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We investigate a method which can be used to improve an existing point estimator by a
modification of the estimator and by using the m-out-of-n bootstrap. The estimation method
used, known as bootstrap robust aggregating (or BRAGGing) in the literature, will be applied
in general to the estimators that satisfy the smooth function model (for example, a mean, a
variance, a ratio of means or variances, or a correlation coefficient), and then specifically to an
estimator for the population mean. BRAGGing estimators based on both a naive and corrected
version of them-out-of-n bootstrap will be considered. We conclude with proposed data-based
choices of the resample size, m, as well as Monte-Carlo studies illustrating the performance
of the estimators when estimating the population mean for various distributions.
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1. Introduction
A modification to the traditional bootstrap proposed by, among others, Bickel and Freedman (1981),
Bretagnolle (1983), and Swanepoel (1986), has been shown to remedy many of the inconsistency
problems associated with the bootstrap’s non-regular cases as discussed in, for example, Shao and
Tu (1995). This method, called the m-out-of-n bootstrap, has also been shown to be useful not only
in cases where the traditional bootstrap fails, but also in cases where it is valid (see, e.g., Lee, 1999;
Chung and Lee, 2001; Janssen, Swanepoel and Veraverbeke, 2001; Arcones, 2003; Cheung and Lee,
2005). Papers related to the selection of the resample size include Sakov and Bickel (1999), Chung
and Lee (2001), Allison, Santana and Swanepoel (2011), and Alin, Martin, Beyaztas and Pathak
(2017).
We will investigate a method which can be used to improve the performance of an existing point

estimator by a modification of the estimator and by using the m-out-of-n bootstrap. The estimation
method which we will use has come to be known as bootstrap robust aggregating (or BRAGGing) in
the literature, which is a robust version of bootstrap aggregating (or BAGGing). The name BAGGing
was coined in the field of machine learning by Breiman (1996), but the concept applied to statistical
point estimators is slightly older, having first appeared in Swanepoel (1988) and Swanepoel (1990)
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(these papers referred to the technique as an approximating functional approach). In recent years this
topic has been the recipient of renewed interest with articles concerning BAGGing being published by
Bühlmann (2002), Buja and Stuetzle (2006) and Croux, Joossens and Lemmens (2007), and articles
concerning BRAGGing being published by Bühlmann (2003) and Berrendero (2007).
This paper is organized as follows. In Section 2 we will briefly discuss the two core techniques

employed in this article namely the m-out-of-n bootstrap and BRAGGing, focusing primarily on
the work done which appeared in Swanepoel (1988) and Berrendero (2007). The view held by
Swanepoel (1988) allows a more general approach to the work. In Section 3 we will look at a simple
variant of these BRAGGing estimators developed by making use of corrected m-out-of-n bootstrap
concepts which will also be briefly discussed. Since these estimation techniques are based on m-
out-of-n bootstrap ideas, we will be interested in data-based choices of the resample size m. Section
4 begins the theoretical development of the optimal sample size for general statistics satisfying the
smooth function model through the use of Cornish-Fisher expansions. For illustrative purposes, we
develop in Section 5 estimators for these theoretical choices of the resample size when estimating
the population mean. In Section 6 we provide the results of a Monte-Carlo simulation to empirically
compare the various techniques considered in the article.

2. The m-out-of-n bootstrap and BRAGGing
The modifications of the bootstrap discussed here typically involve sampling with replacement fewer
than n observations from X1, X2, . . . , Xn. The notation that will be employed to denote the resulting
bootstrap sample is X∗1, X∗2, . . . , X∗m, where m ≤ n, and we refer to this bootstrap procedure as the m-
out-of-n bootstrap. We will also distinguish between a naive application of the m-out-of-n bootstrap
and a corrected version of the m-out-of-n bootstrap.
The purpose of the m-out-of-n bootstrap is twofold (Bickel and Sakov, 2002):

• Obtaining consistency when the traditional bootstrap is inconsistent.

• When the traditional bootstrap is consistent, then the m-out-of-n bootstrap is used to attain
equivalent behaviour, but with second (or higher) order accuracy, with reduced computational
time (Bickel and Yahav, 1988; Bickel, Götze and van Zwet, 1997; Beran, 1997; Sakov, 1998).

In this article we apply the m-out-of-n bootstrap in the point estimation of a parameter using a
technique called bootstrap robust aggregating or BRAGGing. The definition of a BRAGGing point
estimator of a parameter as given in Swanepoel (1988) is now briefly described.

The BRAGGing point estimator
Let θ be a parameter of interestwhich can be expressed as some functional t of an unknowndistribution
F, i.e., θ = t(F). Suppose also that t(F) can be approximated by a sequence of functionals tm(F),
i.e., tm(F) ≈ t(F), with the approximation becoming increasingly accurate as m→∞. The proposed
estimator for θ makes use of this functional sequence and the empirical distribution function Fn to
create the plug-in estimator

θ̃ = tm(Fn).
As discussed in Swanepoel (1990) and Berrendero (2007), one possibility for this estimator is

θ̃brag = tm(Fn) = Med∗(θ̂∗m),
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where θ̂n ≡ θ̂n(X1, X2, . . . , Xn) is some preliminary estimator for θ and θ̂∗m ≡ θ̂m(X∗1, X∗2, . . . , X∗m).
Med∗ refers to themedian over the conditional probability law of X∗1, X∗2, . . . , X∗m given X1, X2, . . . , Xn.
This estimator is known as theBRAGGing estimator in the literature, and it can easily be approximated
by a simple Monte-Carlo simulation.

3. A variant of the BRAGGing estimator
The BRAGGing estimator discussed in the previous section was based on the naive application of
the m-out-of-n bootstrap to the median of θ̂n. Using a corrected version of the m-out-of-n bootstrap
makes it possible to derive a new version of this BRAGGing estimator.

• First version of the estimator: To distinguish between the new BRAGGing estimator and the
original one we will adopt a new notation for these estimators. Let the original BRAGGing
estimator, θ̃brag, be renamed θ̃brag,1.

• Second version of the estimator: The new version of the BRAGGing estimator, denoted by
θ̃brag,2, is derived by first explaining the procedure for conducting a corrected version of the
m-out-of-n bootstrap:

Assume that nα(θ̂n − θ) has a non-degenerate limiting distribution, where the normalizing
constant nα is known with α > 0. Then rewrite the statistic θ̂n as

θ̂n =
1

nα

[
nα(θ̂n − θ)

]
+ θ. (1)

When this technique is coupled with the m-out-of-n bootstrap we will refer to the result as the
corrected m-out-of-n bootstrap.

For ease of exposition we consider only the case where α = 0.5 (a value which is appropriate
for estimators related to the smooth function model), and so applying the m-out-of-n bootstrap
to the median of the expression given in (1) we get the following estimator

θ̃brag,2 :=
1√
n
Med∗

(√
m(θ̂∗m − θ̂n)

)
+ θ̂n =

√
m
n
θ̃brag,1 +

(
1 −

√
m
n

)
θ̂n. (2)

Note that this corrected m-out-of-n estimator is a convex combination between the original
BRAGGing estimator, θ̃brag,1, and the estimator θ̂n.

