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Krishnamoorthy, Mathew and Ramachandran (2006) developed amethod to draw inference
on the mean and variance of one or more lognormal distributions. Their method was based on
generalised confidence intervals (frequentist methods). In this article we focus on the variance
of the lognormal distribution and implement a Bayesian approach and obtain credibility inter-
vals to compare the performance of four different non-informative prior distributions. This is
done by means of various Monte Carlo simulation studies as well as practical examples. The
accuracy (coverage) and efficiency (interval length) of some of the Bayesian priors, particu-
larly for the highest posterior density (HPD) credibility intervals will be illustrated in these
simulation studies and examples. It can be observed that the frequentist approach is equivalent
to the Bayesian approach, when using the Independence Jeffreys prior. Even so, the Bayesian
approach offers some additional benefits, namely, through the calculation of the HPD intervals.
Hypothesis testing and practical applications are also presented. Further results comparing
various estimators of the lognormal variance are derived and evaluated. The usefulness of
the Bayesian approach is also illustrated in its ability to easily modify the method to account
for the possibility of zero-valued observations. This is something for which there is (to our
knowledge) currently no frequentist method available and serves to highlight the usefulness of
the Bayesian approach.
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1. Introduction
Lognormally distributed data occur frequently in practice. For example, in studies of the treatment of
the human immunodeficiency virus (HIV) important variables, such as the viral load, are often found
to be normally distributed after taking an appropriate log-transformation (Chu, Gange, Li, Hoover,
Liu, Chmiel and Jacobson, 2010). In addition, it has been established that occupational exposure data
generally follow this distribution (Krishnamoorthy et al., 2006). The dust level in coal mines was
found to be approximately lognormally distributed by Oldham (1953) and since then this distribution
has been used to describe various other types of workplace exposure data to harmful pollutants (refer
to Krishnamoorthy et al., 2006, for additional references).
However, the application is not limited to only HIV and occupational exposure setting. Variables

such as medical costs arising from patient care have been found to be lognormally distributed. Both
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McDonald, Blemis, Tierny and Martin (1988) and Zhou, Gao and Hui (1997) analysed data on the
effects of race on medical costs for patients with Type I diabetes.
In many of these cases, the objective is to compare the mean level of the data (e.g. the mean

level of the pollutant or medical costs). However, in some situations it may be of interest to draw
inference on the variance of the distribution (Krishnamoorthy et al., 2006). These are situations
where we would like to compare the distribution of the data rather than simply the mean values from
two independent data sets (the case of dependent lognormal distributions was discussed in Harvey
and van der Merwe, 2012). According to Krishnamoorthy et al. (2006) there are no readily available
procedures available for computing confidence intervals for the variance. They proposed methods
based on generalised p-values and generalised confidence intervals for addressing this problem. The
authors in particular applied the procedures they developed to address situations involving patient
and worker exposure data.
In this paper we look at a similar situation in terms of the distribution of the data. We are primarily

concerned with Bayesian inference for the variance of the distribution as opposed to the mean of the
distribution. In Bayesian analysis the choice of the prior distribution used is important in analyzing
the data. In this paper we will propose the use of a number of non-informative prior distributions,
such as the Independence Jeffreys prior, the Jeffreys Rule prior, the probability-matching prior as well
as the reference prior. A simulation study is undertaken to examine the performance of these various
prior distributions. Credibility intervals (Bayesian confidence intervals) will be developed based on
these different choices of prior distributions. In this way we present an alternative to the frequentist
method (generalised confidence interval). A few basic examples will be given to illustrate the use of
the Bayesian methods.
Another problem that is often encountered in real-life data sets is the possibility of zero-valued

data. It is not possible for the lognormal distribution to have zero-valued observations, but in practical
settings the situation may arise where some zero-valued observations are present and the non-zero-
valued observations follow a lognormal distribution. For the assessment of the extent of variability
among health care costs or among exposure measurements, confidence intervals or tests concerning
the variance of lognormally distributed data with zero-valued observations (σ̃2) becomes necessary.
Krishnamoorthy et al. (2006) made inference about the lognormal variance, while Bebu and Mathew
(2008) obtained confidence intervals for the ratio of variances in the case of the bivariate lognormal
distribution. However, as far as we know no procedures are known for computing confidence intervals
for σ̃2.
This article begins with a description of the setting and the generalised confidence interval method

proposed by Krishnamoorthy et al. (2006). This is followed by an introduction to the Bayesian
analysis of the problem and a discussion of the non-informative prior distributions. A few simulation
studies are then performed to compare the performance of the various prior distributions to the
frequentist approach. Some small examples are then presented to illustrate the application of the
method. The case of the zero-valued observations will then be described and implemented in order
to show the flexibility of the Bayesian approach.

