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Consider an observed responseY which, following a certain transformation Yϑ := Tϑ (Y),
can be expressed by a homoskedastic nonparametric regressionmodel referenced by a vector X
of regressors. If this transformation model is indeed valid then conditionally on X , the values
of Yϑ may be viewed as being just location shifts of the regression error, for some value of the
transformation parameter ϑ. We propose tests for the validity of this model, and establish the
limiting distribution of the test statistics under the null hypothesis and under alternatives. Since
the null distribution is complicated we also suggest a certain resampling procedure in order
to approximate the critical values of the tests, and subsequently use this type of resampling
in a Monte Carlo study of the finite-sample properties of the new tests. In estimating the
model we rely on the methods proposed by Neumeyer, Noh and Van Keilegom (2016) for the
aforementioned transformation model. Our tests however deviate from the tests suggested by
Neumeyer et al. (2016) in that we employ an analogue of the test suggested by Hlávka, Hušková
and Meintanis (2011) involving characteristic functions, rather than distribution functions.
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1. Introduction
Consider the semi-parametric transformation model

Tϑ(Y ) = m(X) + σ(X)ε, (1)

where Tϑ(·) belongs to a fixed parametric family of monotone transformations, m(·) and σ(·) are
unknown smooth functions, and where the error ε is supposed to be independent of the p-dimensional
vector of covariates X , satisfying E(ε) = 0 and Var(ε) = 1.
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Such transformations have been in use mostly with linear regression in the past. This is a special
case of the more general model in (1) in which, given (X,Y ), we are searching for a transformation
Tϑ(Y ) that efficiently explains dependence of the transformed responseYϑ := Tϑ(Y ) on covariates X
by means of the linear model

Yϑ = X>β + ε. (2)

It should be mentioned at the outset that model (2) is fully parametric in the sense that both the
family of transformations as well as the regression function are fixed, and the only unknowns are the
transformation and regression parameters, ϑ and β, respectively. In fact the majority of approaches
to model (2) were by means of the Box-Cox class of power transformations, mostly in the context of
normal errors (Box and Cox, 1964; Chen, Lockhart and Stephens, 2002), or without the assumption
of normality (Foster, Tian and Wei, 2001), and more recently even with estimation of the conditional
quantile, rather than the conditional mean (Mu and He, 2007); for a review on transformations and
related inference procedures the interested reader is referred to Horowitz (2009).
For the non-transformation case, which corresponds to Tϑ(Y ) ≡ Y in (1), there exist a number of

specification tests that validate the location/scale structure manifested in that model; see Einmahl and
Van Keilegom (2008), Neumeyer (2009), Hlávka et al. (2011), and the review article by González-
Manteiga and Crujeiras (2013). Recently however there exists an increasing interest for the more
general transformation model defined by (1), the validity of which entails a location/scale structure
following a certain transformation of the response. In the context of the transformationmodel, aspects
that have hitherto occupied researchers include estimation (Linton, Sperlich andVanKeilegom, 2008;
Colling, Heuchenne, Samb and Van Keilegom, 2015; Neumeyer et al., 2016), and goodness-of-fit
for the regression function (Colling and Van Keilegom, 2016, 2017), and for regressors (Allison,
Hušková and Meintanis, 2018), as well as model validity (Neumeyer et al., 2016). Here we are
concerned with validity of the transformationYϑ = Tϑ(Y ), ϑ ∈ Θ, as exemplified in Neumeyer et al.
(2016) by the null hypothesis

H0 : ∃ϑ0 ∈ Θ such that
Yϑ0 − E(Yϑ0 |X)[
Var(Yϑ0 |X

)]1/2⊥X, (3)

where ⊥ denotes stochastic independence, and Θ ⊆ Rq, q ≥ 1.
If the null hypothesis H0 is true then there exists a true value ϑ0 and a corresponding member in

the prechosen parametric class of transformations {Tϑ |ϑ ∈ Θ}, such that the transformed response
variableYϑ0 = Tϑ0 (Y ) follows a nonparametric location-scale model. In other words, we wish to test
the appropriateness of this specific parametric family of transformations for the data at hand, and in
this sense rejection of H0 may be interpreted as signalling lack-of-fit for the particular transformation
family figuring in the null hypothesis.
Neumeyer et al. (2016) construct a procedure for the validity of the model (1) based on distribution

functions. Here we develop a procedure for the same problem based on characteristic functions (CFs)
since it is often the case that procedures based on CFs work under weaker assumptions. In addition,
CF procedures are more convenient from a computational point of view and readily extendible to the
multivariate context, which is not always the case with methods based on distribution functions due
to lack of proper order in Rp . Here we treat the homoskedastic model