4. The choice of m for a general statistic associated with the smooth function model
Wewill now consider the various ways of selecting an optimal value of m when using the BRAGGing
technique applied to estimators associated with the smooth function model. The derivation of these
choices of m will make use of Cornish-Fisher expansions discussed in detail in Hall (1992) and
Chung and Lee (2001). The resulting theoretical choices will then facilitate the development of
data-dependent choices of m.

4.1 Cornish-Fisher expansion of a general statistic
Considering the smooth function model, let θ be defined as some parameter which is a function of a
d-dimensional mean µ = E(X) and where X is a d-dimensional column vector whose ith component
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is denoted by X (i). In other words, we have that θ = g(µ), where g is defined such that g : Rd → R.
An estimator for θ, based on a random sample X j = (X (1)j , X (2)j , . . . , X (d)j ), j = 1, 2, . . . , n, from X , is
then the simple plug-in estimator given by θ̂n = g(X̄n), where X̄n is a d-dimensional vector defined
as

X̄n =
©­«

1
n

n∑
j=1

X (1)j ,
1
n

n∑
j=1

X (2)j , . . . ,
1
n

n∑
j=1

X (d)j

ª®¬
T

. (3)

Define the standardized version of θ̂n as the statistic Tn in the following way:

Tn :=
√

n
(
g(X̄n) − g(µ)

)
h(µ) ,

where {h(µ)}2 is the asymptotic variance of
√

ng(X̄n). We assume therefore that Tn satisfies the
assumptions of the smooth function model. The m-out-of-n bootstrap version of this statistic is then

T∗m =

√
m

(
g(X̄∗m) − g(X̄n))

)
h(X̄n)

.

The Cornish-Fisher expansion of the median of T∗m is then (the details of this expansion as well as
the definitions of k̂3,1 and k̂1,2 can be found in Hall (1992) and in Appendix A of this article)

√
m

(
θ̃brag,1 − g(X̄n))

) /h(X̄n) = −m−1/2
[
1
6

k̂3,1 − k̂1,2

]
+Op(m−3/2).

Solving for θ̃brag,1 we get

θ̃brag,1 = g(X̄n) − m−1h(X̄n)
[
1
6

k̂3,1 − k̂1,2

]
+Op(m−2). (4)

The expression in (4) can now be used to determine an asymptotically optimal choice of the sample
size m. From the leading terms in (4) we can therefore approximate θ̃brag,1 by θ̃Abrag,1, where

θ̃Abrag,1 := g(X̄n) − m−1h(X̄n)
[
1
6

k̂3,1 − k̂1,2

]
. (5)

Therefore, the rule for selecting m based on θ̃A
brag,1 will involve finding the m value that minimizes

the mean squared error (MSE) of this estimator.

4.2 The optimal choice of m when estimating θ using θ̃A
brag,1

We will now obtain the MSE of θ̃A
brag,1 using the definition given in (5):

q(m) := MSE(θ̃Abrag,1)

= E

{(
g(X̄n) − m−1h(X̄n)

[
1
6

k̂3,1 − k̂1,2

]
− g(µ)

)2
}

= E
{(
g(X̄n) − g(µ)

)2
}
− 2m−1E

{(
g(X̄n) − g(µ)

)
h(X̄n)

[
1
6

k̂3,1 − k̂1,2

]}
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+ m−2E

{
h2(X̄n)

[
1
6

k̂3,1 − k̂1,2

]2
}
.

The first derivative of q(m) is

dq(m)
dm

= 2m−2E
{(
g(X̄n) − g(µ)

)
h(X̄n)

[
1
6

k̂3,1 − k̂1,2

]}
− 2m−3E

{
h2(X̄n)

[
1
6

k̂3,1 − k̂1,2

]2
}
.

Setting dq(m)/dm to zero and solving for m we get:

m0 =

E
{

h2(X̄n)
[

1
6 k̂3,1 − k̂1,2

]2
}

E
{(
g(X̄n) − g(µ)

)
h(X̄n)

[
1
6 k̂3,1 − k̂1,2

]} . (6)

Note that the global optimal solution for m given in expression (6) can be negative, which can only
occur if the denominator of (6) is negative, i.e., if ∆ := E{ (g(X̄n) − g(µ)

)
h(X̄n)[ 16 k̂3,1 − k̂1,2]} < 0.

Naturally, a negative sample size is infeasible, so we restrict our optimisation procedure to only
consider those solutions where m ≥ 1. However, since the sign of the optimal solution is entirely
dictated by the sign of ∆, one can argue the following: if ∆ > 0, then the optimal solution of m is
given by the expression in (6), but if ∆ < 0, then the optimal solution is m0 = n. The latter solution
is obtained by noting from dq(m)/dm that q(m) is monotone decreasing for m > 0 when ∆ < 0, and
so the optimal solution for m will occur at the upper bound of m. Therefore, with these restrictions
in place, one can express the feasible optimal solution as follows

m1 :=
{

min {max(n0,m0), n} , if ∆ > 0
n, if ∆ ≤ 0, (7)

where n0 ≥ 1 is a prescribed lower bound for the values of m1. Note also that the solution for the
optimal sample size is truncated to ensure that it lies between n0 and n. We will estimate m1 by linear
approximations and bootstrap methods.

4.3 The optimal choice of m when estimating θ using θ̃A
brag,2

We now derive the optimal resample size, m, when performing the estimation using θ̃A
brag,2, which

is defined by replacing θ̃brag,1 with θ̃Abrag,1 in equation (2):

θ̃Abrag,2 =

√
m
n
θ̃Abrag,1 +

(
1 −

√
m
n

)
g(X̄n). (8)

We begin by deriving the MSE of θ̃A
brag,2:

r(m) := MSE(θ̃Abrag,2)

= E

{(√
m
n
θ̃Abrag,1 +

(
1 −

√
m
n

)
g(X̄n) − g(µ)

)2}

= E
{(√

m
n

{
g(X̄n) − m−1h(X̄n)

[
1
6

k̂3,1 − k̂1,2

]}
+

(
1 −

√
m
n

)
g(X̄n) − g(µ)

)2}
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= E
{(
g(X̄n) − g(µ)

)2
}
− 2m−

1
2 n−

1
2 E

{(
g(X̄n) − g(µ)

)
h(X̄n)

[
1
6

k̂3,1 − k̂1,2

]}

+ m−1n−1E

{
h2(X̄n)

[
1
6

k̂3,1 − k̂1,2

]2
}
.

The first derivative of r(m) is

dr(m)
dm

= m−
3
2 n−

1
2 E

{(
g(X̄n) − g(µ)

)
h(X̄n)

[
1
6

k̂3,1 − k̂1,2

]}

− m−2n−1E

{
h2(X̄n)

[
1
6

k̂3,1 − k̂1,2

]2
}
.