30 HARVEY & VAN DER MERWE



Table 1. Definitions.
x1 . . . xn Sample from a lognormal distribution
y1 . . . yn Logged data; yi = ln (xi ) , i = 1, . . . , n
µl Population mean of the logged data
σl Population standard deviation of the logged data
µ Mean of the lognormal distribution µ = exp(µl + 1

2σ
2
l
)

σ2 Variance of the lognormal distribution σ2 = exp(2µl + σ2
l
)[exp(σ2

l
) − 1]

y Sample mean of the logged data, the observed value of Y = n−1 ∑n
i=1 Yi

s2 Sample standard deviation of the logged data, the observed value of S2 = (n − 1)−1 ∑n
i=1 (Yi −Y)

2

2. Description of the setting and the generalised p-value and confidence interval
approach

We will use the same setting, as described in Krishnamoorthy et al. (2006). Let X denote the
lognormally distributed measurement. Then

Y = ln (X) ∼ N
(
µl, σ

2
l

)
.

The mean of the lognormal distribution (say µ) is then given by

µ = exp (η) = exp
(
µl +

1
2
σ2
l

)

and the variance by
σ2 = exp(2µl + σ2

l )
[
exp(σ2

l ) − 1
]
.

Table 1 supplies the relevant definitions for the setting (as used in Krishnamoorthy et al., 2006).
The aim is to determine the amount of variation in the measurements. To do this will require the
calculation of confidence (or credibility) intervals. For the generalised confidence interval approach
this is determined by calculating a generalised pivot statistic. According to Krishnamoorthy et al.
(2006) this can be defined as:

Tσ2 = exp
(
2
(
y − Z

V
√

n − 1
s√
n

)
+

s2

V2/(n − 1)

) [
exp

(
s2

V2/(n − 1)

)
− 1

]
,

where the independent random variables Z and V are defined as

Z =

√
n
(
Y − µl

)
σl

∼ N (0, 1) , V2 =
(n − 1) S2

σ2
l

∼ χ2
n−1.

It can be noted (when comparing to later relevant sections) that the above method is equivalent to
the Bayesian approach, specifically when using the Independence Jeffreys prior distribution. The
generalised confidence interval approach seems to offer a simpler approach to implement than the
Monte Carlo methods that are required for the Bayesian approach. Nevertheless, the Bayesian
approach is useful in that it allows the calculation of HPD intervals. The HPD intervals offer
substantial improvements in coverage and interval length, as will be illustrated in later sections.
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Using these definitions, Krishnamoorthy and Mathew (2003) gave the following algorithm for
computing the generalised confidence interval:

1. For a given data set of logged observations, determine y and s2.

2. For i = 1 to 10 000:

(a) Generate Z ∼ N (0, 1).
(b) Generate V2 ∼ χ2

n−1.

(c) Set Tσ2i = exp
(
2
(
y − Z

V
√
n−1

s√
n

)
+ s2

V 2/(n−1)
) [

exp
(

s2

V 2/(n−1)
)
− 1

]
.

3. The 100(1−α)th percentile of Tσ21, . . . ,Tσ210 000, denoted by Tσ2,1−α, is the generalised upper
confidence limit for σ2.

3. Description of the Bayesian approach and derivation of prior distributions
Given the previous description of the setting, the likelihood function can be written as

L
(
µl, σ

2
l

)
∝

(
σ2
l

)− 1
2υ exp

{
− υs2

2σ2
l

} (
n

2σ2
l
π

) 1
2

exp
{
− n(µl − y)2

2σ2
l

}
,

that is
L

(
µl, σ

2
l

)
∝ L

(
σ2
l

)
L

(
µl |σ2

l

)
, (1)

where

y =
1
n

n∑
i=1

yi, υs2 =

n∑
i=1
(yi − y)2

and υ = n − 1.
We are interested in Bayesian confidence intervals (i.e. credibility intervals) for the variance of the

distribution, σ2.

3.1 The Independence Jeffreys prior
Consider the first prior distribution: pIJ (µl, σ2

l
) ∝ σ−2

l
. According to Box and Tiao (1973) in most

cases it is appropriate to take location parameters to be distributed independently of scale parameters.
Using the argument in Section 1.3.2 of Box and Tiao (1973) the above prior distribution follows.
Combining this prior distribution with the likelihood given by (1) results in the following posterior

distribution:
p
(
µl, σ

2
l

�� y) = pI

(
σ2
l

�� y) p
(
µl

��σ2
l , y

)
,

where

pI

(
σ2
l |y

)
=

(
υs2

2

) 1
2υ 1

Γ
(
υ
2
) (
σ2
l

)− 1
2 (υ+2)

exp

{
− υs2

2σ2
l

}
(2)

for σ2
l
> 0, which is an inverse gamma distribution and

µl | σ2
l , y ∼ N

(
y,

1
n
σ2
l

)
.
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From (2) it follows that
υs2

σ2
l

∼ χ2
υ .