Tϑ(Y ) = m(X) + ε, (4)
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where the error ε has zero mean and Var(ε) = σ2, for some constant σ2 > 0.
In this connection let

εϑ = Yϑ − E[Yϑ |X]
and notice that the null hypothesis in (3) can be equivalently formulated as

∃ϑ0 such that ϕX,εϑ0
− ϕXϕεϑ0

≡ 0, (5)

where ϕX,εϑ denotes the joint CF of (X, εϑ), and ϕX and ϕεϑ denote the marginal CFs of X and εϑ ,
respectively.
Let (Yj, X j), j = 1, . . . , n, denote independent copies of (Y, X) ∈ R×Rp , and assume the existence

of estimators m̂(·) and ϑ̂ of the unknown nonparametric regression function m(·) and of the transfor-
mation parameter ϑ0, respectively, by means of which we obtain residuals ε̂j = Ŷj − m̂(X j), with
Ŷj = T̂ϑ(X j), j = 1, · · · , n.
Following the approach in Hlávka et al. (2011) our test procedure will be based on the criterion

∆n,W = n
∫ ∞

−∞

∫
Rp

|Dn(t1, t2)|2W(t1, t2)dt1d t2, (6)

where
Dn(t1, t2) = ϕ̂(t1, t2) − ϕ̂X (t2)ϕ̂ε̂(t1), (t1, t2) ∈ R × Rp (7)

is an estimator of the quantity in the left-hand side of the identity figuring in (5), and involves the
empirical joint CF

ϕ̂(t1, t2) = 1
n

n∑
j=1

exp{i t>2 X j + it1ε̂j}

as an estimator corresponding to the joint CF ϕX,εϑ0
of (X, εϑ0 ), as well as the empirical CFs

ϕ̂X (t) = 1
n

n∑
j=1

exp{i t>X j}

and

ϕ̂ε̂(t) =
1
n

n∑
j=1

exp{itε̂j}

as estimators of the marginal CFs ϕX and ϕεϑ0
of X and εϑ0 , respectively.

Clearly, for a non-negative weight function W(·, ·) to be specified later on, the test statistic ∆n,W
defined in (6) is a weighted L2 distance which should be small under the null hypothesis H0 and large
under alternatives, at least for large sample size n. Therefore large values of the test statistics ∆n,W
indicate that the null hypothesis is violated.
The rest of the paper is outlined as follows. In Section 2 the asymptotic distribution of the test

statistic under the null hypothesis as well as under alternatives is studied, while in Section 3 we
particularize the test statistic with respect to the weight function, and suggest a bootstrap procedure
which is suitable in order to approximate the null distribution of the test statistic. Section 4 presents
the results of a Monte Carlo exercise that shed light to the finite-sample properties of the method.
We finally conclude with discussion of our findings in Section 5. Some technical material is deferred
to the Appendix.
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2. Some theoretical results
We now move on to formulate theoretical properties of the introduced test statistics. More precisely,
we present the limit distribution of our test statistics under both the null as well as alternative
hypotheses. Since the assumptions are quite technical they are deferred to the Appendix.
We first introduce the required notation. For ϑ ∈ Θ, define

mϑ(X j) = E
(Tϑ(Yj)|X j

)
,

εϑ j = Tϑ(Yj) − mϑ(X j),
ε̂j = ε̂ϑ̂, j = T̂ϑ(Yj) − m̂

ϑ̂
(X j), (8)

where ϑ̂ is an estimator of ϑ0 and f̂ (·) and m̂ϑ(x) are kernel estimators of the density of X j and
mϑ(x), respectively, defined by

f̂ (x) = 1
nhp

n∑
v=1

K
( x − Xv

h

)
, x = (x1, . . . , xp)>,

m̂ϑ(x) =
1

f̂ (x)
1

nhp

n∑
v=1

K
( x − Xv

h

)
Tϑ(Yv), x = (x1, . . . , xp)>,

where K(·) and h = hn are a kernel and a bandwidth. It is assumed that ϑ̂ is a
√

n-consistent estimator
of ϑ0 that allows an asymptotic representation as shown in assumption (A.7).
Under the null hypothesis and the assumptions formulated in the Appendix, the distribution of

