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We develop CUSUMs based on sequential ranks of the observations to detect changes over
time in the location and dispersion of a distribution. The CUSUMs are distribution free in
the sense that the appropriate control limits do not depend on the form or any parameters of
the unknown underlying distribution. As such the CUSUMs are fully self starting. The in-
and out-of-control average run length properties of the CUSUMs are gauged qualitatively via
theory-based calculations and quantitatively by Monte Carlo simulation. The CUSUMS are
shown to perform very well when compared to some existing parametric and nonparametric
CUSUMS. Implementation of the CUSUMs is illustrated in an application based on real data
from an industrial environment.
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1. Introduction
Let the sequence of independent observations X1, X2, . . . be the numerical values of a product quality
characteristic measured over time. In the application treated in Section 4, for instance, the quality
characteristic is the ash content of coal, measured in real time by an online x-ray fluorescent gauge. A
change in product quality manifests itself as a change in the distribution of the X-values. Sequential
CUSUM procedures – see, for instance, Hawkins and Olwell (1998) – are often used to detect such
a change. However, their successful implementation generally requires specific assumptions about
the form of the underlying distributions. Even minor misspecification of the functional form of the
distribution and of the presumed known values of nuisance parameters can have a disastrous effect
on their performance – see Hawkins and Olwell (1998, Sections 3.5 and 3.7.1), Keefe, Woodall and
Jones-Farmer (2015) and Saleh, Zwetsloot, Mahmoud and Woodall (2016), where extensive further
references can also be found.
Distribution-free CUSUMs can overcome such difficulties to a large extent. Here, the term

“distribution-free” means that the in-control properties of the CUSUM do not depend upon the
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parametric form of the underlying in-control distribution or on any of its parameters. In particular,
replacing the data by their sequential ranks leads to distribution-free CUSUMs that are easy to
implement. The ith sequential rank, ri , is the rank of Xi among the first i observations X1, . . . , Xi ,
that is

ri =
∑i

j=11(Xj ≤ Xi),
where 1(·) denotes the indicator function. Successive sequential ranks are independently distributed
and ri/(i+1), which is uniformly distributed on the set {1/(i+1), . . . , i/(i+1)}, has mean 1/2 as long
as the underlying continuous distribution, whatever it may be, remains unchanged – see Barndorff-
Nielsen (1963). When the underlying distribution changes, so does the mean of ri/(i + 1) and a
sequential rank CUSUM should then be able to detect the change. These facts about sequential ranks,
together with their naturally sequential nature, make them attractive building blocks of distribution-
free CUSUMs.
Bhattacharya and Frierson (1981) and Lombard (1983) developed distribution-free truncated

sequential tests for location change based on sequential ranks. However, these are not CUSUM
procedures in the commonly accepted sense of the term because they terminate after a predetermined
number of observations. The first fully fledgedCUSUMbased on sequential ranks is due toMcDonald
(1990). His approach was based on the convergence to a uniform distribution of ri/(i+1). In essence
McDonald (1990) develops aCUSUMto detect a change fromauniform to a non-uniformdistribution.
Our approach is more direct and relies on the approximately normal distribution of partial sums of
functions ψ(ri/(i + 1)) of the sequential ranks, where ψ is a score function defined in Section 2. The
introduction of functions of the sequential ranks also provides flexibility in the choice of the most
appropriate CUSUM, a point illustrated in the application in Section 4 of the paper.
The main contributions of the present paper are (a) the development of sequential rank CUSUMS

to detect location and scale changes in an underlying continuous distribution and (b) the development
of a formula of sorts that allows one to gauge prior to implementation the likely OOC ARL (out-of
control average run length) behaviour of the CUSUM. The latter feature can be especially useful in
designing the CUSUM. Our sequential rank CUSUMs guarantee an IC ARL (in-control average run
length) equal to the nominal value, regardless of the form of the continuous underlying distribution.
Furthermore, the CUSUMs are devoid of the between-practioner effects noted by Keefe et al. (2015).
These effects are present to a greater or lesser extent in all existing CUSUMs that rely for their
successful Phase II implementation on parameter estimates made from Phase I data. Finally, since
control limits for the sequential rank CUSUMs are not functionally related to the underlying data,
they can be generated “once and for all time” by, for instance, Monte Carlo simulation using standard
uniform random numbers. This is in contrast to some other non-parametric CUSUMS such as those
proposed by Saleh et al. (2016), Gandy and Kvaløy (2013) and Chatterjee and Qiu (2009), which
rely on bootstrapping from an in-control Phase I sample to obtain appropriate control limits. As the
(unknown) distribution which produces the data changes from application to application, so will the
control limits have to change. Furthermore, the bootstrap methods do not guarantee attainment of a
nominal in-control ARL, but provide only lower or upper confidence limits for the actually attained
ARL.
Two sets of circumstancesmust be distinguished clearly. In the first, the in-control value of a quality

parameter of interest is specified. The original Page (1954) CUSUM was designed to handle such
instances, assuming an underlying normal distribution. Generalizations to other distributions also
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took the in-control parameter value as known. Distribution-free CUSUMs applicable in this situation
were developed by Bakir and Reynolds (1979) for observations appearing naturally in groups of size
two or more, and by Lombard and Van Zyl (2018) for singly arriving observations. A second set
of circumstances, which is the focus of the present paper, is described by Hawkins (1987). There,
the process is declared to be in control upon startup, notwithstanding the fact that the current value
of the parameter(s) of interest is either unknown or has been estimated from a Phase I sample. The
objective is then to detect a change away from the true current value, whatever the latter may be. Such
circumstances gave rise to the construction of, for instance, a self-starting CUSUM for monitoring
the current mean of a normal distribution (Hawkins, 1987) and subsequent extensions (Hawkins and
Olwell, 1998) to monitoring parameter values in distributions from the exponential family (Hawkins
and Olwell, 1998, Chapter 7).
The present paper is structured as follows. In Section 2 the CUSUMs for detecting a change in

the median are developed. A special case is considered in more detail and a table of control limits is
provided. The OOC behaviour of the CUSUMs are also studied. A formula of sorts is provided that
allows one to gauge the likely OOC performance prior to implementation. In Sections 2.5 and 2.6 the
CUSUMS are compared to some competing parametric and distribution-free procedures. Section 3
provides information and results for monitoring dispersion in the underlying distribution. In Section 4
implementation of the CUSUMS is demonstrated in an application to XRF online monitoring of coal
ash levels.