To obtain credibility intervals for this Bayesian procedure Monte Carlo simulation is applied and
is described next.

3.2 Simulation procedure
Based on the previous derivations, the following algorithm was implemented in R to simulate from
the posterior distribution. For given µl , σ2

l
and n the procedure is as follows:

1. Since σ2
l
is known, in accordance with Krishnamoorthy and Mathew (2003), set µl = − 1

2σ
2
l
,

or as specified by the simulation study or data set.

2. Calculate the following: µ̂l = y and m = νσ̂2
l
=

∑n
i=1 (yi − y)2, where ν = n − 1. This can

either be calculated from given data or can be simulated (in the case of a simulation study).
In the latter case, since we are only interested in the sufficient statistics these can be simulated
directly, namely: Y ∼ N(µl, σ2

l
/n) and m/σ2

l
∼ χ2

ν and therefore, m = σ2
l
(χ2
ν ).

3. Given these calculated values we can simulate µl and σ2
l
from their their posterior distributions

as follows:

(a) σ2
l
= m/χ2

ν .

(b) µl |σ2
l
∼ N(µ̂l, σ2

l
/n).

(c) η = µl + 1
2σ

2
l
.

(d) For this experiment/sample, simulate 10 000 values of η.

4. Sort them in ascending order such that η∗(1) ≤ η∗(2) ≤ · · · ≤ η∗(10 000).

5. Let K1 = [α2 × 10 000] and K2 = [(1 − α
2 ) × 10 000], where [a] denotes the largest integer not

greater than a.

6. {η∗(K1), η
∗
(K2)} is then a 100 (1 − α)% Bayesian confidence interval for η.

7. Repeat the procedure for 10 000 experiments (in the case of a simulation study).

Using these methods we can simulate µl and σ2
l
from their respective posterior distributions and

obtain a 10 000 values of σ2 = exp(2µl + σ2
l
) [exp(σ2

l
) − 1]. These can then be used to obtain

credibility intervals for σ2.
An additional advantage of the Bayesian approach is the calculation of highest posterior density

(HPD) credibility intervals. It is possible to form many credibility intervals from observations
simulated from the posterior distribution. The HPD interval is then the credibility interval among
all possibilities that results in the shortest length, while still retaining the required credibility level.
HPD intervals are therefore, not possible with the generalised confidence interval approach.
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3.3 Other prior distributions
Other non-informative prior distributions were also derived and the procedure was repeated. The
simulation procedure is similar to that for posterior distribution (2) except that (given the choice of
prior distributions) σ2

l
will have a different posterior distribution.

3.3.1 Jeffreys Rule prior
The Jeffreys Rule prior is the square root of the determinant of the Fisher Information matrix and is
given as pJR(σ2

l
) ∝ σ−3

l
. A complete derivation can be found in Harvey (2012). In this case the we

could simulate from the posterior distribution of σ2
l
by noting that σ2

l
= m/χ2

ν+1.

3.3.2 Probability-matching prior distribution
In addition to the two previously mentioned priors by Jeffreys, both the reference and probability-
matching prior distributions were derived.
Datta and Ghosh (1995) derived the differential equation that a prior must satisfy if the posterior

probability of a one-sided credibility interval (Bayesian confidence interval) for a parametric function
and its frequentist probability agree up to o(n−1), where n is the sample size. They proved that the
agreement between the posterior probability and the frequentist probability holds if and only if the
following differential equation

m∑
α=1

∂

∂θα
{ηα (θ) p (θ)} = 0

is satisfied, where p(θ) is the probability-matching prior distribution for θ, the vector of unknown
parameters.
Also,

∇t =
[
∂

∂θ1
t (θ) , ..., ∂

∂θm
t (θ)

] ′

and
η (θ) = F−1 (θ) ∇t (θ)√

∇′t (θ) F−1 (θ) ∇t (θ)
= [η1 (θ) , ..., ηm (θ)]

′
.