Tn,W is approximately the same as that of∫
Rp+1
|Z(t1, t2)|2W(t1, t2)dt1d t2,

where {Z(t1, t2), (t1, t2) ∈ R×Rp} is a Gaussian process with zero mean function and the covariance
structure as the process {Z̃(t1, t2), (t1, t2) ∈ R × Rp} defined as

Z̃(t1, t2) = {cos(t1ε1) − Cε1 (t1)}g+(t>2 X1) + {sin(t1ε1) − Sε1 (t1)}g−(t>2 X1)
+ t1ε1

(
Sε1 (t1)g+(t>2 X1) + Cε1 (t1)g−(t>2 X1)

)
+ (g(Y1, X1))>E

(
Hϑ0 (ε1, X1,Y1; t1, t2)

)
,

(9)

where Cε1 and Sε1 are the real and the imaginary part of the CF of εj . Similarly, CX and SX denote
the real and the imaginary part of the CF of X j . Also, g(Y1, X1) is specified in Assumption (A.7) and

g+(tT2 X1) = cos(t>2 X1) + sin(t>2 X1) − CX (t2) − SX (t2),
g−(t>2 X1) = cos(t>2 X1) − sin(t>2 X1) − CX (t2) − SX (t2),

Hϑ(ε1, X1,Y1; t1, t2) =
( ∂Tϑ(Y1)

∂ϑ1
, . . . ,

∂Tϑ(Y1)
∂ϑq

)> (
− (sin(t1ε1) − Sε1 (t1))g+(t>2 X1)

+ (cos(t1ε1) − Cε1 (t1))g−(t>2 X1)
)
.
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The proof is omitted here since it follows along the lines of Theorem 1 in Hlávka et al. (2011) where
a test for independence in the model Y = m(X) + ε is studied. The limit distribution under the null
hypothesis is a weighted L2-type functional of a Gaussian process. Concerning the structure, the first
row in (9) corresponds to the situation when both ϑ0 and ε are known, the second row reflects the
influence of the estimator of m(·), while the third row reflects the influence of the estimator of ϑ.
For getting an approximation of the critical value one estimates the unknown quantities and sim-

ulates the limit distribution described above with unknown parameters replaced by their estimators.
However, the bootstrap described in Section 3.2 is probably more useful.
Concerning the consistency of the newly proposed test, note that if H0 is not true, there is no

parameter in Θ that leads to independence. Assume that there exists a ϑ1 satisfying (A.9). Then the
integral ∫ ∞

−∞

∫
Rp

|ϕX,εϑ1
(t2, t1) − ϕX (t2)ϕεϑ1

(t1)|2W(t1, t2)dt1d t2 > 0,

and therefore Tn,W
P→∞ and hence the test is consistent.

3. Computations and resampling

3.1 Computations
First we discuss some computational aspects of the test statistic. Specifically from (7) straightforward
algebra shows that

|Dn(t1, t2)|2 = 1
n2

n∑
j,k=1

cos(t1ε̂jk + t>2 X jk) + 1
n4

n∑
j,k,`,m=1

cos(t1ε̂j` + t>2 Xkm)

− 2
n3

n∑
j,k,`=1

cos(t1ε̂jk + t>2 X j`),

where X jk = X j − Xk and ε̂jk = ε̂j − ε̂k, j, k = 1, · · · , n. Based on this expression it becomes clear
that the test statistic will be simplified if we use the decomposition W(t1, t2) = w1(t1)w2(t2) for the
weight function with

∫ ∞
−∞ w1(t)dt < ∞ and

∫
Rp w2(t)d t < ∞ such that Assumption (A.8) is satisfied.