2. Sequential rank location CUSUMs
Sequential rank CUSUMs for detecting a change in the unknown median of a distribution can be
constructed by standardizing the score functions that are typically used in two sample rank tests for
location. These score functions ψ(u), 0 < u < 1, are usually symmetric around zero and satisfy the
relations ∫ 1

0 ψ(u)du = 0 and
∫ 1

0 ψ
2(u)du = 1.

Some well-known examples are the Wilcoxon score

ψ(u) =
√

12(u − 1/2) (1)

and the Van der Waerden score
ψ(u) = Φ−1(u),

where Φ−1 denotes the inverse of the standard normal CDF. If X1, . . . , Xi are i.i.d. (the in-control
situation) the sequential rank ri is uniformly distributed on the set {1, . . . , i}, whence

E
[
ψ

( ri
i + 1

)]
=

1
i

i∑
j=1
ψ

(
j

i + 1

)
= 0

and

var
[
ψ

( ri
i + 1

)]
=

1
i

i∑
j=1
ψ2

(
j

i + 1

)
.
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Writing

ηi =
1
i

i∑
j=1
ψ2

(
j

i + 1

)

it then follows that the statistic
ξi = ψ

( ri
i + 1

) /√
ηi

has zero mean and unit variance. In particular, for the Wilcoxon score (1), ηi = (i − 1)/(i + 1) and

ξi =

√
12(i + 1)

i − 1

(
ri

i + 1
− 1

2

)
, i ≥ 2. (2)

Furthermore, if X1, X2, . . . are independent with a fixed continuous distribution, the ξi are indepen-
dently, but not identically, distributed and converge to a random variable with a uniform distribution
on the interval (−√3,

√
3).

Since the mean of ξi becomes positive when the mean of the data increases, we define a CUSUM
to detect an upward shift by setting D+1 = 0 and then computing recursively

D+1 = 0, D+n = max
{
0,D+n−1 + ξn − ζ

}
(3)

for n ≥ 2, where the reference value ζ is a positive constant. An alarm is raised as soon as Dn

exceeds the control limit h > 0, that is, at the index

N+ = min{n > 1 : D+n ≥ h}, (4)

which is known as the run length. An alarm is interpreted as a signal that themedian of the distribution
may has increased. The control limit h is chosen to ensure that the IC ARL equals a pre-specified
finite value, ARL0 – see Section 2.1. To detect a possible decrease in the median, a second CUSUM
is run concurrently. This is defined by replacing all the plus signs in (3) and (4) by minus signs. The
run length is then N = min{N+, N−} and the IC ARL is ARL0/2. It is commonplace in applications
to plot D+n and −D−n together on the vertical axis against n on the horizontal axis. In the sequel we
will frequently use the CUSUM based upon the standardized Wilcoxon score and henceforth refer to
it as the WSR (Wilcoxon sequential rank) CUSUM.

2.1 In-control properties
Given a reference constant ζ , the control limit h is chosen to ensure a pre-specified IC ARL. The
distribution-free character of the CUSUMs when the X-process is in control allows fairly precise
estimation via Monte Carlo simulation of h for any given IC ARL, reference constant ζ and score
function ψ. Table 1 gives control limits h that guarantee a range of IC ARL values for the upper WSR
CUSUMs D+ at a range of reference constants. Details of the computations are given in Appendix A.
Tables of control limits for sequential rank CUSUMs based on the Van der Waerden and Cauchy
scores are available from the authors upon request.
The control limits in Table 1 at reference constants ζ ≤ 0.25 are quite close to those of a standard

normal Page-type CUSUM (see Page, 1954). This is not entirely an unexpected result in view of
the asymptotic normality of partial sums of the ξi . Regardless of the reference constant used, no
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Table 1. Control limits for the WSR CUSUM.

IC ARL

ζ 100 200 300 400 500 1 000 2 000

0.00 8.92 13.07 16.24 18.90 21.30 30.24 43.95
0.10 6.45 8.62 10.05 11.12 12.01 14.79 17.93
0.15 5.65 7.34 8.42 9.21 9.86 11.88 14.06
0.20 5.00 6.37 7.24 7.87 8.37 9.96 11.57
0.25 4.46 5.61 6.33 6.85 7.25 8.52 9.84
0.30 4.01 5.00 5.60 6.03 6.37 7.45 8.53
0.35 3.62 4.48 5.00 5.37 5.66 6.58 7.51
0.40 3.29 4.04 4.49 4.81 5.06 5.87 6.66
0.45 2.99 3.66 4.05 4.34 4.56 5.25 5.96
0.50 2.73 3.31 3.68 3.93 4.13 4.74 5.34

parameter estimates are required to initiate the CUSUM. Given a reference constant ζ , any specified
ARL0 is guaranteed upon use of the appropriate h from Table 1. Thus, the CUSUM is fully self
starting: no parameter estimates are required to initiate the CUSUM.