It is clear that η′(θ)F(θ)η(θ) = 1 for all θ where F−1(θ) is the inverse of F(θ). F(θ) is the Fisher
information matrix of θ and t(θ) is the parameter of interest.
The probability-matching prior for σ2 is given by (refer to Harvey, 2012)

pM

(
µl, σ

2
l

)
∝ σ−3

l

√√√√ 2
{
exp(σ2

l
) − 1

}2

{
2 exp(σ2

l
) − 1

}2 + σ2
l
. (3)

The derivation is given in the appendix to this article. From (1) it follows that if we multiply (1) by
(3) then we have the following posterior distribution:

pM

(
µl, σ

2
l

�� y) ∝ pM

(
σ2
l

�� y) × pM

(
µl

��σ2
l , y

)
,

where µl |σ2
l
, y ∼ N(y, σ2

l
/n) and

pM

(
σ2
l

�� y) ∝ L
(
σ2
l

)
× pM

(
µl, σ

2
l

)
. (4)
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Using these results one is able to simulate from the posterior distribution by first simulating σ2
l

from (4) using the Acceptance-Rejection method as described in Rizzo (2007).

3.3.3 Reference prior distribution
The determination of reasonable, non-informative priors in multiparameter problems is not easy;
common non-informative priors, such as Jeffreys’ prior, can have features that have an unexpectedly
dramatic effect on the posterior distribution. In recognition of this problem Berger and Bernardo
(1992) proposed the reference prior approach to the development of non-informative priors. As in the
case of the Jeffreys and probability-matching priors, the reference prior method is derived from the
Fisher information matrix. Reference priors depend on the group ordering of the parameters. Berger
and Bernardo (1992) suggested that multiple groups, ordered in terms of inferential importance,
are allowed, with the reference prior being determined through a succession of analyses for the
implied conditional problems. They particularly recommend the reference prior based on having
each parameter in its own group, i.e. having each conditional reference prior be only one dimensional.
As mentioned by Pearn andWu (2005) the reference prior maximises the difference in information

(entropy) about the parameter provided by the prior and posterior distributions. In other words, the
reference prior is derived in such a way that it provides as little as possible information about the
parameter.
The reference prior for σ2 is given by (refer to Harvey, 2012):

pR

(
µl, σ

2
l

)
∝ σ−1

l

√√√{
2 exp(σ2

l
) − 1

exp(σ2
l
) − 1

}2

+
2
σ2
l

.

The derivation is available in the appendix to this article. The simulation procedure will be similar
to that of the probability-matching prior.
In summary, the use of these four prior distributions results in the following posterior distributions

of σ2
l
as previously described for the Independence Jeffreys prior distribution:

pIJ

(
σ2
l

�� y) ∝
(
υs
2
) υ

2 σ
− 1

2 (υ+2)
l

exp
(
− υs

2σl

)
Γ

(
υ
2
) ,

pJR
(
σ2
l

�� y) ∝
(
υs
2
) υ

2 σ
− 1

2 (υ+3)
l

exp
(
− υs

2σl

)
Γ

(
υ
2
) ,

pM

(
σ2
l

�� y) ∝ σ
− 1

2υ

l
exp

(
− υs

2σl

)
σ−3

√√√√ 2
{
exp(σ2

l
) − 1

}2

{
2 exp(σ2

l
) − 1

}2 + σ2
l

and

pR

(
σ2
l

�� y) ∝ σ−
1
2υ exp

(
− υs

2σl

)
σ−1
l

√√√{
2 exp(σ2

l
) − 1

exp(σ2
l
) − 1

}2

+
2
σ2
l

.
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Table 2. Results for various prior distributions.
Equal-tail intervals HPD intervals

Prior Lower Upper Length Lower Upper Length

Independence Jeffreys 3.7246 554.497 550.772 1.5494 229.647 228.097
Jeffreys Rule 3.3337 253.727 250.394 1.5496 120.675 119.125
PMP 2.8121 85.472 82.660 1.4988 50.461 48.962
REF 3.2913 322.017 318.725 1.5394 146.464 144.925

4. Example 1 – Single sample
In this example the following was done:

1. Take the following initial values: n = 10, νs2 = 6, y = 1.

2. Simulate from the four posterior distributions (as previously described).

3. Simulate t(µl, σ2
l
) = Var(X) for all four prior distributions above.

4. Calculate 95% credibility intervals (equal-tailed and HPD).

5. Calculate the generalised confidence interval, according to the previously-described method.

For the generalised confidence intervals the methods (as previously described) are only comparable
to the equal-tailed confidence intervals in the Bayesian context.
The results are given in Table 2. In terms of interval length, we can see from the above results

that the Bayesian prior distribution that performs the best is the Jeffrey’s Rule prior. The probability-
matching prior appears to have the shortest interval length, however, as will be shown in later
results this prior distribution suffers from insufficient coverage. A more complete simulation study
(including interval coverage) will be presented later in this article, but the above examples serves to
illustrate the usefulness and accuracy of the Bayesian methodology.
The difference between the various prior distributions (and thus the reason for the difference in

performance) is based on the form of the posterior distributions, more specifically, the p(σ2
l
|y) portion

of the posterior. Figure 1 illustrates the posterior distributions for the different prior distributions:
From Figure 1 we can see that the two Jeffreys priors are similar. The probability-matching prior

results in a distribution with less weight in the tail region. This explains the credibility intervals with
a shorter length but less than adequate coverage, as will be shown later in the simulation study. With
particular reference to the two Jeffreys priors it is evident that the Independence Jeffreys prior has a
heavier distribution tail. This would explain the better coverage (as seen in the previous example and
the simulation study) and the wider interval lengths of the Independence Jeffreys prior.