Then the test statistic in (6) takes the form

∆n,W =
1
n

n∑
j,k=1

I1, jk I2, jk +
1
n3

n∑
j,k=1

I1, jk

n∑
j,k=1

I2, jk − 2
n2

n∑
j,k,`=1

I1, jk I2, j`,

where I1, jk := Iw1 (ε̂jk), I2, jk := Iw2 (X jk), with

Iwm (x) =
∫

cos(t>x)wm(t)dt, m = 1, 2,

and integration performed over the appropriate domain. In this paper we set w1(t) = e−at
2 and

w2(t) = e−a ‖t ‖
2 and make use of the integral

∫
cos(t>x)e−a ‖t ‖2dt =

( π
a

)p/2
e−‖x ‖

2/4a, a > 0.
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3.2 Resampling
Recall that the null hypothesis H0 in (5) corresponds to model (1) in which both the true value of
transformation parameter ϑ as well as the error density are unknown. In this connection, and since,
as was noted in Section 2, the asymptotic distribution of the test criterion under the null hypothesis
depends on these quantities, among other things, we provide here a resampling scheme which can
be used in order to compute critical points and actually carry out the test. The resampling scheme,
which was proposed by Neumeyer et al. (2016), involves resampling from the observed X j and
independently constructing the bootstrap errors by smoothing the residuals. The bootstrap model
then fulfils the null hypothesis since

T̂
ϑ
(Y ∗j ) − E∗[T̂ϑ(Y ∗j )|X∗j ] := ε∗j ⊥∗ X∗j ,

where E∗ denotes conditional expectation and ⊥∗ the conditional independence given the original
sample.
We now describe the resampling procedure. Let an be a positive smoothing parameter such that

an → 0 and n an → ∞, as n → ∞. Also, denote by {ξj}nj=1 a sequence of random variables which
are drawn independently of any other stochastic quantity involved in the test criterion. The bootstrap
procedure is as follows:

1. Draw X∗1, . . . , X
∗
n with replacement from X1, . . . , Xn.

2. Generate i.i.d. random variables {ξj}nj=1 having a standard normal distribution and let ε∗j =
anξj + ε̂j, j = 1, ..., n, with ε̂j defined in (8).

3. Compute the bootstrap responses Y ∗j = T −1
ϑ̂
(m̂

ϑ̂
(X∗j ) + ε∗j ), j = 1, . . . , n.

4. On the basis of the observations (Y ∗j , X∗j ), j = 1, . . . , n, refit the model and obtain the bootstrap
residuals ε̂∗j , j = 1, . . . , n.

5. Calculate the value of the test statistic, say ∆∗n,W , corresponding to the bootstrap sample
(Y ∗j , X∗j ), j = 1, . . . , n.

6. Repeat the previous steps a number of times, say B, and obtain {∆∗(b)n,W }Bb=1.

7. Calculate the critical point of a size-α test as the (1−α) level quantile c∗1−α of∆
∗(b)
n,W , b = 1, ..., B.

8. Reject the null hypothesis if ∆n,W > c∗1−α, where ∆n,W is the value of the test statistic based
on the original observations (Yj, X j), j = 1, . . . , n.

4. Simulations
In this section we present the results of a Monte Carlo exercise that sheds light on the small-sample
properties of the new test statistic and compare our test with the classical Kolmogorov–Smirnov
and Cramér–von Mises criteria suggested by Neumeyer et al. (2016). We consider the family of
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transformations

Yϑ = Tϑ(Y ) =




{(Y + 1)ϑ − 1
} /ϑ if Y ≥ 0, ϑ , 0,

log(Y + 1) if Y ≥ 0, ϑ = 0,
− {(−Y + 1)2−ϑ − 1

} /(2 − ϑ) if Y < 0, ϑ , 2,
− log(−Y + 1) if Y < 0, ϑ = 2,

proposed by Yeo and Johnson (2000), and generate data from the univariate (p = 1) heteroskedastic
model

Tϑ0 (Yj) = m(Xj) + σ(Xj)εj, j = 1, . . . , n, (10)

where ϑ0 = 0, m(·) is some specified regression model, σ(x) = 1 + β(x − 1), X ∼ U(0, 1) and ε is an
error term such that X⊥ε. We consider the following three combinations of choices of m and ε:

Model A. m(x) = 1.5 + 0.25 sin(2πx) and ε ∼ N(0, 1).

Model B. m(x) = 1.5 + 0.25 sin(2πx) and ε ∼ t3, where tν denotes the t distribution with ν > 0
degrees of freedom.

Model C. m(x) = 1 + x + x2 and ε ∼ t2.

