from a univariate penalty function
Pλ (·) as those reviewed in Antoniadis and Fan (2001) and Antoniadis (2007) as follows. For any
vector a of dimension m, we define the m-variate penalty function, based on Pλ (·), as

~Pλ (a) =

{
0 if a = 0

a
‖a‖2

Pλ (‖a‖2) if a 6= 0 ,

where ‖a‖2 denotes the `2-norm of the vector a.
Directly optimising (16) can be tricky for a given penalty function, especially when the penalty

is non convex. To tackle the optimisation, it is more convenient to use a thresholding viewpoint with
a thresholding function corresponding to the selected penalty (see Antoniadis (2007) for a survey
on the one-to-one correspondence between threshold functions and penalty functions. See also She
(2012)). Consider first the scalar case (each group has only one component, i.e. card(gk)=1) and
define a thresholding rule as an odd monotone unbounded shrinkage rule for t, at any λ , as follows:
A threshold function is a real valued function Θ(t;λ ) defined for −∞ < t < ∞ and 0 ≤ λ < ∞ such
that

1. Θ(−t;λ ) =−Θ(t;λ ),

2. Θ(t;λ )≤Θ(t ′;λ ) for 0≤ t ≤ t ′

3. limt→∞ Θ(t;λ ) = ∞, and

4. 0≤Θ(t;λ )≤ t for 0≤ t < ∞.

A multivariate version of Θ, denoted by ~Θ, is defined for any vector a ∈ Rp:

~Θ(a;λ ) = a◦Θ(‖a‖2;λ ),

where a◦= a/‖a‖2, if a 6= 0 and 0, if a= 0. Note that~Θ is still a shrinkage rule because ‖Θ(a;λ )‖2 =

Θ(‖a‖2;λ ) ≤ ‖a‖2. The connection between thresholding rules and penalties is given now by the
following result (Proposition 3.2 in Antoniadis, 2007):
Given an arbitrary thresholding rule Θ, let P be any function satisfying P(θ ;λ )−P(0;λ )=PΘ(θ ;λ )+

ν(θ ;λ ) where PΘ(θ ;λ ),
∫ |θ |

0 (sup{s : Θ(s;λ )≤ u}−u)du, ν(θ ;λ ) is nonnegative and ν(Θ(t;λ ))=

0 for all t. Then, the minimisation problem

min
a∈Rn

1
2
‖y−a‖2

2 +P(‖a‖2;λ ), Q(a;λ )
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has a unique optimal solution given by â = ~Θ(y;λ ) for every y provided that Θ(·;λ ) is continuous
at ‖y‖2.
Note that P (and PΘ) may not be differentiable at 0 and may be non-convex. The above result shows
that the solution of

argmin
a

(‖a−y‖2/2)+Pλ (s‖a‖2),

extends the definition of the proximal operator in the scalar case to vector-valued arguments as in
Bredies, Lorenz and Reiterer (2015) and can therefore also be derived as a corollary from results of
Bredies et al. (2015).

Now for any given k0 ∈ {1, . . . ,q}, (16) can be decomposed as follows:

1
2n
‖(I−H)Y− (I−H)Gθ‖2

2 +
q

∑
j=1

√
Mgk

~Pλk
(θ gk)

=
1
2n

∥∥∥∥∥∥∥(I−H)Y− (I−H)Gk0θ gk0
−

q

∑
k=1

k 6=k0

(I−H)Gkθ gk

∥∥∥∥∥∥∥
2

2

+
√

Mgk0
~Pλk0

(θ gk0
)

+
q

∑
k=1

k 6=k0

√
Mgk

~Pλk
(θ gk).

Minimisation of (16) can therefore be done by a group-wise descent iterative procedure that cycles
through each group of coefficients (see Daubechies, Defrise and Mol, 2004; She, 2012; Bredies et al.,
2015). More precisely, minimising (16) with respect to θ gk0

, leads to an iterative procedure. Indeed,

let ~Θλ (·) ≡ ~Θ(·;λ ) be the thresholding function that corresponds uniquely to the penalty function
~Pλ (·) (see above). To avoid the influence of the ambiguity in defining some threshold functions,
we always assume that the quantity to be thresholded does not correspond to any discontinuity of
~Θ. This assumption is mild because a practical thresholding rule usually has at most finitely many
discontinuity points and such discontinuities rarely occur in any real application. Since only one
group at a time is being updated, we may restrict our attention to the subproblem of finding θ gk to
minimise the objective function. Denote by θ

(s)
gk (respectively θ

(s)) the current value of the vector
θ gk (respectively θ ) at iteration step s. The updated vector θ

(s+1)
gk is then obtained via the following

updating equation

θ
(s+1)
gk0

= ~Θ
(

θ
(s)
gk0

+(I−H)Gk0rs;n
√

Mgk0
λk0

)
, (17)

where rs = (I−H)(Y−Gθ
(s)). It can then be shown, using Theorem 2.1 of She (2012), that,

provided that the spectral norm of the design matrix G is not large, and whatever the starting value of
θ is, the iterated thresholding estimates defined in (17) minimise (16). The condition on boundedness
of the spectral norm of G is easily obtained by rescaling the vector of coefficients θ and the penalty
parameter λ .