5. Simulation study examining coverage
In addition to the above example a simulation study was performed for a wider range of parameter
settings. These parameter values were chosen arbitrarily and are outlined in Table 3. In each case
10 000 samples (supplying the sufficient statistics y and νs2) and for each sample 10 000 simulated
observations from the posterior distribution (in the Bayesian case) were used. The results are
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Figure 1. Posterior distributions of σ2 under different choices of priors.

Table 3. Parameter values.

Parameters Parameter values chosen

µl 0; 1; 2
σ2
l

0.25; 2.25
n 10; 20

presented in Table 4. From Table 4 the coverage of the Bayesian methodology is adequate (at least
for the Independence Jeffreys and Jeffreys Rule prior distributions). The probability-matching prior
in particular, however, suffers from substantial undercoverage, even though it results in the shortest
interval lengths. This may be due to the fact that the probability-matching prior was developed for
use in one-sided credibility intervals. An advantage of the Bayesian approach is the determination
of HPD credibility intervals. It can be seen that the coverage is better for these HPD intervals (as
opposed to the equal-tail intervals) and particularly so for the larger sample size.
In terms of interval length, the shortest lengths are observed for the probability-matching prior

and, to a lesser extent, the reference prior. However, as previously observed, the coverage of these
intervals is not sufficient. The HPD intervals calculated for the Bayesian approach reduce the interval
length, while improving coverage for the Independence Jeffreys prior distribution.
In summary, it appears as though the simplest prior distribution, the Independence Jeffreys ap-

proach, through the calculation of HPD intervals results in the most efficient intervals with the
requisite coverage. Not all of these non-informative prior distributions are similar in performance
though.

6. Example 2 – An application to hypothesis testing

As an illustration of the application of the above, the following simple example is given, which is an
extension of Example 1. Suppose wewish to compare the variances from two lognormal distributions
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Table 4. Simulation study results.
EQ HPD

Method σ2
l

µl Coverage / length n = 10 n = 20 n = 10 n = 20

Independence Jeffreys 0.25 0 Coverage 94.7000 94.7600 94.8700 94.9400
Jeffreys Rule 93.7800 94.4900 91.2700 93.5000
PMP 87.7600 91.5800 81.5600 87.9800
REF 92.4800 93.8400 89.2000 92.1000

Independence Jeffreys 0.25 0 Length 5.4988 1.1972 2.8917 0.9517
Jeffreys Rule 3.0271 1.0168 1.8300 0.8239
PMP 1.3341 0.7757 0.9462 0.6447
REF 3.0992 1.0063 1.7988 0.8107

Independence Jeffreys 0.25 2 Coverage 95.3200 94.5500 95.0300 95.0600
Jeffreys Rule 94.1300 94.7800 91.7700 93.3100
PMP 87.8700 91.3200 81.7200 87.5200
REF 92.6000 93.5500 89.5000 91.6700

Independence Jeffreys 0.25 2 Length 296.0200 64.8010 156.5900 51.5260
Jeffreys Rule 162.9400 55.5430 99.0710 45.0290
PMP 75.2320 41.7820 52.9360 34.7870
REF 179.3900 54.2280 102.9100 43.7200

Independence Jeffreys 1 0 Coverage 94.8600 95.0100 95.0900 95.1300
Jeffreys Rule 94.0400 94.3200 91.7700 92.6100
PMP 86.7200 91.5500 80.7200 87.1200
REF 93.1700 94.5500 91.4500 93.3700

Independence Jeffreys 1 0 Length 2.5100 × 107 277.4500 2.5600 × 105 112.9800
Jeffreys Rule 4.2900 × 106 181.9100 5.5600 × 104 78.5340
PMP 840.1100 66.0740 209.7300 35.6650
REF 1.9200 × 104 221.9200 4.0335 × 104 95.2960

Independence Jeffreys 1 2 Coverage 94.9100 95.0800 94.8700 95.3000
Jeffreys Rule 94.1800 94.3100 92.1600 92.8400
PMP 87.2000 92.0700 80.9500 87.2000
REF 93.0700 94.6700 91.3000 93.6500