For a test size of α = 5%, the rejection frequency of the test is recorded for β = 0 (null hypothesis),
and β = 0.5, 0.75, 1.0 (alternative hypothesis) for sample sizes n = 100 and n = 200.
The bootstrap resampling scheme of Section 3.2 requires a choice of the smoothing parameter

an. For all simulations we followed Neumeyer et al. (2016) and chose an = 0.5n−1/4. Since the
bootstrap replications are time consuming we have employed the warp-speed method of Giacomini,
Politis and White (2013) in order to calculate critical points of the test criterion. With this method
we generate only one bootstrap resample for each Monte Carlo sample and thereby compute the
bootstrap test statistic T∗ for that resample. Then, for a number M of Monte Carlo replications, the
size-α critical point is determined similarly as in step 7 of Section 3.2, by computing the (1−α)-level
quantile of T∗(m), m = 1, ..., M . For all simulations the number of Monte Carlo replications was set
to M = 2 000.

4.1 Estimation of the transformation parameter
To estimate the transformation parameter ϑ0 in (10) we consider two estimators based on a profile
likelihood approach. The first estimator, denoted by ϑ̂PL

0 , is that of Linton et al. (2008) which is
based on the assumption of a homoskedastic error structure, i.e. under the model in (4).
While employing a method which is tailored to the null hypothesis of homoskedasticity seems

to be the only natural way to go about in estimating ϑ0, there is also the question of the effect
that estimation has on the power of any given test. This issue is of a long standing and persistent
interest; for a relatively early reference see for instance Drost, Kallenberg and Oosterhoff (1990). In
the context of CF-based goodness-of-fit tests the estimation effect has been reported by Gürtler and
Henze (2000), Matsui and Takemura (2005), and Potgieter and Genton (2013), under the standard
i.i.d. scenario. Specifically, as it is argued by Drost et al. (1990), it is not always the best estimator
under the null that renders the test statistic more powerful, but rather that an estimator which behaves
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Table 1. Size and power results for Model A.
∆n,W

Estimator β n Mean ϑ̂ KS CvM a = 0.025 a = 0.05 a = 0.1 a = 0.25 a = 0.5 a = 1

ϑ̂PL
0 0.00 100 0.014 6.1 4.6 3.3 3.5 3.6 3.6 3.5 3.3

200 0.018 8.6 6.8 4.6 4.5 5.2 4.9 4.6 5.3

0.50 100 0.174 23.9 37.3 15.2 20.9 29.2 40.2 44.6 46.1
200 0.222 50.5 70.8 38.0 51.5 61.9 75.2 81.5 83.5

0.75 100 0.265 68.0 87.3 63.3 75.9 84.7 88.9 89.6 96.4
200 0.287 95.8 99.8 95.7 98.0 99.1 99.9 99.8 99.5

1.00 100 0.323 98.5 99.9 99.5 99.8 99.8 98.8 97.5 95.2
200 0.310 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8

ϑ̂PL
1 0.00 100 0.018 3.0 2.8 3.0 3.0 3.3 3.8 3.8 4.0

200 0.022 7.6 6.2 4.1 4.4 5.0 5.2 5.6 6.2

0.50 100 0.019 21.8 37.0 19.4 26.8 33.1 39.4 40.0 40.1
200 0.015 45.8 74.1 49.6 60.4 71.7 81.9 82.7 80.3

0.75 100 0.027 61.0 89.4 73.5 82.5 87.0 85.8 79.0 72.4
200 0.011 94.3 99.8 98.3 99.3 99.8 99.7 98.8 95.8

1.00 100 0.093 98.5 100.0 99.3 98.9 97.7 92.8 88.0 81.0
200 0.078 100.0 100.0 100.0 100.0 99.9 99.3 97.8 94.8

well under the null but is highly non-robust and can even diverge under alternatives may have a
favourable impact on the power of the test under such alternatives. In this connection we also report
results for the profile likelihood estimator ϑ̂PL

1 developed by Neumeyer et al. (2016), which allows
for a heteroskedastic error structure.
These estimators both involve estimating m(·) nonparametrically, for which we used local linear

regression with a Gaussian kernel and a fixed bandwidth of 1
2 n−1/5. The estimators also require

the estimation of the density of the regression errors. For this purpose we used a Gaussian kernel
with bandwidth 1.06σ̂εn−1/5, where σ̂2

ε denotes the sample variance of the residuals involved (see
Silverman, 1986, p. 45).