2.2 Out-of-control properties
An out-of-control situation occurs at index τ ≥ 1 if the distribution of X shifts upward or downward
immediately after τ, that is, if the common CDF G of Xτ+1, Xτ+2, . . . is related to the common CDF
F of X1, . . . , Xτ by G(x) = F(x − µ), where µ , 0. The efficacy of the CUSUM is then often judged
by the out-of-control average run length (OOC ARL)

ARLτ = E[N − τ |N > τ], (5)

the expected time to an alarm after onset of an out-of-control situation, conditional upon there having
been no alarm prior to the change. The scale invariance of sequential ranks implies that a shift µ in
the median may be expressed in units of an unknown underlying scale parameter σ, which typically
functions as a measure of dispersion of the underlying distribution. This could be the standard
deviation, if it exists, or the inter-quartile range (IQR). Thus, the shift size in units of this scale
parameter is δ = µ/σ . Accordingly, we may assume without loss of generality in the theoretical
development of the properties of the CUSUM that σ = 1 (i.e. that the data are expressed in units of
σ) and that the shift size is δ.
Some general insights into the OOC ARL behaviour of the CUSUMs can be gained by restricting

attention to the behaviour of the upward CUSUM D+ when a nominally “small” positive shift δ
occurs after a “large” changepoint τ. Such an approach is in line with the primary objective of
CUSUM methodology, which is to detect quickly a relatively small persistent shift. An informal
calculation, shown in Appendix B, indicates that then

E[ξτ+k] ≈ δθ0τ log
(

τ + k
τ + k − 1

)
, (6)

where
θ0 =

∫ ∞

−∞
ψ ′(F(x)) f 2(x)dx (7)
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and where F and f denote the CDF and PDF respectively of X1. For fixed τ the function
log((τ + k)/(τ + k − 1)), k ≥ 1 is positive and decreases to zero as k increases. This implies
that after a shift the CUSUM will show a drift which initially is upward and then tends to zero as
more out-of-control data arrive. Thus, the CUSUM will not increase indefinitely after a shift but
will return eventually to seemingly “in-control” behaviour. This is also clear on intuitive grounds:
as observations accrue after the change, the effect of the pre-change data on the post-change sequen-
tial ranks gradually diminishes until the latter effectively become uniformly distributed again. The
implication for statistical practice is that an alarm from the sequential rank CUSUM should be acted
upon quickly.

2.3 Choice of reference constant
The initial upward drift rate of the CUSUM after a change is approximately δθ0. This follows from
(6) upon making τ large and keeping k fixed, in which case τ log((τ + k)/(τ + k − 1)) ≈ 1. In a
standard normal CUSUMwhich targets a shift size δ1 for detection, the optimal reference constant is
δ1/2. This fact might be interpreted as suggesting ζ1 = θ0δ1/2 as an appropriate reference constant
in a sequential rank CUSUM. However, the analogy is flawed because a standard normal CUSUM
increases indefinitely after a change while a sequential rank CUSUM does not exhibit this feature. If
a too large reference constant is used the consequent large downward drift imposed on the CUSUM
impairs its ability to detect relatively small changes. Thus, ζ1 should perhaps be regarded as an upper
bound, a reference constant somewhat less than ζ1 being more appropriate.
In fact, the non-constant nature of the post-change drift suggests an approach in which the reference

constant is dispensed with and instead the control limit is allowed to vary with n. Such an approach,
based upon a sequence of two-sample Mann-Whitney statistics, has been implemented by Hawkins
and Deng (2010). Ross and Adams (2012) applied the same method to sequences of Kolmogorov-
Smirnov and Cramér-von-Mises statistics. Some comparisons between the performances of the latter
CUSUMs and the WSR CUSUM are given in Section 2.5 of the paper.
In any event, no matter what reference value is used, a sequential rank CUSUM will remain

distribution free and will guarantee a nominal IC ARL. The effect of the reference constant on the
performance of the CUSUMwill only become apparent in an out-of-control situation. In this respect,
the results shown in the next section of the paper are of some use in deciding which reference value
to use.

2.4 Out-of-control ARL
An argument outlined in Appendix B leads to a heuristic tool that is useful in estimating a priori the
OOC ARL of a sequential rank CUSUM:

If a small shift in the median of size δ occurs at a large n = τ,
then a sequential rank CUSUM with small reference value ζ
and large control limit h behaves approximately like a standard
normal CUSUM with the same ζ and h when shifts of size
θ0δτ log(n/(n − 1)) occur at n = τ + k, k ≥ 0.

(8)

The heuristic (8) suggests that approximations to the OOC ARL (5) of a sequential rank CUSUM
can be found by pretending that the underlying distribution is normal. Such an approximation can
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Table 2. Values of θ0 for the WSR CUSUM
in five standardized distributions.

Normal t3 t2 t1 Gumbel

θ0 0.98 1.37 1.18 1.10 1.12

be useful in CUSUM design since it obviates to a large extent the need to simulate data from a range
of putative underlying distributions in order to gauge a priori the likely out-of-control behaviour
of the CUSUM . Given a reference constant ζ , a nominal in-control ARL value ARL0 (hence the
appropriate control limit h from Table 1) and a changepoint τ, denote byW(δ) the OOC ARL of a
WSR CUSUM when a median shift of size δ > 0 is introduced at n = τ + 1. Also, denote byN(θ0δ)
the OOC ARL of a standard normal CUSUMwith these same values of ζ, τ and h when mean shifts
of sizes θ0δτ log(n/(n − 1)) occur at n = τ + k, k ≥ 0. Then (8) says that

W(δ) ≈ N(θ0δ) (9)

whenever δ is “small” and τ is “large”. There is no analytical expression available forN(θ0δ) in the
literature. Nevertheless, given ζ, h, τ and a nominal value of θ0 (or a Phase I estimate of it, if such
data are available), the numerical value of N(θ0δ) can be estimated by simulation using standard
normal random numbers only. Thus, we have what amounts to an approximation “formula” for the
OOC ARLW(δ) of the WSR CUSUM.
To facilitate practical implementation of (9), Table 2 shows the numerical value of θ0 in five

standardized distributions: a normal distribution, Student t-distributions with 3, 2 and 1 degrees
of freedom and a Gumbel distribution (the distribution of the logarithm of a standard exponential
random variable). The first four of these are symmetric while the Gumbel is moderately skew. The t2
and t1 distributions were standardized to unit IQR. The other three distributions were standardized to
unit variance. While the precise functional form of the underlying distribution may be unknown, the
values in Table 3 enable one to make a somewhat rational choice of θ0 after taking into account the
likely tail thickness and skewness of the in-control distribution and the nature of the scale parameter
of choice.
If some in-control Phase I data X∗1, . . . , X∗m (in the original units of measurement) were available,

an estimate of θ0 can be made as follows. Observe that equation (7) can be written in the form

θ0 =
√

12E[ f (X∗/σ)],

with f denoting the density function of X∗/σ. This suggests the estimator

θ̂0 =

√
12
m

m∑
i=1

f̂ (X∗i /σ̂),

where f̂ and σ̂ are consistent estimators of f and σ respectively. For instance, if f̂ is a kernel
estimator

f̂ (x) = 1
mb

m∑
i=1
φ

(
x − X∗i /σ̂

b

)
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with bandwidth b and kernel φ, then

θ̂0 =

√
12

m2b

m∑
i=1

m∑
j=1
φ

(
X∗i − X∗j
σ̂b

)
.