Note that the above expression is non-positive when ∆ = E{ (g(X̄n) − g(µ)
)

h(X̄n)[ 16 k̂3,1 − k̂1,2]}
is less than or equal to zero. Therefore, since this implies that r(m) is a monotone non-increasing
function for positive m, the minimum value for r(m) is obtained at m = ∞. However, since we do not
want to choose m > n, the optimal ‘practical’ solution is simply m = n in the case where ∆ ≤ 0. In
the case where ∆ > 0, we can obtain the optimal positive solution for m by setting dr(m)/dm to zero
and solve for m, yielding:

m2 :=
1
n


E

{
h2(X̄n)

[
1
6 k̂3,1 − k̂1,2

]2
}

E
{(
g(X̄n) − g(µ)

)
h(X̄n)

[
1
6 k̂3,1 − k̂1,2

]}


2

=
1
n
[m0]2 . (9)

A solution for m which incorporates the solution derived in (9) as well as the practical considerations
discussed above when ∆ ≤ 0, is

m3 :=
{

min {max(n0,m2), n} , if ∆ > 0
n, if ∆ ≤ 0, (10)

where n0 ≥ 1 is once again some prescribed lower bound for the values of m2, and
∆ is defined as above.
We now illustrate the above techniques by considering the example of estimating the population

mean.

5. Estimation of the population mean
As a means of illustrating the techniques already derived we will now focus on the estimation of the
population mean, µ. However, it should be emphasized that it is possible to apply these techniques
to any estimator derived from the smooth function model, since Hall (1992) obtained Cornish-Fisher
expansions for these statistics.
Let X1, X2, . . . , Xn be i.i.d. observations and let X̄n = n−1 ∑n

i=1 Xi . Set x = (x(1), x(2))T , where
x(i) is the ith component of x. Then define g(x) = x(1) and h2(x) = x(2) − (x(1))2. Now, recall that
X j = (X (1)j , X (2)j ), for d = 2, and choosing X (1)j = Xj and X (2)j = X2

j we find g(X̄n) = X̄n, and
h2(X̄n) = n−1 ∑n

i=1 X2
i − (n−1 ∑n

i=1 Xi)2 =: µ̂2, where X̄n is defined as in equation (3). Finally, the
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quantities stated in equation (5) are then given by (see Hall, 1992, pp. 52–55)

g(X̄n) = X̄n, g(µ) = µ, h2(X̄n) = µ̂2, k̂3,1 = κ̂3, k̂1,2 = 0.

Therefore,
1
6

k̂3,1 − k̂1,2 =
1
6
κ̂3 =

1
6
µ̂3

µ̂
3/2
2

,

where κ̂3 = µ̂3/µ̂3/2
2 and µ̂ν = n−1 ∑n

i=1(Xi − X̄n)ν , so the approximate Cornish-Fisher expansion of
the median of the bootstrap sample mean is now given by (see (5)):

θ̃Abrag,1 = X̄n − 1
6

m−1 µ̂
1/2
2 κ̂3. (11)

Note that the corresponding expression for θ̃A
brag,2 can then be defined by substituting (11) into (8).

The approximate optimal choice of m in this case is then obtained by substituting the appropriate
values into (6). This gives us the expression

m0 =
1
6
· E

[
κ̂2

3 µ̂2
]

E
[ (

X̄n − µ
)
κ̂3 µ̂

1/2
2

] .
Now, if we define Yi = Xi − E(Xi) we have the following form of m0:

m0 =
1
6
· E

[
µ̂2

3/µ̂2
2
]

E
[
Ȳn µ̂3/µ̂2

] . (12)

5.1 Data-based choices of m0

Using (12) as a theoretical starting point we will now attempt to estimate m0 using various strategies.
The strategies which will be followed are:

1. A Taylor series expansion of the numerator and denominator of (12) (individually) followed
by the estimation of the products of population moments using a bias correction approach (to
order 1/n2).

2. An unbiased estimator of the numerator in (12) and then applying a Taylor series expansion
to the denominator followed by a bias correction approach for the estimation of population
moment product terms (to the order 1/n and 1/n2).

3. A bootstrap approximation of the expression in (12).

Techniques 1 and 2 rely on Taylor series expansions of the numerator and denominator in (12),
derived in Appendix B, given by (20) and (22) respectively. Combining these expansions of the
numerator and the denominator terms in the expression (12) and simplifying such that the terms 1/µ2

2
and 1/µ4

2 no longer appear, we get the following approximation of m0:

mA
0 =

n
6
· Ã(µ̃) + 1

n B̃(µ̃)
C̃(µ̃) + 1

n D̃(µ̃), (13)
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where

Ã(µ̃) = µ2
2µ

2
3,

B̃(µ̃) = µ2
2µ6 + 9µ5

2 + 8µ2
2µ

2
3 − 6µ3

2µ4 + 3µ2
3µ4 − 4µ2µ3µ5,

C̃(µ̃) = µ3
2µ4 − 3µ5

2 − µ2
2µ

2
3,

D̃(µ̃) = 3µ3
2µ4 − µ2

2µ6 − 3µ5
2 + 3µ2µ3µ5 + µ2µ

2
4 − 3µ2

3µ4 − 5µ2
2µ

2
3,

and µ̃ is the vector consisting of the products of population moments {µ2
2µ

2
3, µ

2
2µ6, µ

3
2µ4, µ

5
2, µ

2
3µ4,

µ2µ3µ5, µ2µ
2
4}.

Remark. Notice that mA
0 can take on a wide range of values, depending on the complexity of the

underlying distribution (i.e., it is dependent on the behaviour of the central moments).

Expression (13) allows us to formally define the proposed estimators for m0 defined in (12). We
will now present a list of various estimators for the resample size when estimating the population
mean with the statistic θ̃A

brag,1. The letters in parentheses indicate the abbreviations which will be
used to represent these estimators.

5.1.1 The bias corrected (BC) estimator
The first technique makes use of the expression for mA

0 given in (13). Instead of naively substituting
sample moments for population moments we will use estimators for the product of population
moments that are corrected for bias up to order 1/n2 and 1/n3. The resulting estimator for mA

0 is
denoted by m̂0,BC .
We will now present the different bias corrected products of sample moments. The estimators

corrected by removing the 1/n order bias terms are denoted by the subscript BC1, and those cor-
rected by removing the 1/n and 1/n2 bias terms are denoted by the subscript BC2. The products of
population moments that we are required to correct for bias in this estimator are µ2

2µ
2
3, µ

2
2µ6, µ3

2µ4,
µ5

2, µ
2
3µ4, µ2µ3µ5, and µ2µ

2
4.

Remark. The method of bias correction used to obtain these estimators consists of three parts:

1. Obtain the naive plug-in estimator for the product of population moments. For example, if we
wish to estimate µ2

2µ
2
3 then we obtain µ̂

2
2 µ̂

2
3.