For each group gk0 the thresholding functions in expression (17) involve penalty parameters λ jgk0
that control the amount of regularisation. Fold cross-validation and generalised cross-validation pro-
cedures are popular methods for choosing these tuning parameters, but they are rather complicated
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and computationally intensive. In the scalar case we have seen in a previous section that the square-
root LASSO overcomes this problem. In the same spirit we have used a grouped version of the
square-root LASSO, introduced and studied by Bunea, Lederer and She (2014) and minimise

1
2n
‖(I−H)(Y−Gθ)‖2 +µ

q

∑
k=1

√
Mgk‖θ gk‖2.

Under appropriate conditions (compatibility condition on the design matrix G, a finite sparsity
index, and bounded norms for the smooth and irregular additive components) one may choose
µ = 2.2K0nΦ−1(1− 0.05/(2(n + q))) where Φ is the inverse cumulative function of a standard
Gaussian distribution and where K0 = ‖G‖Frob/

√
2, ‖ · ‖Frob denoting the Frobenius norm, is the

scaling constant used to make the iterations converge. Moreover, the estimator of θ may be still
obtained by iterative multivariate thresholding (scale r/K0 and G/K0)

θ
(s+1)
gk = ~Θso f t

(
θ
(s)
gk +(I−H)Gkrs; µ

√
Mgk ‖((I−H)rs

)
.

Using the results of Bunea et al. (2014), assuming that m and K grow to infinity at appropriate rates
in such a way that a compatibility condition holds for the design matrix G rescaled by K0, assuming a
finite sparsity index less than n/ logq and a bounded entropy on the class of the smooth and irregular
additive components, the variable selection procedure can effectively identify the significant non-
additive components, and produce estimates that are consistent. However, using a square-root group
LASSO penalisation in order to exploit Bunea’s results, may sometimes over-shrink the estimated
nonlinear components. In a second step, using only the selected components by the square-root
group LASSO, we perform a refit using an estimation procedure developed in Chesneau, Fadili and
Maillot (2015), where estimation in a d-dimensional nonparametric additive regression model with
dependent observations is considered using marginal integration. We then adopt a backfitting like
step to get a variable selection penalised estimation of the linear part parameter β by minimising

‖Y−Gθ̂ −Uβ‖2 +
p

∑
j=1

Pλ (|β j|).

However, while the simulation results are encouraging, applying asymptotic results for such an esti-
mation and variable selection of the parameters of the linear part is interesting, but not an easy task
since the residuals Y−Gθ̂ are highly correlated and we hope to address it in a future work.

Regarding the efficiency of the proposed algorithm the most computationally intensive steps for
group thresholding in our algorithm are the calculation of the products (I−H)Gkrs , each of which
requires O(nmaxm,K) operations. Thus, one full pass over all the groups requires O(nq) operations.
The fact that this approach scales linearly in q allows it to be efficiently applied to high-dimensional
problems with q large, but still such that q� n. Of course, the entire time required to fit the model
depends on the number of iterations, which in turn depends on the data and on the regularisation
parameters.

Remark 5 We could have used other types of optimisation algorithms for non convex group pe-
nalised methods. The group coordinate descent (GCD) algorithm has been used in Yuan and Lin
(2006) for the group LASSO and Wei (2012) for the group MCP, assuming that the design matrix of
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each group is orthogonal. One could orthonormalise the groups design matrices B and W prior to
penalising the `2 norms of the group coefficients and apply such GCD algorithms. However, Simon
and Tibshirani (2012) pointed out that the solution obtained with such an orthogonality transforma-
tion, while easy to compute, will not be a solution of the original problem. Moreover, in practical
applications the selection of good penalty λ might be very challenging. For example it has been
reported that in high dimensional settings the popular cross-validation typically leads to detection
of a large number of false regressors (see e.g. Bogdan, van den Berg, Su and Candès (2014)). The
iterative thresholding methods we have used allow to use no prior orthogonalisation and no matter
how the predictors are grouped always guarantees the convergence to a local minimum, provided
that K0 is appropriately large.