To assess the finite sample validity of (9), someMonte Carlo simulations involving upperWSR and
standard normal CUSUMs were run. The following numerical example is representative of a general
pattern observed in these simulations. Data were generated from four distributions, each standardized
to unit standard deviation. These were the normal and t3 distributions which are symmetric, and two
asymmetric distributions, the Gumbel distribution and a heavily skewed normal distribution with
skewness parameter α = −4 (see Azzalini, 2005). Mean shifts of sizes δ1 = 0.25 and 0.5 were
targeted and actual mean shifts δ of various sizes, shown in the first column of Table 3, were induced
at τ = 100. In each instance, the reference constant was taken to be (the sub-optimal) ζ = θ0δ0/2
and h was taken from Table 1 to give an IC ARL of 500. The (ζ, h) pairs used are shown in the third
row of Table 3. The true valuesW(δ) were estimated in each instance from 20 000 Monte Carlo
trials using random numbers from the true underlying distribution while N(θ0δ) was obtained in a
simulation which used only standard normal random numbers.
In the two symmetric distributions the approximations are excellent, except for small shifts at the
(ζ, h) = (0.35, 5.66) combination (shown in the last two columns). In that case, ζ is arguably not
small and h is not large, so that the assumptions upon which the heuristic rests are not met. In the
moderately skew Gumbel distribution the approximation is acceptable, except perhaps at small shifts
δ ≤ 0.25. However, in the skew-normal distribution the approximation would be useful only at shifts
δ ≥ 0.5. This is no doubt due to the fact that a symmetric score function is being used on data from
a distinctly asymmetric distribution.

2.5 Comparison with other distribution-free CUSUMs
We now compare the two-sided WSR CUSUM with the distribution-free CUSUM of Hawkins and
Deng (2010) (the HD CUSUM) and the Kolmogorov-Smirnov CUSUM of Ross and Adams (2012)
(the RA CUSUM). Data from standardised normal and t3 distributions are used. Table 5 shows
estimated (from 20 000 Monte Carlo trials) OOC ARLs of the CUSUMs at a range of shifts δ
induced at the changepoints τ = 50 and τ = 250. To initiate the HD CUSUM, the recommended
14 initial observations (Hawkins and Deng, 2010, page 168) were used while 19 observations were
used to initiate the RA CUSUM (Ross and Adams, 2012, page 106). In all three CUSUMs the
two-sided nominal IC ARL was specified as 500. In the WSR CUSUM, feigning ignorance of θ0,
we use reference values δ1 = 0.125, 0.25 and 0.5 throughout. The corresponding control limits are
h = 13.34, 8.52 and 4.74. In Table 4 the subscript on the WSR heading denotes the reference value.
Neither the HD CUSUM nor the RA CUSUM in their present form use a reference value.
In Table 4 we see that the performances of the HD and RA CUSUMS are more or less the same as

that of the WSR CUSUM at reference value 0.25. At the smaller reference value the WSR CUSUM
is clearly the better of the three CUSUMs. However, following from the discussion in Section 2.3,
the WSR performance at the smaller shifts degenerates badly when a large reference value is used.
Survival data are often modeled by an exponential-type distribution such as the Weibull. The

densities of these distributions typically have modes at or close to zero, decrease monotonically
toward the right tail and are parameterized by a scale parameter. Taking the logarithms of the data
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Table 3. WSR CUSUM OOC ARL approximations in four distributions. IC
ARL = 500; changepoint τ = 100.

Normal (θ0 = 0.98) t3 (θ0= 1.38)
(ζ, h) (0.10, 12.01) (0.25, 7.25) (0.15, 9.86) (0.35, 5.66)

δ W (δ) N (θ0δ) W (δ) N (θ0δ) W (δ) N (θ0δ) W (δ) N (θ0δ)
0.125 252 259 306 307 211 214 274 254
0.250 118 113 163 164 70 67 114 104
0.375 52 53 76 78 30 28 44 38
0.500 32 32 37 36 19 18 20 18
0.750 19 18 17 16 12 11 10 9
1.000 14 13 11 10 9 8 8 6

Gumbel (θ0 = 1.11 ) Skew-normal(−4 ) (θ0 = 1.05 )

(ζ, h) (0.15,9.86) (0.25,7.25 (0.15,9.86) (0.25,7.25)

δ W (δ) N (θ0δ) W (δ) N (θ0δ) W (δ) N (θ0δ) W (δ) N (θ0δ)
0.125 233 258 265 279 244 270 274 292
0.250 92 102 117 132 103 117 127 146
0.375 42 44 49 55 45 51 54 64
0.500 25 26 25 27 28 28 29 30
0.750 15 14 14 13 16 15 15 14
1.000 11 10 10 9 12 11 10 9

Table 4. OOC ARL comparison between the WSR, HD and RA CUSUMs. IC ARL = 500;
changepoints at τ = 50 and τ = 250.

Normal data

τ = 50 τ = 250

δ1 WSR0.125 WSR0.25 WSR0.5 HD RA WSR0.125 WSR0.25 WSR0.5 HD RA

0.10 444 462 472 489 474 366 401 453 417 423
0.25 307 357 426 384 388 117 174 285 169 182
0.50 91 133 253 142 153 34 36 63 38 41
0.75 30 35 91 33 36 21 18 20 18 19
1.00 18 15 24 15 16 15 13 12 11 12

t3 data

τ = 50 τ = 250

δ1 WSR0.125 WSR0.25 WSR0.5 HD RA WSR0.125 WSR0.25 WSR0.5 HD RA

0.10 422 436 466 463 455 295 340 426 365 355
0.25 201 261 366 286 282 61 81 175 80 80
0.50 35 47 126 47 44 22 20 24 21 20
0.75 18 15 23 14 14 15 12 11 11 11
1.00 14 11 9 9 9 12 9 8 8 7
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Table 5. OOC ARL comparison between the WSR and HD
CUSUMs in an exponential distribution. IC ARL = 500;
changepoints at τ = 50 and τ = 200.