2. Determine the expected value of this naive estimator up to order n−2. For example, the expected
value of µ̂2

2 µ̂
2
3 is

E(µ̂2
2 µ̂

2
3) = µ2

2µ
2
3 +

1
n
{µ2

2µ6 + 4µ2µ3µ5 + µ
2
3µ4 − 26µ2

2µ
2
3 − 6µ3

2µ4 + 9µ5
2}

+
1
n2 {2µ2µ8 + µ4µ6 − 23µ2

2µ6 + 2µ3µ7 + 2µ2
5 − 74µ2µ3µ5 − 31µ2

3µ4

+ 354µ2
2µ

2
3 + 174µ3

2µ4 − 22µ2µ
2
4 − 180µ5

2} +O(n−3).
Obtaining expressions for these expected values is a very long and incredibly tedious process.
All of the relevant expected values have been derived by the authors and are available on
request.
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3. To remove the first order bias terms from the estimator we simply subtract the plug-in estimator
of the 1/n order terms from the original estimator. The resulting estimator’s bias is of the order
1/n2 and is referred to as the BC1 type. To remove the first and second order bias terms we
subtract the plug-in estimators of both the 1/n and 1/n2 order terms from the estimator. The
resulting estimator’s bias is then of the order 1/n3 and is referred to as the BC2 type.

For example, to correct the naive estimator µ̂2
2 µ̂

2
3 by removing the 1/n order terms, we subtract

the plug-in estimator of the 1/n terms in E(µ̂2
2 µ̂

2
3) from µ̂2

2 µ̂
2
3. Since we remove the order 1/n

bias terms, this estimator is of the BC1 type, and will be denoted by

�(
µ2

2µ
2
3

)
BC1

:= µ̂2
2 µ̂

2
3 −

1
n
{ µ̂2

2 µ̂6 + 4µ̂2 µ̂3 µ̂5 + µ̂
2
3 µ̂4 − 26µ̂2

2 µ̂
2
3 − 6µ̂3

2 µ̂4 + 9µ̂5
2}.

A similar expression can be obtained for the BC2 type estimator.

The BC1 estimators for products of population moments: The relevant corrected estimators with
the order 1/n bias terms removed (as explained above) are then:

�(
µ2

2µ
2
3

)
BC1

:= µ̂2
2 µ̂

2
3 −

1
n
{ µ̂2

2 µ̂6 + 4µ̂2 µ̂3 µ̂5 + µ̂
2
3 µ̂4 − 26µ̂2

2 µ̂
2
3 − 6µ̂3

2 µ̂4 + 9µ̂5
2},

�(µ2
2µ6

)
BC1 := µ̂2

2 µ̂6 − 1
n
{ µ̂4 µ̂6 + 2µ̂2 µ̂8 − 11µ̂2

2 µ̂6 − 12µ̂2 µ̂3 µ̂5 + 15µ̂3
2 µ̂4},

�(µ3
2µ4

)
BC1 := µ̂3

2 µ̂4 − 1
n
{−13µ̂3

2 µ̂4 + 3µ̂2
2 µ̂6 + 3µ̂2 µ̂

2
4 − 12µ̂2

2 µ̂
2
3 + 6µ̂5

2},(̂
µ5

2
)
BC1 := µ̂5

2 −
1
n
{−15µ̂5

2 + 10µ̂3
2 µ̂4},

�(
µ2

3µ4

)
BC1

:= µ̂2
3 µ̂4 − 1

n
{−21µ̂2

3 µ̂4 + 2µ̂3 µ̂7 + µ̂4 µ̂6 + 30µ̂2
2 µ̂

2
3 − 18µ̂2 µ̂

2
4 − 18µ̂2 µ̂3 µ̂5 + 9µ̂3

2 µ̂4},

�(µ2µ3µ5)BC1 := µ̂2 µ̂3 µ̂5 − 1
n
{ µ̂3 µ̂7 + µ̂2 µ̂8 − 15µ̂2 µ̂3 µ̂5 + 15µ̂3

2 µ̂4 + µ̂
2
5 − 5µ̂2

3 µ̂4 − 5µ̂2 µ̂
2
4

+ 10µ̂2
2 µ̂

2
3 − 3µ̂2

2 µ̂6},
�(µ2µ

2
4
)
BC1 := µ̂2 µ̂

2
4 −

1
n
{−12µ̂2 µ̂

2
4 + 2µ̂4 µ̂6 + µ̂2 µ̂8 − 8µ̂2

3 µ̂4 − 8µ̂2 µ̂3 µ̂5 + 12µ̂3
2 µ̂4 + 16µ̂2

2 µ̂
2
3}.

The BC2 estimators for products of population moments: The relevant corrected estimators with
the order 1/n and 1/n2 bias terms removed (as explained above) are then:

�(
µ2

2µ
2
3

)
BC2

:= µ̂2
2 µ̂

2
3 −

1
n
{ µ̂2

2 µ̂6 + 4µ̂2 µ̂3 µ̂5 + µ̂
2
3 µ̂4 − 26µ̂2

2 µ̂
2
3 − 6µ̂3

2 µ̂4 + 9µ̂5
2}

− 1
n2 {2µ̂2 µ̂8 + µ̂4 µ̂6 − 23µ̂2

2 µ̂6 + 2µ̂3 µ̂7 + 2µ̂2
5 − 74µ̂2 µ̂3 µ̂5 − 31µ̂2

3 µ̂4

+ 354µ̂2
2 µ̂

2
3 + 174µ̂3

2 µ̂4 − 22µ̂2 µ̂
2
4 − 180µ̂5

2},�(µ3
2µ4

)
BC2 := µ̂3

2 µ̂4 − 1
n
{−13µ̂3

2 µ̂4 + 3µ̂2
2 µ̂6 + 3µ̂2 µ̂

2
4 − 12µ̂2

2 µ̂
2
3 + 6µ̂5

2} −
1
n2 {228µ̂2

2 µ̂
2
3 + 158µ̂3

2 µ̂4

− 18µ̂2
3 µ̂4 − 30µ̂2 µ̂

2
4 − 48µ̂2 µ̂3 µ̂5 − 30µ̂2

2 µ̂6 + 3µ̂2 µ̂8 + 4µ̂4 µ̂6 − 123µ̂5
2},(̂

µ5
2
)
BC2 := µ̂5

2 −
1
n
{−15µ̂5

2 + 10µ̂3
2 µ̂4} − 1

n2 {115µ̂5
2 − 110µ̂3

2 µ̂4 + 15µ̂2 µ̂
2
4 + 10µ̂2

2 µ̂6 − 60µ̂2
2 µ̂

2
3}.
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Finally, the estimator is then given by:

m̂0,BC :=
n
6
· Ã(̂̃µBC2) + 1

n B̃(̂̃µBC1)
C̃(̂̃µBC2) + 1

n D̃(̂̃µBC1)
, (14)

where

Ã(̂̃µBC2) =
�(
µ2

2µ
2
3

)
BC2

,

B̃(̂̃µBC1) = �(µ2
2µ6

)
BC1 + 9

(̂
µ5

2
)
BC1 + 8

�(
µ2

2µ
2
3

)
BC1
− 6 �(µ3

2µ4
)
BC1 + 3

�(
µ2

3µ4

)
BC1
− 4 �(µ2µ3µ5)BC1,

C̃(̂̃µBC2) = �(µ3
2µ4

)
BC2 − 3

(̂
µ5

2
)
BC2 −

�(
µ2

2µ
2
3

)
BC2

, (15)