4.2 Simulation results
The simulation results for the three considered models are shown in Tables 1 to 3. The results for the
classical Kolmogorov–Smirnov and Cramér–von Mises tests are given in the columns labelled KS
and CvM, respectively. The percentage of rejections of our statistic ∆n,W is given for six different
choices of the tuning parameter a appearing in the test. For each configuration we also report the
mean value of the estimated transformation parameter over the 2 000 iterations.
Firstly, all tests seem to respect the nominal size of the test well, except in some cases where the

classical tests seem to be significantly oversized. This is especially visible in the case of Model C as
seen in Table 3. This size distortion seems to be less severe for the statistic ∆n,W . As expected, the
power of all tests increases with the extent of violation of the null hypothesis (i.e. as β increases),
and also with increasing sample size.
In terms of power the new test based on ∆n,W exhibits competitive performance when compared

to the classical tests. In the case of Model A, our test performs reasonably well with power that is
mostly in line with that of the Cramér–von Mises test. However, for Models B and C which have
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Table 2. Size and power results for Model B.
∆n,W

Estimator β n Mean ϑ̂ KS CvM a = 0.025 a = 0.05 a = 0.1 a = 0.25 a = 0.5 a = 1

ϑ̂PL
0 0.00 100 0.013 6.4 6.6 3.8 4.3 4.8 6.3 7.0 6.1

200 0.012 4.5 4.6 2.7 3.9 3.6 4.2 4.8 4.2

0.50 100 0.058 8.8 17.2 12.0 15.9 20.4 23.9 23.5 25.3
200 0.062 16.1 27.8 20.9 29.1 36.0 42.7 44.9 45.5

0.75 100 0.092 26.6 49.1 41.9 52.1 63.8 67.4 68.0 61.5
200 0.087 56.3 84.5 78.0 85.8 92.2 95.0 95.0 91.7

1.00 100 0.119 78.8 97.2 97.3 98.2 98.1 96.5 92.4 84.3
200 0.098 98.3 100.0 100.0 100.0 100.0 100.0 100.0 99.7

ϑ̂PL
1 0.00 100 −0.023 6.5 6.2 4.0 4.8 5.5 6.2 6.8 6.0

200 −0.022 4.4 4.3 2.9 3.4 4.0 4.0 3.9 3.5

0.50 100 −0.027 10.3 14.3 11.3 15.1 17.6 20.2 19.4 18.1
200 −0.030 9.3 18.6 16.8 24.6 31.7 36.0 36.0 33.5

0.75 100 −0.029 22.1 43.1 43.6 52.1 56.9 57.5 52.0 43.4
200 −0.045 34.3 69.2 61.9 75.5 84.2 87.8 83.0 76.8

1.00 100 −0.044 76.0 96.8 97.0 95.8 93.9 86.6 73.6 60.8
200 −0.080 89.8 100.0 99.7 99.3 98.6 96.0 82.7 87.8

heavier-tailed errors, the new test based on ∆n,W has significantly higher power than the classical
tests. This increase in power is even more striking for Model C, which involves infinite-variance
heavy-tailed errors.
Before we discuss the effect of the choice of estimator on the power of the tests, first note that under

alternative hypotheses the estimator ϑ̂PL
0 seems to diverge from the value ϑ0 = 0. This phenomenon

is also seen in the results of Neumeyer et al. (2016, Section 4.2), where the authors explain that,
whenever β , 0, the estimator ϑ̂PL

0 targets a value ϑ1 , ϑ0 that maximises the likelihood under the
assumption of the homoskedastic model in (4). In such cases the data cannot be considered to come
from a homoskedastic model, and it is then possible to detect the violation of the null hypothesis
through the dependence between the regressor X and the residuals ε̂

ϑ̂PL
0

brought about by the model

misspecification. This behaviour is not seen with the estimator ϑ̂PL
1 , which is consistent also under

alternative heteroskedastic models. As mentioned in the discussion in the previous section, we show
the results obtained using both estimators.
Regarding the effect of the estimator on the power of the tests we observe, depending on the

underlying regression function and error distribution, different patterns for the different test statistics,
but overall the ∆n,W appears to be the most estimation-sensitive criterion. Specifically the KS test
is adversely affected by the use of the heteroskedasticity-consistent estimator ϑ̂PL

1 , with the size of
this effect ranging from minor to significant for different combinations of regression function, error
distribution, and intensity of violation of the null hypothesis. On the other hand, for the CvM and
CF-based criteria the same effect varies not only with respect to the specific design and type of
deviation from the null, but also in its direction, being favourable to the use of the heteroskedasticity-
consistent estimator ϑ̂PL

1 in some cases, but also favouring the estimator ϑ̂PL
0 (which is inconsistent

under heteroskedasticity) in other cases. Clearly our results are just indicative, and this issue deserves
further attention.