τ = 50 τ = 200

∆ WSR0.23 WSR0.39 HD WSR0.22 WSR0.39 HD

1.10 391 412 475 294 329 425
1.25 251 297 398 139 176 238
1.50 118 158 235 48 62 72
1.75 54 76 115 28 30 36
2.00 30 45 55 21 20 24

h 7.899 5.309 7.899 5.309

will transform a scale change into a location change. Since the sequential ranks of the data remain
unchanged under this transformation, the WSR CUSUM can be applied with ξi given in (2).
The HD CUSUM can also be applied directly to the X-values. Table 5 shows the estimated OOC

ARLs of the WSR and HD CUSUMs in data from an exponential distribution. The IC ARL is 500
and the target scale increases are ∆1 = 1.5 and ∆1 = 2.0, which translate to target location shift sizes
δ1 = 1.12 log(1.5)/2 = 0.23 and δ1 = 1.12 log(2.0)/2 = 0.39 in the WSR CUSUM. The ARLs are
estimated for two changepoints τ = 50 and τ = 200 and at the five scale shifts ∆ shown in the first
column of the table. The subscript on the WSR headings in the table are the reference values and
the control limits used in the WSR CUSUM are shown in the last row. Clearly, the WSR CUSUM
performs better than the HD CUSUM in this particular instance.

2.6 Comparison with a normal self-starting CUSUM
Consider next the original self-starting CUSUM for a normal mean developed by Hawkins (1987)
and described in further detail by Hawkins and Olwell (1998, Section 7.2). We will refer to it here
as the NSS CUSUM. The data initially come from a normal distribution with unknown mean and
variance. At some point the mean changes away from the initial value. The NSS CUSUM was
designed to detect such a change. The NSS CUSUM recursion has the form (3) with

ξn = Φ
−1(Tn−2(anVn)),

where Tn−2 denotes the CDF of the tn−2 distribution, an =
√
(1 − 1/n) and Vn = (Xn − X̄n−1)/sn−1,

for n ≥ 3, with

s2
n−1 =

n−1∑
i=1
(Xi − X̄n−1)2/(n − 2).

The reference constant is taken as ζ = δ1/2 where δ1 is the targeted shift and the control limit is
that which would be applicable in a standard normal CUSUM with reference constant ζ . While the
NSS CUSUM can in principle be started after as few as n = 3 observations have been gathered, the
deleterious effect of outliers on its performance can be mollified if a “warmup” sample of size m > 3
is used to initiate the CUSUM. This means that we set D+1 = · · · = D+m = 0. Here we will take m =
15. Since the data are known to come from a normal distribution, the VSR CUSUM would seem
to be the most appropriate sequential rank procedure. Notwithstanding this, we will use the WSR
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Table 6. NSS and WSR CUSUM OOC ARL comparison.

τ = 50 τ = 100

δ NSS.25 WSR.25 NSS.5 WSR.5 NSS.25 WSR.25 NSS.5 WSR.5

0.25 237 234 312 305 166 163 240 235
0.5 70 69 144 132 37 38 76 72
0.75 21 22 51 42 16 16 22 21
1.0 11 12 15 14 10 11 10 11
1.25 8 9 8 8 8 8 7 8
1.5 7 8 6 7 6 7 5 6
1.75 6 7 5 6 5 6 4 5
2.0 5 6 4 5 5 6 4 5

CUSUM because the boundedness of the Wilcoxon score provides more protection against outliers
in the data. Furthermore, in fixed size samples, the Wilcoxon two-sample test is known to be 95%
efficient relative to the two-sample t-test, which suggests that the WSR CUSUM should fare well
against the NSS CUSUM. The WSR CUSUM is initiated without any warmup observations and will
use the same reference constants as the NSS CUSUM. Table 6 shows the results of a Monte Carlo
comparison of the CUSUMs at a nominal IC ARL of 500 and reference constants ζ = 0.25 and
ζ = 0.5 when changes of size δ, indicated in the first column of the table are introduced after τ = 50
and τ = 100 observations.
Inspection of the results in the table reveals that the WSR CUSUM performs as well as, or better

than, the NSS CUSUM. This somewhat surprising phenomenon has also been observed in other
contexts – see, for instance, Hawkins and Deng (2010, p. 170). In contrast to the NSS CUSUM,
the WSR CUSUM has the added advantages that its in-control behaviour is impervious to deviations
from the normality assumption and that it requires no “warmup data” in order to initialize.

3. A sequential rank CUSUM for dispersion
Despite the fact that the in-control properties of a sequential rank location CUSUM do not depend
upon the dispersion in the underlying distribution, the validity of the CUSUM does require the
dispersion to remain unchanged. Running a CUSUM that can detect a change in the unknown
numerical value of a dispersion parameter σ, enables one to monitor the validity of this assumption.
ACUSUM that immediately suggests itself is the squared value of the summand in theWSRCUSUM,
adjusted to have in-control mean zero,

ξ∗i = ξ
2
i − 1,

with ξi from (2). Thus,

ξ∗i =
12(i + 1)

i − 1

(
ri

i + 1
− 1

2

)2
− 1. (10)

Since the in-control distribution of ξ∗i is not symmetric around zero, the relationship between the
upward and downward CUSUMs is not as straightforward as it is for location CUSUMs. In the
present context, the upward and downward CUSUMs are

D+1 = 0, D+n = max
{
0,D+n−1 + ξ

∗
n − ζ+

}
, n ≥ 2,
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Table 7. Control limits for the upward MSR CUSUM.