D̃(̂̃µBC1) = 3 �(µ3
2µ4

)
BC1 − �(µ2

2µ6
)
BC1 − 3

(̂
µ5

2
)
BC1 + 3 �(µ2µ3µ5)BC1

+ �(µ2µ
2
4
)
BC1 − 3

�(
µ2

3µ4

)
BC1
− 5

�(
µ2

2µ
2
3

)
BC1

, (16)

and ̂̃µBC1 is the vector consisting of the bias corrected products of sample moments with the first
order bias terms removed, that is,

̂̃µBC1 =

(�(
µ2

2µ
2
3

)
BC1

, �(µ2
2µ6

)
BC1,

�(µ3
2µ4

)
BC1,

(̂
µ5

2
)
BC1,

�(
µ2

3µ4

)
BC1

, �(µ2µ3µ5)BC1,
�(µ2µ

2
4
)
BC1

)
.

Likewise, ̂̃µBC2 is the vector consisting of the bias corrected products of sample moments with the
first and second order bias terms removed,

̂̃µBC2 =

(�(
µ2

2µ
2
3

)
BC2

, �(µ2
2µ6

)
BC2,

�(µ3
2µ4

)
BC2,

(̂
µ5

2
)
BC2,

�(
µ2

3µ4

)
BC2

, �(µ2µ3µ5)BC2,
�(µ2µ

2
4
)
BC2

)
.

5.1.2 The unbiased numerator and bias corrected denominator (UNBC) estimator
The second estimator makes use of the fact that the ratio µ̂2

3/µ̂2
2 (see (12)) is an unbiased estimator

of the parameter E
(
µ̂2

3/µ̂2
2
)
. The denominator in (12) is then estimated using the bias correction

techniques discussed in the previous method. The estimator is then given by:

m̂0,UNBC :=
n
6
· µ̂2

3/µ̂2
2

C̃(̂̃µBC2) + 1
n D̃(̂̃µBC1)

, (17)

where C̃(̂̃µBC2), D̃(̂̃µBC1), ̂̃µBC1, and ̂̃µBC2 are defined as above.

5.1.3 The bootstrap (BS) estimator
The bootstrap estimator of m0 will be based on the quantity given in (12). This estimator is derived
by estimating the two expected values which appear in (12) by using the bootstrap. The estimator is
given by:

m̂0,BS :=
1
6
· E
∗ [ µ̂∗23 /µ̂∗22

]
E∗

[
Ȳ ∗n µ̂∗3/µ̂∗2

] , (18)

where the terms µ̂∗j are the sample moments based on the resampled bootstrap data, X∗1, X∗2, . . . , X∗n,
and Y ∗i = X∗i − X̄n, i = 1, 2, . . . , n. When we apply the bootstrap to calculate (18) we can once again
sample fewer than n observations to determine the value. That is, we can use a k-out-of-n bootstrap
but, for the sake of simplicity, we will choose k = n.
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5.2 Estimators for m1 and m3

In the preceding sections, various estimators for m0, defined in (6), were discussed. However, the
term m0 was only required to obtain the expressions for m1 and m3 (i.e., the theoretical expressions
for the resample size given in (7) and (10)).
Therefore, in the light of the above discussion, the proposed estimators for m1 and m3 will now be

provided when making use of θ̃brag,1 and θ̃brag,2 to estimate the population mean µ.

5.2.1 Estimator for m1

The estimator for m1, based on the expression given in (7), is given by

m̂1,? :=

{
min

{
max(n0, m̂0,?), n

}
, if ∆̂? > 0

n, if ∆̂? ≤ 0,

where n0 is the lower bound for the resample size, the term m̂0,? is the estimated resample size
obtained from either (14), (17), or (18), i.e., ? can be BC, UNBC, or BS, and ∆̂? represents the
denominator for the expressions for m̂1,?, i.e.,

∆̂BC = ∆̂UNBC = C̃(̂̃µBC2) +
1
n

D̃(̂̃µBC1)

and
∆̂BS = E∗

[
Ȳ ∗n µ̂

∗
3/µ̂∗2

]
,

where C̃(̂̃µBC2) and D̃(̂̃µBC1) are defined in (15) and (16), respectively.
A possible choice for n0 is n0 = max(np, 1) with 0 < p < 1. According to, among others, del

Barrio, Cuesta-Albertos and Matrán (2002), the choice of the estimated resample size should not be
too small because it can lead to instability of the estimators and so, for the practical purposes of the
Monte-Carlo studies, we will set the value p to be equal to the constant value 0.1 (i.e., the lower
bound for the truncation is 10% of the original sample size, n).

5.2.2 Estimator for m3

The estimator for the resample size to be used when calculating θ̃brag,2 is slightly different from the
one used when calculating θ̃brag,1. The estimator for m3, based on the expression given in (10), is
given by

m̂3,? :=

{
min

{
max(n0, m̂2,?), n

}
, if ∆̂? > 0

n, if ∆̂? ≤ 0,

where (see (9))
m̂2,? :=

1
n

[
m̂0,?

]2
.

6. Monte-Carlo simulation results
The performance of the data-dependent choices of m discussed in the previous section is evaluated
in this section by using Monte-Carlo simulations. The performance of θ̃brag, j , j = 1, 2 (using the
various estimators of m discussed above) is measured by calculating the ratio

ζ(θ̃brag, j) :=
MSE(X̄n)

MSE(θ̃brag, j)
, j = 1, 2,
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where θ̃brag, j is calculated using one of the three proposed estimators for m. If ζ(θ̃brag, j) is greater
than 1, then it indicates that θ̃brag, j performs better (in a mean squared error sense) than the sample
mean when estimating the population mean.
The configurations for this set of Monte-Carlo simulations are:

• The number of Monte-Carlo simulations performed for each entry in the tables is MC = 5 000.
The BS-estimator, defined in (18) is based on B = 1 000 bootstrap replications for each
Monte-Carlo trial.

• The sample sizes used are n = 20, 50, 100, 500 and 1 000.

• Data were drawn from the double exponential distribution, F-distribution, normal distribution
and the contaminated normal distribution, with densities defined respectively by:

(i) f (x) = (1/2σ) exp(−|x − µ|/σ), −∞ < x < ∞,
(ii) f (x) = ( (n/m)n/2/ B(n/2,m/2)) x(n−2)/2(1 + nx/m)−(n+m)/2, x ≥ 0,
(iii) f (x) = (1/σ)φ((x − µ)/σ), −∞ < x < ∞,
(iv) f (x) = ((1 − p)/σ1)φ((x − µ1)/σ1) + (p/σ2)φ((x − µ2)/σ2), −∞ < x < ∞,
where B(· , · ) is the beta-function and φ(· ) the standard normal density function. The specific
parameter choices for each of these distributions are given in each table’s caption.