INDEPENDENCE TESTS IN SEMIPARAMETRIC TRANSFORMATION MODELS 9



Table 3. Size and power results for Model C.
∆n,W

Estimator β n Mean ϑ̂ KS CvM a = 0.025 a = 0.05 a = 0.1 a = 0.25 a = 0.5 a = 1

ϑ̂PL
0 0.00 100 0.004 8.5 8.0 4.7 5.9 6.3 7.2 7.4 7.3

200 −0.018 7.5 7.5 4.9 6.0 6.5 6.7 7.0 7.5

0.50 100 −0.054 10.1 9.5 10.8 12.3 13.1 13.8 11.8 10.9
200 −0.062 9.0 9.5 14.1 16.3 16.6 17.3 17.4 16.3

0.75 100 −0.114 14.7 17.0 27.6 30.1 29.2 25.7 22.4 19.1
200 −0.106 18.1 25.2 47.9 50.1 47.1 42.5 35.8 32.4

1.00 100 −0.191 47.5 67.5 78.0 68.8 59.8 43.9 35.3 28.6
200 −0.160 66.8 85.7 96.2 91.6 82.5 67.8 56.3 46.8

ϑ̂PL
1 0.00 100 −0.023 8.2 7.8 4.8 5.5 5.5 6.1 6.7 6.5

200 −0.051 7.8 7.0 5.1 5.7 6.0 6.3 6.4 5.7

0.50 100 −0.019 9.7 10.2 9.2 11.6 12.5 13.8 13.9 13.8
200 −0.042 9.5 9.8 12.2 13.3 14.4 14.1 15.4 16.0

0.75 100 −0.025 13.3 15.7 28.9 29.0 29.4 29.7 28.5 25.3
200 −0.048 14.6 16.9 40.5 45.9 47.9 40.6 37.9 32.5

1.00 100 −0.069 26.1 45.1 80.4 75.5 66.5 51.7 41.4 33.1
200 −0.058 41.1 73.6 97.5 95.3 90.2 76.8 62.6 49.6

We close by noting that the value of the tuning parameter a clearly has some effect on the power of
the CF-test. There exist several interpretations regarding the value of a and for more information on
this the reader is referred to the recent review paper in this journal by Meintanis (2016). Our current
results are mixed in this respect, favouring a ‘higher’ or ‘intermediate’ value of a in most cases of
alternatives involving an error distribution which is not very heavy-tailed. On the other hand, with
an error distribution as heavy-tailed as (the infinite-variance) t2 distribution, it seems that a should
be taken somewhat closer to zero. Overall we suggest a = 0.1 or a = 0.25 as compromise values.

5. Conclusions
New tests for the validity of the homoskedastic transformation model are proposed which are based
on the well known factorization property of the joint characteristic function into its corresponding
marginals. The asymptotic null distribution is derived and the consistency of the new criteria is
shown. A Monte Carlo study is included by means of which a resampling version of the proposed
method is compared to earlier methods and shows that the new test, aside from being computationally
convenient, compareswell and often outperforms its competitors, particularly under heavy tailed error
distributions.

6. Appendix
We list some technical assumptions on the basis of which the asymptotic results of Section 2 are
derived.

(A.1) (Yj, X j), j = 1, . . . , n, are i.i.d. random vectors, where the covariates X j, j = 1, . . . , n, have a
compact support RX with RX ⊂ Rp .

(A.2) We use a product kernel K(y) = ∏p
s=1 k(ys), y = (y1, . . . , yp)>, with k(·) being symmetric
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and continuous in [−1, 1], and satisfying
∫ 1

−1
ur k(u)du = δr,0, r = 0, . . . , p,

∫ 1

−1
up+1k(u)du , 0,

where δr,s stands for Kronecker’s delta.