Independence Jeffreys 1 2 Length 3.9400 × 108 1.4400 × 104 6.9100 × 106 6.0368 × 103

Jeffreys Rule 1.7400 × 108 8.7958 × 103 2.1600 × 106 4.0086 × 103

PMP 7.8900 × 104 3.5034 × 103 2.0700 × 104 1.8866 × 103

REF 1.1800 × 106 1.2500 × 104 2.6400 × 105 5.0902 × 103

Independence Jeffreys 2.25 0 Coverage 95.0700 95.2600 95.1700 95.3300
Jeffreys Rule 93.4700 94.1900 90.9300 92.8600
PMP 87.6200 91.0000 81.5500 86.7700
REF 94.6500 94.1200 92.9500 93.7200

Independence Jeffreys 2.25 0 Length 5.5000 × 1022 3.5000 × 108 1.0000 × 1018 8.9100 × 106

Jeffreys Rule 1.3000 × 1016 1.2400 × 107 3.1000 × 1012 9.6600 × 105

PMP 2.9400 × 105 5.1200 × 104 8.9800 × 104 1.8700 × 104

REF 1.4200 × 106 1.8800 × 105 4.9000 × 105 7.0400 × 104

Independence Jeffreys 2.25 2 Coverage 94.8700 95.1500 95.1000 94.9000
Jeffreys Rule 94.0800 94.3400 91.7400 92.5700
PMP 86.9700 91.8700 80.5700 87.0200
REF 94.2200 94.8000 92.6700 94.3000

Independence Jeffreys 2.25 2 Length 5.3000 × 1024 2.8900 × 109 3.0000 × 1019 1.2600 × 108

Jeffreys Rule 2.6000 × 1021 5.4800 × 109 9.6000 × 1016 2.9400 × 108

PMP 1.6700 × 107 2.4200 × 106 5.2400 × 106 8.3100 × 105

REF 7.7500 × 107 9.5200 × 106 2.6900 × 107 3.4400 × 106
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Table 5. 95% credibility intervals for the ratio ψ1 = Var(X1)/Var(X2).
Equal-tail intervals HPD intervals

Prior Lower Upper Length Lower Upper Length

Independence Jeffreys 0.8834 181.918 181.035 0.1828 74.491 74.308
Jeffreys Rule 0.8313 87.565 86.733 0.1694 42.670 42.500
PMP 0.7599 32.773 32.013 0.2277 19.478 19.250
REF 0.8412 113.374 112.553 0.1748 49.976 49.801

Table 6. 95% credibility interval for the difference ψ2 = Var (X1) − Var (X2).
Equal-tail intervals HPD intervals

Prior Lower Upper Length Lower Upper Length

Independence Jeffreys −0.5419 568.080 568.622 −9.1488 225.357 234.506
Jeffreys Rule −0.8138 256.634 257.448 −6.2640 123.744 130.008
PMP −1.0809 82.061 83.142 −4.2851 49.650 53.936
REF −0.7407 322.310 323.051 −7.8606 141.330 149.191

in some way. In other words, we would like to test the following hypothesis in some way:

H0 : σ2
(1) = σ

2
(2)

H1 : σ2
(1) , σ

2
(2).

This could be performed by simulating observations from the two distributions and determine either
the ratio or difference between the variances. Intervals (confidence or credibility) could then be
calculated and interpreted accordingly. For example, if the interval for the ratio includes 1 then the
variances do not differ significantly from each other and similarly if the interval for the difference
includes the point 0.
To illustrate this, a similar methodology was repeated to obtain samples from each distribution

(refer to Example 1 for a detailed explanation). The objective is to calculate credibility intervals for
the difference between the sample variances or the ratio between the sample variances. In so doing
one is actually testing the hypothesis that the variances are equal. In this example the following was
done:

1. Take the following initial values: n1 = 10, ν1s2
1 = 6, y1 = 1, and for the second sample

n2 = 30, ν2s2
2 = 8, y2 = 1.

2. Using the prior distributions described previously simulate the posterior distribution of:

(a) ψ1 = Var(X1)/Var(X2),
(b) ψ2 = Var (X1) − Var(X2).

The results are given in Tables 5 and 6. Note that in this example, all methods agree that there
is no difference between the two populations. We can see a similar trend as was identified in the
simulation study previously. The Independence Jeffreys prior results in the largest interval length,
but the use of HPD intervals minimises this as a disadvantage. In particular, all HPD intervals
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Table 7. Summary statistics of medical charges data.