Displayed in each of the tables is the value ζ(θ̃brag, j), j = 1, 2, for the different estimators of m
as well as the mean over the Monte-Carlo trials of these estimates of m (denoted by m̄) and their
standard errors (denoted by SE(m̄)). Note that in these tables it is possible to obtain standard errors
for m̄ equal to zero. This occurs whenever the procedure calculates a bootstrap resample size which
is smaller than the prescribed lower bound of n0 = np in each Monte-Carlo iteration. Indeed, one
can see in Tables 1 and 4 that this occurs for some of the larger sample sizes.
To aid readability, the largest ζ(θ̃brag,1) and ζ(θ̃brag,2) values are highlighted in the tables (in

bold) for each sample size across the three different methods of obtaining the resample size data-
dependently.

6.1 Conclusions drawn from the tables
The conclusions drawn from the tables will be broken down into two sections; the first section
deals with the performance of the m-out-of-n estimator, θ̃brag,1, using the associated proposed
estimators for m, and the second section deals with the performance of the corrected m-out-of-n
estimator, θ̃brag,2, using the associated proposed estimators for m. We make conclusions concerning
the classes of distributions used and comment on the overall performance of the estimators. An
indication of which ones perform the best will also be given.

6.1.1 The performance of θ̃brag,1 using the proposed estimators for m
When we consider the ratio ζ(θ̃brag,1) for the m-out-of-n estimators in Tables 1–4 we find that the
performance of the estimators is very good (i.e., almost always producing values larger than 1) for
small to moderate sample sizes, and that it converges to 1 as the sample size becomes larger. However,
the tendency differs for the various distributions considered. When we categorize the distributions
according to general properties we find the following:
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• Symmetric, heavy-tailed distributions: The distributions that are symmetric and heavy-tailed
include the double exponential distribution and the unimodal contaminated normal distribution
(displayed in Tables 1 and 4). These distributions show significant improvements over the
sample mean when estimating the population mean. In Table 4, we find that the maximum
recorded improvement is 89.4% for n = 20.

• Skewed, heavy-tailed distributions: The distribution we considered that is both skewed and
heavy-tailed is the F(8, 5)-distribution (found in Table 2). The improvement over the sample
mean for these estimators applied to this distribution ranges between 31.7% and 106.9% for all
sample sizes considered, with the largest gains being made with the smaller sample sizes. Here
we see that the BS procedure for determining the resample size is preferable for all sample
sizes considered.

• Standard normal distribution: The results for the standard normal distribution are displayed
in Table 3. Since the sample mean is admissible as an estimator for the mean of a normal
distribution we cannot expect to see much improvement over the sample mean in this case.
However, the estimators using the various choices of m for this distribution routinely achieve at
least 99% of the performance of the sample mean in the worst cases (even managing to match
the sample mean in other cases). All of the estimators seem to perform equally well for this
distribution.

In general, we see a marked improvement over the sample mean when the underlying distribution has
heavier tails. This improvement is most acute when working with small to moderate sample sizes,
but is less impressive when one has larger samples (except in the case of the F-distribution where
we still see improvements of up to 31.7% for samples as large as 1000).

6.1.2 The performance of θ̃brag,2 using the proposed estimators for m

When we consider the ratio ζ(θ̃brag,2) for the corrected m-out-of-n estimators in Tables 1–4 we
can make similar conclusions to those made concerning the m-out-of-n estimators. Once again the
estimators are found to perform very well for small to moderate sample sizes, but the results are not
as impressive as those observed in the m-out-of-n estimators’ results. The tendency of the estimators’
performance is that, as the sample size increases, the performance starts to match the performance of
the sample mean. Once again, when we categorize the distributions according to general properties
we find that we can make the following conclusions:

• Symmetric, heavy-tailed distributions: From Tables 1 and 4 it is clear that, in the majority
of the cases presented, θ̃brag,2 significantly outperforms X̄n, especially for the contaminated
normal distribution. Here the maximum recorded improvement is 45.1% for n = 20.

• Skewed, heavy-tailed distributions: From Table 2 it follows that the improvement in mean
squared error over X̄n ranges from 11.3% up to 65.7%, once again achieved by the BS
smoothing method.

• Standard normal distribution: The results in Table 3 show that θ̃brag,2 and X̄n have almost
identical performance.
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Table 1. MSE ratios and mean values of the estimated resample
sizes using the double exponential distribution, µ = 0, σ =

√
2.

brag, 1 brag, 2

n BS BC UNBC BS BC UNBC

20 ζ 1.082 1.013 1.048 1.056 1.021 1.031
m̄ 10.5 15.0 11.0 9.5 13.1 10.3
SE(m̄) 0.115 0.084 0.118 0.122 0.111 0.123

50 ζ 1.056 1.089 1.040 1.021 1.022 1.017
m̄ 11.6 8.9 10.4 10.3 8.9 8.8
SE(m̄) 0.202 0.162 0.175 0.2 0.173 0.169

100 ζ 1.081 1.095 1.076 1.052 1.051 1.049
m̄ 12.9 11.4 12.2 12.2 11.4 11.4
SE(m̄) 0.197 0.148 0.161 0.19 0.157 0.152

500 ζ 0.978 0.977 0.985 0.983 0.982 0.97
m̄ 50 50 50 50 50 50
SE(m̄) 0 0 0 0 0 0

1000 ζ 0.979 0.979 0.975 0.979 0.979 0.975
m̄ 100 100 100 100 100 100
SE(m̄) 0 0 0 0 0 0

Table 2. MSE ratios and mean values of the estimated resample
sizes using the F(8, 5)-distribution.

brag, 1 brag, 2

n BS BC UNBC BS BC UNBC

20 ζ 2.069 1.202 1.203 1.657 1.204 1.205
m̄ 14.5 20.0 19.9 12.5 20.0 19.9
SE(m̄) 0.089 0.007 0.016 0.117 0.01 0.02

50 ζ 1.913 1.363 1.445 1.715 1.441 1.450
m̄ 30.9 29.9 47.7 23.9 33.6 46.2
SE(m̄) 0.214 0.291 0.08 0.277 0.285 0.128

100 ζ 1.669 1.041 1.118 1.404 1.109 1.115
m̄ 52.7 47.6 91.5 36.0 59.4 85.7
SE(m̄) 0.388 0.575 0.194 0.488 0.594 0.317

500 ζ 1.405 1.106 1.129 1.296 1.128 1.132
m̄ 185.5 187.9 372.8 99.0 210.5 302.8
SE(m̄) 1.421 2.558 1.576 1.568 2.908 2.358