IC ARL

ζ 100 200 300 400 500 1 000 2 000

0.00 7.99 11.68 14.53 16.97 19.05 27.36 39.11
0.05 6.64 9.11 10.94 12.36 13.45 17.35 21.71
0.10 5.75 7.64 8.88 9.76 10.53 12.97 15.60
0.15 5.04 6.56 7.48 8.20 8.72 10.55 12.38
0.20 4.47 5.72 6.49 7.03 7.50 8.91 10.36
0.25 4.04 5.12 5.74 6.21 6.58 7.72 8.91
0.30 3.68 4.60 5.14 5.55 5.85 6.82 7.84
0.35 3.36 4.17 4.65 5.01 5.28 6.14 6.98
0.40 3.08 3.83 4.24 4.56 4.79 5.54 6.31
0.45 2.85 3.51 3.90 4.17 4.39 5.04 5.73
0.50 2.64 3.24 3.57 3.83 4.02 4.63 5.24

Table 8. Control limits for the downward MSR CUSUM.

IC ARL

ζ 100 200 300 400 500 1 000 2 000

0.00 8.00 11.75 14.57 16.95 19.02 27.25 39.08
0.05 6.51 8.93 10.71 12.02 13.02 16.96 21.04
0.10 5.40 7.15 8.34 9.13 9.86 12.10 14.46
0.15 4.54 5.92 6.73 7.31 7.82 9.40 10.95
0.20 3.89 4.94 5.58 6.03 6.39 7.54 8.72
0.25 3.37 4.19 4.71 5.06 5.35 6.24 7.15
0.30 2.92 3.58 4.00 4.29 4.51 5.25 5.96
0.35 2.51 3.06 3.41 3.63 3.84 4.42 5.02
0.40 2.16 2.62 2.90 3.11 3.26 3.74 4.23
0.45 1.86 2.24 2.47 2.64 2.78 3.17 3.58
0.50 1.58 1.90 2.10 2.23 2.34 2.67 3.00

with control limits h+, and

D−1 = 0, D−n = max
{
0,D−n−1 − ξ∗n − ζ−

}
, n ≥ 2,

with control limits h−. In general, the reference constants ζ+ and ζ− need not have the same numerical
value. Even if they are identical, the control limits h+ and h− that give the upward and downward
CUSUMs the same in-control ARL will differ, especially at the larger reference constants. Thus,
separate tables of control limits are required to detect increases and decreases in dispersion at a
nominal in-control ARL.
In view of the fact that the summand (10) is reminiscent of the score function in the two-sample

scale test of Mood (1954), we will refer to the corresponding CUSUMs as MSR CUSUMs. Table 7
shows control limits h+ and h− obtained by Monte Carlo simulation for a range of nominal IC ARLs
and reference constants ζ+ and ζ− for the upward and downward MSR CUSUMs.
If the unknown σ changes to σ∆ where 0 < ∆ , 1, then the analogue of (6) is (see Appendix B)

E[ξ∗τ+k] ≈ θ∗τ(log∆) log
(

τ + k
τ + k − 1

)
,
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Table 9. Values of θ∗ in the MSR CUSUM
for five distributions.

Normal t3 t2 t1 Gumbel

θ∗ 1.10 0.89 0.80 0.61 1.01

with
θ∗ ≡ 24

∫ ∞

−∞
(G(x) − 1/2)xg2(x)dx (11)

and G and g denoting the CDF and PDF of X − ν and ν denoting the (unknown) in-control median.
This is analogous to the result (6) for the location CUSUM with θ0 and δ there replaced by θ∗ and
log∆. The result suggests that taking ζ+ = ζ− = log∆0 > 0 is equivalent to targeting upward and
downward scale changes proportional to ∆0 > 1 and 1/∆0 respectively. Values of θ∗ in the five
distributions listed in Table 2 are shown in Table 9.
If some Phase I data X∗(1) < · · · < X∗(m) are available, θ

∗ can be estimated by

θ̂∗ =
24
m

m∑
i=1

(
i

m + 1
− 1

2

)
(X∗(i) − ν̂m)ĝ(X∗(i)), (12)

where ĝ is the kernel estimate

ĝ(x) = 1
mb

m∑
j=1
φ

(
x − X∗(i)

b

)

and ν̂m is the median of the Phase I data. When g can be assumed to be symmetric around zero, ν̂m
in (12) can be set equal to zero.

4. Application: Monitoring coal quality
The amount of gas produced in a coal gasification facility depends crucially on the ash content of
the received coal. Therefore, it is important for coal suppliers to control and manage the coal quality
sent to the downstream users. It is equally important for the coal users to know the expected quality
of the coal in order to implement pro-active operational changes. For this purpose, an XRF (X-ray
fluorescent) coal analyzer which collects real time information on the ash content is mounted over a
conveyor belt which transports the coal from the stockyard to the downstream facility. Figure 1 shows
a time series plot of 175 successive aggregated ash measurements (standardized to zero mean and
unit variance in order to comply with a confidentiality agreement with the provider of the data). The
data shown are 15 minute aggregated data which is sufficient for detecting changes in coal quality
in time for the downstream units to take action. The coal is reclaimed from two to three heaps of
between 20 000 to 40 000 tons each, with varying coal ash yield within and between the heaps. From
Figure 1, the short and long term variation in ash content of the reclaimed coal is clearly evident. The
variation may be due to different coal sources with varying ash yield being stacked and reclaimed.
CUSUMs can now be used to detect real time changes in the median ash yield and in the dispersion
of the data.
While the data show substantial variability, differing average levels are clearly discernible in

retrospect. Also, there are apparent outliers and groups of outliers among the data. These are shown
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Figure 1. Time series plot of standardized XRF ash content measurements.