To address the shortcomings of LASSO, a relatively new convex optimisation procedure named
Sorted L-One Penalised Estimation (SLOPE) developed recently by Bogdan et al. (2014) allows for
adaptive selection of regressors under sparse high dimensional designs. The idea of SLOPE using
false discovery ratio (FDR) to deal with the situation when one aims at selecting whole groups of
explanatory variables instead of single regressors has been recently extended by Brzyski, Su and
Bogdan (2015) who formulate the respective convex optimisation problem, gSLOPE, and propose
an efficient algorithm for its solution. Moreover, these authors prove that the resulting procedure
adapts to unknown sparsity and is asymptotically minimax with respect to the estimation of the pro-
portions of variance of the response variable explained by regressors from different groups. They
also provide a method for the choice of the regularising sequence when variables in different groups
are not orthogonal but statistically independent and illustrate its good properties with computer sim-
ulations. In the same spirit one could also use the group knockoff filter, developed recently by Dai
and Foygel Barber (2016), which is a method for false discovery rate control in a linear regression
setting where the features are grouped, with nice theoretical guarantees. We have used the gSLOPE
implemented in the grpSLOPE R-package in illustrating the numerical results that follow, but an ex-
tensive study of these procedures in the PLAM context are out of the scope of the present paper and
we hope to address them in a near future.

To end this section we present now a small simulation study with a data setting involving a lin-
ear part with sparse coefficients and multiple covariates influencing in a non-linear additive way the
mean in a hybrid partial linear additive model with normal distributed response data. We consider
again the case where many of the covariates are strictly non-informative, and therefore appropri-
ate selection of the model’s informative predictors are crucial. Performance of our algorithm was
evaluated by computing the same indicators that were used at the end of Section 4.

Synthetic data was generated from model (12), with n = 300, centred response, q = 8 and β

a p-dimensional vector with p = 20. For the parametric part we have used the parameter β =

(1,0.8,1.4,0.6,1.2,0.9,1.1,1.2,0T
12)

T . The design matrix X is a n× p matrix whose columns are
i.i.d. realisations of standard normal distributed variables. For the nonparametric part, only 5 among

Table 2: Average values and standard deviations based on m = 100 simulations.
NS FP FN NPNS FPNP FNNP

Stats 4.25 (0.76) 0.02 (0.15) 3.77 (0.70) 4.69 (0.46) 0.0 (0) 0.31 (0.46)
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Figure 6: The true irregular functions used in the simulations (bumps, blocks and heavisine-like (see
also Donoho and Johnstone, 1998)).

the q components are nonzero, numbered 1, 2, 4, 5 and 6. Among the active components the first
three (bumps, blocks and heavisine-like functions (see Donoho and Johnstone (1998) and Figure 6)
are non-smooth while the last two given by f5(x) = 3sin(2πx3) et f6(x) = 15xexp(−x2) are highly
regular. The T j’s were generated independently from the uniform distribution on [0,1] and the
random errors εi were generated from a standard normal distribution, producing a SNR of 4. For
the above setting, we simulated M = 100 replications. For the splines approximations of the smooth
components we have used cubic P-splines with m = 10 equidistant knots within [0,1] and for the
wavelet approximations we have used Symmlets of order 6 at the finest level K = log2(n)−3.

Figure 7 plots the retained estimated nonparametric components for a typical simulation run
and also a boxplot of the RMSE over the M fits. As one can see, the estimation performances
of the procedure are fairly good, but not as good as when all additive components had the same
regularity. Indeed, since the nonparametric components (being of inhomogeneous smoothness) are
now estimated with suboptimal rates, this accentuates their estimation bias which is reflected in the
linear part and the part composed of smoother components. This explains the larger RMSE and leads
to performance indicators that are less good for the parametric (linear) part. In the nonparametric
part the false negatives are mainly due to the non detection of component 5 in a few runs of the
simulated model.

The other results are summarised in Table 2. From Table 2 we can see that the model selection
performances of the procedure are good with most of the time correctly specified linear and nonlinear
effects.

As one can see from this simulation the advantage of using wavelets as opposed to splines for
the non-smooth additive components is clearly visible for highly non-smooth functions where the
choice of a really high resolution wavelet regression basis turns out advantageous for the estimation
of the nonparametric function, it comes however at a price to pay for the mean squared error of the
parametric coefficients. We noticed in simulations not reported here that when some non-smooth
additive effects are misspecified as smooth the procedure in terms of estimation becomes quite poor.
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Figure 7: Estimate of some selected components from a typical sample realisation. Top line: the
irregular nonparametric functions bumps, blocks and heavisine-like; bottom line from left to right:
functions 3sin(2πx3) and 15xexp(−x2). Red lines: true functions; blue lines: estimates at the end
of refitting by a standard non-penalised estimation procedure after the variable selection step. The
bottom rightmost panel displays a boxplot of the root mean squared error estimation of Y over the
100 simulation runs.
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6. Concluding Remarks