1000 ζ 1.317 0.906 0.914 1.113 0.915 0.916
m̄ 317.6 344.8 653.4 161.8 381.9 495.1
SE(m̄) 2.488 4.92 3.693 2.57 5.729 5.212
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Table 3. MSE ratios and mean values of the estimated resample
sizes using the standard normal distribution.

brag, 1 brag, 2

n BS BC UNBC BS BC UNBC

20 ζ 0.990 0.992 0.984 0.992 0.991 0.993
m̄ 16.9 17.8 15.3 16.5 16.9 14.9
SE(m̄) 0.089 0.064 0.107 0.099 0.087 0.113

50 ζ 1.020 1.019 1.017 1.023 1.023 1.022
m̄ 38.5 32.4 31.0 37.7 31.2 30.3
SE(m̄) 0.265 0.294 0.305 0.280 0.309 0.313

100 ζ 1.014 1.013 1.011 1.015 1.019 1.018
m̄ 72.6 62.4 61.6 71.4 61.2 60.7
SE(m̄) 0.569 0.612 0.618 0.588 0.626 0.628

500 ζ 1.019 1.011 1.009 1.017 1.018 1.020
m̄ 316.7 297.6 297.5 313.8 295.9 295.8
SE(m̄) 3.090 3.145 3.145 3.125 3.163 3.162

1000 ζ 1.007 1.010 1.006 1.014 1.014 1.013
m̄ 317.6 344.8 653.4 161.8 381.9 495.1
SE(m̄) 2.488 4.92 3.693 2.57 5.729 5.212

Table 4. MSE ratios and mean values of the estimated resample
sizes using the contaminated normal distribution, µ1 = 0, σ1 =

1, µ2 = 0, σ2 = 8, p = 0.1.

brag, 1 brag, 2

n BS BC UNBC BS BC UNBC

20 ζ 1.894 1.166 1.200 1.451 1.170 1.180
m̄ 10.1 28.6 36.6 7.1 32.1 34.5
SE(m̄) 0.131 0.311 0.261 0.117 0.304 0.287

50 ζ 1.657 1.696 1.188 1.348 1.228 1.162
m̄ 10.1 28.6 36.6 7.1 32.1 34.5
SE(m̄) 0.131 0.311 0.261 0.117 0.304 0.287

100 ζ 1.548 1.767 1.218 1.274 1.203 1.170
m̄ 14.1 38.0 53.5 11.0 47.3 48.1
SE(m̄) 0.147 0.588 0.566 0.105 0.609 0.599

500 ζ 1.132 1.129 1.130 1.048 1.049 1.051
m̄ 50.3 50.1 51.2 50.0 50.3 50.2
SE(m̄) 0.059 0.092 0.166 0.005 0.137 0.129

1000 ζ 1.082 1.083 1.084 1.046 1.047 1.046
m̄ 100 100 100 100 100 100
SE(m̄) 0 0 0.002 0 0 0
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In general, we see that these estimators do not perform nearly as well as the θ̃brag,1 estimators. This
can be ascribed to the fact that θ̃brag,2 is a convex combination of both θ̃brag,1 and X̄n, and it is well
known that the estimator X̄n is not robust against outliers.

7. Concluding remarks
Similar results were obtained for different choices of the parameters appearing in the densities defined
in (i) – (iv) on page 84. Simulations were also done by generating data from other distributions,
such as the uniform, centered exponential, Weibull, and Pareto, which yielded the same satisfactory
results as reported in Tables 1–4.
Based on all of our simulation results we would make the suggestion of favouring the θ̃brag,1

estimator when estimating the population mean, especially for heavy-tailed distributions. It is also
quite evident that the BS-procedure for choosing the resample size data-dependently generally has
the best performance. This finding is encouraging because, while it may be slightly more expensive
in terms of computational time, it is much easier to implement and more generally applicable than
the other methods presented in this paper to obtain the data-dependent choice of m.
In this paper we considered estimating the mean of a population so that we could present our

findings in a comprehensible manner. However, similar results hold for estimators associated with
the smooth function model because valid Cornish-Fisher expansions hold in this more general setup
(Hall, 1992).

Acknowledgements. The second author would like to thank the National Research Foundation of
South Africa for financial support.

Appendix
A. Details of the Cornish-Fisher expansion of the general statistic
Let the median of the bootstrap distribution of the statistic g(X̄∗m) be denoted by Med∗(g(X̄∗m)) =
θ̃brag,1. Using a Cornish-Fisher expansion we can obtain an expansion for θ̃brag,1. We proceed by
first noting that

P∗(g(X̄∗m) ≤ θ̃brag,1) ≈
1
2
,

i.e., P∗
(
T∗m ≤

√
m

(
θ̃brag,1 − g(X̄n)

)
h(X̄n)

)
≈ 1

2
.

Now, the Cornish-Fisher expansion of the αth quantile of the bootstrap distribution of T∗m, denoted
by v(α), is given by

v(α) = z(α) + m−1/2 p̂c f1 (z(α)) + m−1 p̂c f2 (z(α)) +Op(m−3/2).

However, since we are interested in calculating the median we choose α = 0.5 and obtain the
following expression:
√

m
(
θ̃brag,1 − g(X̄n)

) /h(X̄n) = m−1/2 p̂c f1 (0) + m−1 p̂c f2 (0) +Op(m−3/2)
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= − m−1/2 p̂1 (0) + m−1
{

p̂1(0) d
dx

p̂1(x)
����
x=0
− p̂2(0)

}
+Op(m−3/2)

= − m−1/2 p̂1 (0) + m−1 p̂1(0) d
dx

p̂1(x)
����
x=0
− m−1 p̂2(0) +Op(m−3/2).

Note the following (see Hall, 1992, pp. 88–89):

• p̂c f1 (x) = −p̂1(x), so that p̂c f1 (0) = −p̂1(0),

• p̂c f2 (x) = p̂1(x)
[
d
dx p̂1(x)

] − 1
2 x{p̂1(x)}2− p̂2(x), so that p̂c f2 (0) = p̂1(0)

[
d
dx p̂1(x)

��
x=0

] − p̂2(0),

• p̂1(x) = −(k̂1,2 +
1
6 k̂3,1(x2 − 1)) so that p̂1(0) = −k̂1,2 +

1
6 k̂3,1,

• d
dx p̂1(x) = − 1

3 k̂3,1x so that d
dx p̂1(x)

��
x=0 = 0,

• p̂2(x) = −x
[

1
2 (k̂2,2+ k̂2

1,2)+ 1
24 (k̂4,1 +4k̂1,2 k̂3,1)(x2−3)+ 1

72 k̂2
3,1(x4−10x+15)

]
so that p̂2(0) = 0.

It should also be noted that the k̂i, j terms are defined as the estimated versions of the polynomials
appearing in the expansion of the jth cumulant of Tn, κj,Tn , i.e.,

κj,Tn = n−(j−2)/2
(
k j,1 + n−1k j,2 + n−2k j,3 + . . .

)
.