enclosed in circles in Figure 1. In the present context, such values typically appear when the mass of
coal scanned by the gauge per unit of time is lower than the minimum amount required for accurate
determination of ash content. Such outliers do not indicate real changes in coal quality and constitute
what are referred to as transient local effects in the CUSUM literature. In this particular application
the CUSUM should be robust against such effects in order to prevent frequent false alarms that would
compromise effective management of the coal blending system.
To see how a CUSUM would react when such data are observed sequentially, we implement a

two-sided WSR CUSUM with a reference constant ζ = 0.5 and control limit h = 3.68, which results
in an IC ARL of 150. The changepoint is estimated in the usual manner, namely as the last index
at which the CUSUM, upper or lower, producing the alarm was last at zero. If an alarm sounds at
index n, the CUSUM is restarted at observation number n. This rule provides some insurance against
restarting at a substantial underestimate of the true changepoint which is then likely to lead to a false
alarm shortly thereafter. The results are shown in Table 10, in which the third column indicates the
direction, up or down, of the putative change.
Looking at the retrospective time series plot in Figure 1, it seems that some of the substantial

number of alarms result from the transient local effects mentioned earlier rather than from sustained
changes in the mean. From a coal quality management perspective, a somewhat more acceptable
result is obtained upon use of the Cauchy score

ψ(u) =
√

2sin(2π(u − 1/2)),

which is plotted in Figure 2.
The monotone increasing nature of the function on the interval 1/4 < u < 3/4 implies an ability of

the corresponding CUSUM to detect moderately sized changes. On the other hand, since the function
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Table 10. Results of WSR
CUSUM implementation on the
XRF data.

Alarm at Changepoint Shift

n = 30 τ = 19 up
n = 36 τ = 30 down
n = 42 τ = 36 up
n = 69 τ = 65 up
n = 100 τ = 95 up
n = 106 τ = 100 down
n = 136 τ = 132 down
n = 147 τ = 139 down

Table 11. Results of Cauchy CUSUM implementation
on the XRF data.

Alarm at Changepoint Median Shift Sd. Shift
/
sd.

n = 87 τ = 74 1.06 0.62 1.70
n = 112 τ = 101 −1.12 0.44 −2.50
n = 151 τ = 141 −1.49 0.73 −2.04

decreases on the intervals 3/4 < u < 1 and 0 < u < 1/4 the CUSUM will not be able to detect large
changes. In the present context this inability is actually desirable because the CUSUM will then not
be affected by the large spurious outliers among the data. In implementing the Cauchy CUSUM, the
summand ξi = ψ(ri/i) is used because then var(ξi) ≡ 1. For the two sided CUSUM with a reference
constant ζ = 0.5 and nominal IC ARL 150, the control limit is h = 3.59. The CUSUM results,
shown in Table 11 and in Figure 3, indicate three median changes, hence four segments of constancy,
namely the intervals from 1 to 74, 75 to 101, 102 to 141 and 142 to 172. These also appear to define
the only substantial sustained changes visible in Figure 1. The next to last column in Table 11 shows
the standard deviations in the first three segments and the last column shows the median shift in units
of the estimated standard deviation.
We now consider the monitoring of dispersion in the data. A comparison of ξ∗i from (10) with

ξi from (2) indicates that if the dispersion is constant and the median then changes substantially,
the MSR CUSUM will tend to raise alarms at more or less the same times as the WSR CUSUM.
Indeed, this turns out to be the case for the data shown in Figure 1. Running the MSR CUSUM
at ζ+ = ζ− = 0.4 with h+ = 5.54 and h− = 3.74 gives the upper and lower CUSUM an IC ARL
of 1 000 each, for an overall IC ARL of 500. Table 12 shows the results. Clearly, the dispersion
alarms coincide almost exactly with median shifts identified by the WSR CUSUM and therefore do
not correspond to intrinsic changes in dispersion.
The implication of these results is that the dispersion is most likely constant within each of the

location-change segments identified by the WSR CUSUM. However, this says nothing about the
constancy, or otherwise, of the dispersions between segments. The detection of an increase in
dispersion between segments in real time is important in the present application because an increase
could point to either a malfunctioning of the XRF equipment or to a fundamental change in the
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Figure 2. The Cauchy score function.

Table 12. Results of Cauchy
CUSUM implementation on the
XRF data.

Alarm at Changepoint Shift

n = 50 τ = 27 up
n = 69 τ = 64 up
n = 110 τ = 104 up
n = 140 τ = 133 up

intrinsic coal characteristics. Retrospective comparison of within-segment dispersions using, for
instance, the data in the fourth column of Table 11, is therefore of little value. A method that
eliminates the impact of changes in the mean ash content on the monitoring of dispersion is required.
One approach is to monitor the differenced data Yi = Xi − Xi−1, i ≥ 2, shown in Figure 4. In

such a plot changes in the mean X-value tend to manifest themselves as spurious outliers which,
because they are few in number and are also well separated in time, should not affect the functioning
of the MSR CUSUM. However, theYi are not statistically independent, so that the distribution theory
underlying the MSR CUSUM is invalidated. Further research is therefore required into the behaviour
of the CUSUM applied to such data .
The fact that the successiveYi are highly negatively correlated implies that the successive sequential

ranks will also be negatively correlated. Therefore, the IC ARL of the MSR CUSUM based on theYi
will, if anything, tend to be much smaller than the nominal value. Indeed, Monte Carlo simulations
at a range of ζ+ values and nominal IC ARL values of 200 and 500 using data from normal
and t2 distributions produced estimated true IC ARLs substantially smaller than the nominal ones.
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Figure 3. The successive Cauchy CUSUMS, restarted at each alarm time.

Table 13. Simulation results for the MSR
CUSUM applied to first differences of i.i.d.
data from normal and t2 distributions.

IC ARL Normal t2

Nominal 250 500 250 500

ζ+ = 0.4 Estimated 107 176 106 176
ζ+ = 0.1 Estimated 143 246 136 238

The results are shown in Table 13. It is of some interest to note that the estimated IC ARLs, while
substantially less than the nominal values, are more or less the same in data from the two distributions.
As could be expected from an inspection of Figure 4, the MSR CUSUM (ζ+ = ζ− = 0.1,

h+ = 12.97, h− = 12.10) with IC ARL substantially less than the nominal 500) raises no alarm. The
conclusion is that the dispersion has not changed over any extended period in the full stretch of data.