Data Group Sample mean Sample variance

Original African American $18 850 268972

White $18 584 306942

Logged African American 9.06694 1.824
White 8.69306 2.692

Table 8. 95% credibility intervals for the ratio ψ1 = Var(X1)/Var(X2).
Equal-tail intervals HPD intervals

Prior Lower Upper Length Lower Upper Length

Independence Jeffreys 0.043 386 50 1.934 705 1.891 318 0.005 331 481 1.468 957 1.463 625
Jeffreys Rule 0.045 771 65 1.949 739 1.903 967 0.010 692 140 1.476 621 1.465 928
PMP 0.042 889 35 1.923 892 1.881 003 0.003 103 380 1.472 247 1.469 143
REF 0.042 056 40 1.987 440 1.945 384 0.004 123 816 1.503 702 1.499 578

decrease the interval length considerably for both the ratio and difference between the variances. It
seems that the probability-matching and reference priors give the best results, but again, it is worth
remembering (from the simulation study) that this may come at a risk of insufficient coverage. For
the probability-matching prior, this may be due to the fact that the prior was developed for use in
one-sided credibility intervals.

7. Example 3 – Medical charges
The following example comes from Gupta and Li (2006) and concerns the effect of race on medical
charges or expenses. The population consisted of patients with Type I diabetes who had received
treatment on two or more occasions between 1 January 1993 and 30 June 1994. One hundred and
nineteen (119) African American and 106 white patients were sampled and their medical charges
were obtained. In both groups, it was found (using the Shapiro-Wilks test) that the log-transformed
data were normally distributed at a 5% significance level (p = 0.15 and p = 0.12 for African
American and white patients respectively). The summary statistics from the sample data are given
in Table 7.
Gupta and Li (2006) found that the means did not differ significantly from each other. However,

upon further analysis it was found that the variances between the groups were not equal. Here we
apply the Bayesian methods to this problem of comparisons of the variances of the medical charges.
The results are given in Tables 8 and 9, for both the difference and ratio of the variances.
All Bayesian priors in Tables 8 and 9 agree that there is no difference between the variance in

medical charges for the two patient groups, which is in contrast to what was observed by Gupta and
Li (2006).

8. Zero values
For the assessment of the extent of variability among health care costs or among exposure mea-
surements, confidence intervals or tests concerning the variance σ̃2 of lognormally distributed data
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Table 9. 95% credibility interval for the difference ψ2 = Var (X1) − Var (X2).
Equal-tail intervals HPD intervals

Prior Lower Upper Length Lower Upper Length

Independence Jeffreys −4.47 × 1010 2.91 × 109 4.76 × 1010 −3.30 × 1010 6.16 × 109 3.92 × 1010

Jeffreys Rule −4.07 × 1010 2.73 × 109 4.35 × 1010 −3.04 × 1010 5.42 × 109 3.58 × 1010

PMP −4.40 × 1010 2.93 × 109 4.70 × 1010 −3.24 × 1010 6.15 × 109 3.86 × 1010

REF −4.73 × 1010 3.06 × 109 5.04 × 1010 −3.52 × 1010 6.45 × 109 4.17 × 1010

with zero-valued observations becomes necessary. Krishnamoorthy et al. (2006) made inference
about the lognormal variance, while Bebu and Mathew (2008) obtained confidence intervals for the
ratio of variances in the case of the bivariate lognormal distribution. However, as far as we know
no procedures are known for computing confidence intervals for σ̃2. This further illustrates the
usefulness of the Bayesian methodology.
Non-zero observations are assumed to follow a lognormal distribution, but the inclusion of the

possibility of zero values necessitates the addition of a binomial parameter to model this possibility.
The Independence Jeffreys and Jeffreys Rule prior distributions were once again analysed in this
situation. What follows is a brief description of the setting and then the corresponding results.
Let

f (x) =


δ for x = 0,
(1 − δ) 1

σl

√
2πx

exp
(
− (ln x− µl )2

2σ2
l

)
for x > 0.

Then,

E (X) = (1 − δ) exp
(
µl +

1
2
σ2
l

)
,

E
(
X2

)
= (1 − δ) exp

(
2(µl + σ2

l )
)

and
Var (X) = (1 − δ) exp

(
2(µl + σ2

l )
) {

exp(σ2
l ) − (1 − δ)

}
.

Note that δ is the probability of observing a zero-valued observation and 0 ≤ δ ≤ 1. The non-zero-
valued observations are then assumed to be lognormally distributed, where the logged observations
are normally distributed with mean µl and variance σ2

l
. A more complete specification of the

resulting likelihood can be found in Harvey (2012). The following prior distributions were used:

• Independence Jeffreys prior:

pI (δ)pI (µl , σ2
l ) ∝ δ−

1
2 (1 − δ)− 1

2σ−2
l .