(A.3) The bandwidth h = hn satisfies

(nh2p)−1 + nh3p+δ → 0 as n→∞

for some δ > 1.

(A.4) It holds that E| |X j | |2 < ∞, and that X j has the density f (·) satisfying

0 < inf
x∈RX

f (x) ≤ sup
x∈RX

f (x) < ∞,
��� f (x) − L( f , x, x − y, s1)

��� ≤ ||x − y | |s1+δ1 d1(y),

where L( f , x, y − x, s1) is the Taylor expansion of the density f of order s1 at x, δ1 > 0 and
E|d1(X j)|2 < ∞, for some s1 + 1 ≥ p/2.

(A.5) It is assumed mϑ0 (x), x ∈ RX , satisfies���mϑ0 (x) − Lϑ0 (m, y0, y0 − x, s2)
��� ≤ ||x − y0 | |s2+δ2 d2(y0),

where Lϑ0 (mϑ0, y0, y0 − x, s2) is the Taylor expansions of regression function mϑ0 of order s2
at y0 and E|d2(X j)|2 < ∞ for some s2 ≥ p/2 and Em2

ϑ0
(X j) < ∞.

(A.6) L = {Tϑ; ϑ ∈ Θ} is a parametric class of strictly increasing transformations, Θ is a nonempty
measurable subset of Rq , and for some ξ > 0

sup
| |ϑ−ϑ0 | | ≤ξ

���Tϑ(Yj) − Tϑ0 (Yj) −
q∑
s=1
(ϑs − ϑs0)

∂Tϑ(Yj)
∂ϑs

���
ϑ=ϑ0

���/| |ϑ − ϑ0 | |2+δ4 ≤ d4(Yj),

where Ed2
4 (Yj) < ∞, E(|d4(Yj)| |X j) < ∞, a.s., and for some δ4 > 0 it holds that

E
( ∂Tϑ(Yj)

∂ϑs

���
ϑ=ϑ0

���X j

)
=
∂E

(Tϑ(Yj)|X j

)
∂ϑs

���
ϑ=ϑ0

, a.s.,

E
(
E
( ∂Tϑ(Yj)

∂ϑs

���
ϑ=ϑ0

���X j

))2
< ∞, ET 2

ϑ (Yj) < ∞.

(A.7) The estimator ϑ̂ of ϑ0 satisfies

√
n
(
ϑ̂ − ϑ0

)
=

1√
n

n∑
j=1

g(Yj, X j) + oP(1),

where g(Yj, X j) has zero mean and finite covariance matrix.

INDEPENDENCE TESTS IN SEMIPARAMETRIC TRANSFORMATION MODELS 11



(A.8) The weight function W(t1, t2) satisfies the decomposition

W(t1, t2) = w1(t1)w2(t2), (t1, t2) ∈ R × Rp,∫ ∞

−∞
t2w1(t)dt < ∞, w1(t) = w1(−t), w1(t) ≥ 0 ∀t ∈ R,

w2(t) = w2(−t), w2(t) ≥ 0 ∀t ∈ Rp .

(A.9) There exists a ϑ1 ∈ Θ such that
ϑ̂ − ϑ1 = oP(1).

Comments on the assumptions:

• Assumptions (A.1), (A.2), (A.3), and (A.8) are quite standard.

• Assumption (A.4) requires smoothness of the density f (·) of X .

• Assumption (A.5) formulates the requirements on mϑ0 (x) = E(Tϑ0 (Yj)|X j = x). Motivation
for assumptions (A.4) and (A.5) are from Delgado and González-Manteiga (2001).

• Assumption (A.6) concerns smoothness of Tϑ w.r.t. ϑ in a neighbourhood of ϑ0. Notice
that this assumption implies smoothness of m̂ϑ(x) and ε̂ϑ, j = Tϑ(Yj) − m̃ϑ(X j) in ϑ, in a
neighbourhood of ϑ0.

• Assumption (A.7) requires that a
√

n-estimator of ϑ0 with an asymptotic representation is
available. Such estimators are proposed and studied, e.g. in Breiman and Friedman (1985),
Horowitz (2009), Linton et al. (2008). They are either based on a modified least squares
method or on profile likelihood estimators or on mean square distance from independence.
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