In this paper, taking advantage of recent developments for variable selection in parametric and non-
parametric models, we reviewed several penalised least squares based estimation procedures using
sparse representations for partially linear additive modelling. We have also proposed a flexible
semi-parametric estimation method for partial additive linear models that have parametric compo-
nents of diverging dimensions and nonparametric part with multiple additive components, both with
bounded sparsity indices, composed by smooth and non-smooth functions. It retains good features
for simultaneous variable selection and model estimation on both parametric and nonparametric
parts. The unified approach, modelling the smooth functions by spline-based representations and the
non-smooth ones by wavelet based representations, is able to estimate a broad class of functions. It
is also straightforward to implement. However, for developing the results we have not allowed any
dependence between the covariates and the noise, and also dependence between the responses when
the data is longitudinal. All of these impose significant challenges in developing asymptotic theory
and oracle properties. Moreover, in many applications, although a categorical variable is usually in-
cluded in the linear part as dummies, it may be too restrictive to suppose that linear effects, smooth
effects and non-smooth effects terms that affect the response are known. It is hard to determine
whether the effect of a continuous predictor is linear, smooth nonlinear or non-smooth nonlinear.
An idea to tackle such a point could be inspired by the linear and nonlinear discover (LAND) de-
veloped in Zhang, Cheng and Liu (2011), or the gamsel methodology of Chouldechova and Hastie
(2015) which automatically distinguish and selects linear or nonlinear effects in an additive models
with smooth components through the application of a novel penalty. Their method, extended to our
hybrid setup, can surely serve as a preliminary analysis tool before the application of our method.
Of course, rigorous theoretical justification of this approach requires further work.

Appendix

Wavelet basis construction

This appendix briefly reviews the wavelet basis construction for penalised wavelets mimicking the
construction of O’Sullivan spline bases. The assembly of a default basis for penalised wavelets relies
on classical wavelet construction over equally-spaced grids on [0,1[ of length N, where N is a power
of 2. Choose the functions {bk(·);k = 1, . . . ,N−1}, each defined on the interval [0,1] such that:

W = N−1/2

[
1
{

bk

(
i−1

N

)}
k=1,...,N−1

]
i=1,...,N

is the N×N orthogonal matrix known as a wavelet basis matrix at resolution N (see e.g. Mallat,
1999; Nason, 2010). Note that, for any fixed k, the functions bk(·) do not depend on the value of
N. Hence, if N is increased from 4 to 8 then the functions b1, b2 and b3 remain unchanged. For an
N-dimensional real vector z, and by orthogonality of W we have

z = Wθ̂ ,
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where θ is the vector of wavelet coefficients of z associated to the basis. A fast discrete wavelet
transform algorithm (O(N) operations) allows the computation of θ̂ .

There exist a large class of compactly supported wavelet of a given regularity. They may be com-
puted using the R package wavethresh (see Nason, 2010) referenced using family="DaubExPhase"
and the regularity number which is denoted by filter.number. Note, however, that the Daubechies
wavelet functions do not admit explicit algebraic expressions and can only be constructed via recur-
sion over equally-spaced grids of size equal to a power of 2. Figure 8 displays four Daubechies
wavelets of different smoothness.
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Figure 8: Some Daubechies wavelets of regularity 2, 3, 4 and 5.

The basis functions bk(·) with the same amount of dilation, but different shifts, are on the same
resolution level. The number of basis functions at level ` is 2`−1 for each `= 1, . . . , log2(N). The
default basis definition requires that we impose the following ordering on the bk(·), 1≤ k≤ (N−1):

• b1(·) is the single function on level 1.

• b2(·) and b3(·) are on level 2, with ordering from left to right in terms of their supports.

• and so on for levels 3, . . . , log2(N).

Figure 9 shows the bk(·) generated by a Daubechies filter of regularity 5 at resolution N = 16.
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Figure 9: Daubechies wavelet basis functions of regularity 5 for N = 16 with the following ordering:
b0 is the mean (constant); b1 is the single function on level 1; b2 and b3 are on level 2, with ordering
from left to right in terms of their supports, and so on for levels 3 and 4.
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To compute bk at an arbitrary point x in [0,1] we may choose as in Antoniadis and Fan (2001) a
large value of N (for example N = 16384) and use the approximation

bk(x)' [1− (xN−bxNc)]bk(bxNc/N)+(xN−bxNc)bk((bxNc+1)/N),

with bk(1)≡ bk((N−1)/N). This allows to compute the wavelet design matrices used in this paper.
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