5. Summary
We develop distribution-free CUSUMs based on sequential ranks to detect changes away from a
current, but unknown, median and dispersion parameter of an unknown continuous distribution.
The CUSUMs are distribution free in that the in-control average run length does not depend on the
functional form of the underlying distribution function. Furthermore, the CUSUMs are fully self
starting, are free of between-practitioner effects and can be constructed to accommodate heavy-tailed
distributions and occasional extreme outliers. Special attention is focused on CUSUMs based on the
Wilcoxon (for location shifts) and Mood (for scale shifts) statistics. Tables of control limits guar-
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Figure 4. First differences Yi = Xi − Xi−1 of the standardized XRF data.

anteeing a specified in-control average run length are provided. Implementation of the CUSUMs is
illustrated in an application to data from a process industry.
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Appendix

A. Computations for control limits
Because the partial sums of the ξi are approximately normally distributed, it is not hard to imagine
that the control limits h of the CUSUM will correspond closely to those of a standard normal
CUSUM, especially when ζ is small and h is large. Given a large set of reference constants ζ and
nominal IC ARL values ARL0, denote by h1 the corresponding control limits from a standard normal
distribution CUSUM. The first step in an iterative process was to estimate the IC ARL of the CUSUM
at each pair on the (ζ, h1) grid. For this, 10 000 independent Monte Carlo estimates of the IC ARL
were generated using uniform random numbers on [0, 1] as the underlying distribution. (Since the
sequential ranks are distribution free, any distribution will do.) Denote the set of means of the 10 000
estimates at each grid point by Â(ζ, h1). Cubic spline interpolation from (ζ, Â(ζ, h1)) to (ζ, h) then
yields new estimates, h2, of the correct control limits. A further 10 000 Monte Carlo estimates using
these new control limits produced a further set of estimated IC ARLs Â(ζ, h2). This process was
repeated until all the differences | Â(ζ, h) − ARL0 | were less than 3. For ζ ≤ 0.25, no more that three
iterations were required, while for ζ > 0.25, six iterations sufficed. Finally, the control limits were
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each checked independently in 100 000 Monte Carlo runs. The largest difference found between
nominal and simulation estimated IC ARLs was 3.

B. A justification for the heuristic (8)
It is well known – see Page (1954) – that Dn in the CUSUM recursion

Dn = max(0,Dn−1 + ξn − ζ)

can also be expressed in the form
Dn = Sn − min

0≤k≤n
Sk, (13)

where
Sn =

∑n
i=1(ξi − ζ),

for n ≥ 1 and S0 := 0. This equivalence shows that the properties of the CUSUM are determined
by the properties of the partial sums Sn. Proposition 1 deals with the properties of these partial
sums. The proposition is a special case of Theorem 5.1 in Lombard (1983) and forms the basis for
the heuristic. The proof, which is omitted, consists in making some straightforward identifications
between the notation used in this paper and that used in Lombard (1983).

(a) Suppose the independent observations X1, . . . , Xτ have common PDF f (x) and Xτ+1, Xτ+2, . . .

have PDF f (x − β/h), β , 0. Set ζ = ∆/h. Then the continuous time process

Sbh2t c/h =
(∑ bh2t c

i=1 (ξi − ζ)
)
/h, t ≥ 0, (14)

converges in distribution as h→∞ to the continuous time process

Y (t) = W(t) − ∆t + β θ0 max{0, τ∗log(t/τ∗)}, t ≥ 0, (15)

where W denotes a standard Brownian motion and where θ0 is given in (7).

(b) Suppose the independent observations X1, . . . , Xτ have commonPDF g(x−ν) and Xτ+1, Xτ+2, . . .

have PDF exp(−β/h)g((x − ν) exp(−β/h)), where g has a zero median. Then the continuous
time process (14) converges in distribution as h→∞ to the continuous time process Y in (15)
with θ0 replaced by

θ1 =

∫ ∞

−∞
ψ ′(G(x))xg2(x)dx. (16)

Here, convergence in distribution is meant in the sense of weak convergence of probability measures
on the space D[0,∞) – see Billingsley (1999).
Upon evaluating (14) and (15) at t = n/h2, 1 ≤ n ≤ τ, and at t = (τ + k)/h2, k ≥ 1, Proposition

1(a) suggests that if the location changes by an amount β/h, then the joint distributions of the partial
sums Sn/h, n ≥ 1, can be approximated by those of the sequence

Y (n/h2) = W(n/h2) − ∆n/h + (β/h) θ0 max{0, (τ/h)log(n/τ)}.
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Now let ξ∗1, . . . ξ
∗
τ be i.i.d. normal(0, 1) and, for k ≥ 1, let ξ∗

τ+k
, be normal(µk, 1) and independent

with

µk = (β/h) θ0 (τ/h) log ((τ + k)/(τ + k − 1)) .

Set S∗n = ξ∗1 + · · · + ξ∗n − n∆. Since the sequences Y (n/h2), n ≥ 1, and S∗n/h, n ≥ 1, are identically
distributed and since the sequence Sn/h, n ≥ 1, is approximated in distribution for large h by
the sequence Y (n/h2), n ≥ 1, it follows that the joint distributions of S∗n/h, n ≥ 1, provide an
approximation to the joint distributions of Sn/h, n ≥ 1, when h is large. Thus, – see (13) – the joint
distributions of the standard normal CUSUMs based on the S∗ sequence provide an approximation
to the joint distributions of the sequential rank CUSUMs based on the S sequence.
For a scale change from σ to σ exp(−δ), a similar argument holds with θ0 replaced by θ1 from

(16). Then the following modification of the heuristic (8) is applicable:

If the scale parameter changes from σ to σ∆ at a large n = τ,
then a sequential rank dispersion CUSUM with small reference
value ζ and large control limit h behaves approximately like a
standard normal CUSUM with the same ζ and h when location
changes of size θ1log(∆)τ log(n/(n − 1)) occur at n = τ + k, k ≥ 0.

The Mood CUSUM is the special case where ψ(u) = 12(u − 1/2)2 − 1. Substitution into (16) then
shows that θ1 equals θ∗ from (11).
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