B. Taylor series expansions of the numerator and denominator of m1

B.1 Expression for the numerator
Using a multivariable Taylor series expansion, we find that the numerator of (12) can be written
as the expected value of the function f (x, y) = (x/y)2 evaluated in the points x = µ̂3 and y = µ̂2,
expanded about the values µ3 and µ2. The expansion is provided below:

E

{(
µ̂3
µ̂2

)2
}
≈ E

{ (
µ3
µ2

)2
+ 2

µ3

µ2
2
(µ̂3 − µ3) − 2

µ2
3

µ3
2
(µ̂2 − µ2)

+
1
µ2

2
(µ̂3 − µ3)2 + 3

µ2
3

µ4
2
(µ̂2 − µ2)2 − 4

µ3

µ3
2
(µ̂3 − µ3)(µ̂2 − µ2)

}

=

(
µ3
µ2

)2
+ 2

µ3

µ2
2
E(µ̂3) − 2

µ2
3

µ3
2
E(µ̂2) + 1

µ2
2
E

(
µ̂2

3

)
− 2

µ3

µ2
2
E (µ̂3) + 3

µ2
3

µ4
2
E

(
µ̂2

2

)

− 6
µ2

3

µ3
2
E (µ̂2) − 4

µ3

µ3
2
E (µ̂3 µ̂2) + 4

µ3

µ2
2
E (µ̂3) + 4

µ2
3

µ3
2
E (µ̂2) . (19)

The expected values in this expression can be simplified through tedious calculation (the full form
of these derivations can be quite long and so have been omitted. They are available on request from
the authors). The expressions become:

E(µ̂2) = µ2 +
1
n
{−µ2} ,

E(µ̂3) = µ3 +
1
n
{−3µ3} + 1

n2 {2µ3} ,
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E(µ̂2
2) = µ2

2 +
1
n

{
µ4 − 3µ2

2
}
+

1
n2

{−2µ4 + 5µ2
2
}
+

1
n3

{
µ4 − 3µ2

2
}
,

E(µ̂2
3) = µ2

3 +
1
n

{
µ6 + 9µ3

2 − 7µ2
3 − 6µ2µ4

}
+O

(
1
n2

)
,

E(µ̂2 µ̂3) = µ2µ3 +
1
n
{µ5 − 8µ2µ3} +O

(
1
n2

)
.

Once all of the above expressions have been substituted into equation (19) we then obtain the final
expression for the expansion of the numerator of (12):

E

{(
µ̂3
µ̂2

)2
}
=

(
µ3
µ2

)2
+

1
n

{
1
µ4

2

[
µ2

2µ6 + 9µ5
2 + 8µ2

2µ
2
3 − 6µ3

2µ4 + 3µ2
3µ4 − 4µ2µ3µ5

]}
+O(n−2). (20)

B.2 Expression for the denominator
The expression for the denominator is obtained in a similar fashion to the numerator except that the
Taylor expansion is carried out on a function of three variables as opposed to the two variable Taylor
expansion used for the numerator.
The denominator of (12) (without the multiplier 6) can now be written as a multivariable Taylor

series expansion of the expected value of the function f (x, y, z) = xz/y evaluated in the points x = Ȳn,
y = µ̂2 and z = µ̂3, expanded about the values µ1 = 0, µ2 and µ3. The expansion is given below:

E
(
Ȳn
µ̂3
µ̂2

)
≈ E

{
µ1µ3
µ2
+
µ1
µ2
(µ̂3 − µ3) − µ1µ3

µ2
2
(µ̂2 − µ2) + µ3

µ2
(Ȳn − µ1) + µ1µ3

µ3
2
(µ̂2 − µ2)2

− µ3

µ2
2
(Ȳn − µ1)(µ̂2 − µ2) + 1

µ2
(Ȳn − µ1)(µ̂3 − µ3) − µ1

µ2
2
(µ̂2 − µ2)(µ̂3 − µ3)

− µ1µ3

µ4
2
(µ̂2 − µ2)3 + µ3

µ3
2
(Ȳn − µ1)(µ̂2 − µ2)2 + µ1

µ3
2
(µ̂2 − µ2)2(µ̂3 − µ3)

− 1
µ2

2
(Ȳn − µ1)(µ̂2 − µ2)(µ̂3 − µ3) + µ1µ3

µ5
2
(µ̂2 − µ2)4 − µ3

µ4
2
(Ȳn − µ1)(µ̂2 − µ2)3

− µ1

µ4
2
(µ̂2 − µ2)3(µ̂3 − µ3) + 1

µ3
2
(Ȳn − µ1)(µ̂2 − µ2)2(µ̂3 − µ3)

}

= − µ3

µ2
2
E

{
Ȳn(µ̂2 − µ2)

}
+

1
µ2

E
{
Ȳn(µ̂3 − µ3)

}
+
µ3

µ3
2
E

{
Ȳn(µ̂2 − µ2)2

}

− 1
µ2

2
E

{
Ȳn(µ̂2 − µ2)(µ̂3 − µ3)

} − µ3

µ4
2
E

{
Ȳn(µ̂2 − µ2)3

}

+
1
µ3

2
E

{
Ȳn(µ̂2 − µ2)2(µ̂3 − µ3)

}
. (21)

After laborious calculations the expected values in the above equation simplify as follows:

E
(
Ȳn(µ̂2 − µ2)

)
=

1
n
{µ3} + 1

n2 {−µ3} ,
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E
(
Ȳn(µ̂3 − µ3)

)
=

1
n

{
µ4 − 3µ2

2
}
+

1
n2

{−3µ4 + 9µ2
2
}
+O(n−3),

E
(
Ȳn(µ̂2 − µ2)2

)
=

1
n2

{
2µ3µ5 + µ

2
4 − 4µ2

2µ4 − 8µ2
3µ2 + 3µ4

2
}
+O(n−3),

E
(
Ȳn(µ̂3 − µ3)(µ̂2 − µ2)

)
=

1
n2

{
µ6 − 10µ2µ4 − 7µ2

3 + 15µ3
2
}
+O(n−3),

E
(
Ȳn(µ̂2 − µ2)3

)
=

1
n2

{
3µ3µ4 − 3µ2

2µ3
}
+O(n−3),

E
(
Ȳn(µ̂2 − µ2)2(µ̂3 − µ3)

)
=

1
n2

{
2µ3µ5 + µ

2
4 − 4µ2

2µ4 − 8µ2
3µ2 + 3µ4

2
}
+O(n−3).

Once all of these expressions have been substituted into (21) and the terms have been collected,
we find that the denominator becomes

E
(
Ȳn
µ̂3
µ̂2

)
=

1
nµ2

2

[
µ2µ4 − 3µ3

2 − µ2
3
]

+
1

n2µ4
2

[
3µ3

2µ4 − µ2
2µ6 − 3µ5

2 + 3µ2µ3µ5 + µ2µ
2
4 − 3µ2

3µ4 − 5µ2
2µ

2
3

]
+O(n−3).(22)

Once again, the details of the above derivations are too lengthy to be reported here, but they are
available from the authors on request.
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