• Jeffreys Rule prior:
pD(δ)pD(µl , σ2

l ) ∝ δ−
1
2 (1 − δ) 1

2σ−3
l .

In the above prior distributions, pI (δ) ∝ δ−1/2(1 − δ)−1/2 is the prior proposed by Jeffreys (1961)
for the binomial parameter. It can be observed (refer to Harvey (2012) for more detail) that the
posterior distribution of δ is a beta distribution and is independently distributed of µl and σ2

l
.
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Table 10. Parameter settings for the simu-
lation study.

Parameters Parameter values chosen

δ 0.1; 0.2; 0.3
µl 0; 2
σ2
l

0.25; 1; 2.25
n 10 (except where δ = 0.3); 20; 50

Specifically, this beta distribution is given as B(n0 +
1
2, n1 +

1
2 ) for the Independence Jeffreys prior

and B(n0 +
1
2, n1 +

3
2 ) for the Jeffreys Rule prior, where n0 is the number of zero-valued observations

and n1 is the number of non-zero-valued observations in the sample. Note that n = n0 + n1. Further
results fromHarvey (2012) indicate that the posterior distribution µl |σ2

l
, data ∼ N(y, σ2

l
/n1) and the

posterior distribution σ2
l
|data is an inverse gamma distribution. Using the simulation methodology

described earlier in this article as well as methods described in Harvey (2012) for simulating from
a beta distribution for the zero-valued observations, credibility intervals were calculated for a single
sample. Both equal-tailed and HPD intervals were calculated. These were calculated for various
combinations of the four parameters, as in Table 10.
The results are presented in Table 11.
From the results in Table 11 it is clear that with both priors the HPD intervals are a considerable

improvement, particularly in terms of interval length, on the standard equal-tailed intervals. Thus,
the flexibility of a Bayesian approach to handling these situations is evident.
The results do not clearly define which prior distribution is better suited. Small sample size

situations with small σ2
l
values favour the use of the Independence Jeffreys prior. While offering

better coverage it does so at the expense of wider interval widths. As the value of σ2
l
increases

this tendency reverses with regards to the interval width, with the Independence Jeffreys prior still
offering the better coverage. As the proportion of zero-valued observations increases the width of the
credibility intervals also increase. Thus, with respect to coverage, the Independence Jeffreys prior
seems better suited and with regards to interval width the prominence is evident, except in small
sample size settings.

9. Example 4 – An application to hypothesis testing including zero values
The following example is similar to that of Example 2 presented earlier, except that the possibility of
zero values is also included. Suppose we wish to test the following hypothesis:

H0 : σ̃2
(1) = σ̃

2
(2)

H1 : σ̃2
(1) , σ̃

2
(2).

Again, this could be performed by simulating observations from the two distributions and determine
either the ratio or difference between the variances and determining whether the intervals contains 1
or 0, respectively.
In this example the following was done:

1. Take the following initial values: n10 = 5, n11 = 25, ν1s2
1 = 6, y1 = 1 and for the second

sample n20 = 7, n21 = 30, ν2s2
2 = 8, y2 = 1.
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Table 11. 95% credibility intervals for Var (X) with zero values included.
ET HPD

δ n µ Result Prior σ2
l
=0.25 σ2

l
=1 σ2

l
=2.25 σ2

l
=0.25 σ2

l
=1 σ2

l
=2.25

0.1 10 0 Coverage IJ 95.07 95.05 95.34 95.43 95.05 95.45
0.1 10 0 Coverage JR 94.35 93.53 93.50 92.20 91.60 91.20
0.1 10 0 Length IJ 82.87 1.40 × 1016 3.30 × 1035 7.09 3.30 × 1010 2.40 × 1024

0.1 10 0 Length JR 10.16 3.60 × 1010 5.10 × 1039 3.19 7.95 × 107 7.50 × 1027

0.1 10 2 Coverage IJ 95.06 94.86 94.93 95.47 94.65 95.29
0.1 10 2 Coverage JR 93.97 93.98 93.47 92.43 91.97 90.84
0.1 10 2 Length IJ 1371.90 2.70 × 1016 2.00 × 10180 303.44 1.90 × 1011 1.60 × 1088

0.1 10 2 Length JR 296.05 4.12 × 1010 5.10 × 1029 152.70 6.78 × 107 3.80 × 1022

0.1 20 0 Coverage IJ 95.12 94.53 95.05 95.59 95.12 95.50
0.1 20 0 Coverage JR 94.72 94.52 94.32 93.82 93.00 92.92
0.1 20 0 Length IJ 1.65 1465.40 1.64 × 109 1.27 330.75 4.26 × 107

0.1 20 0 Length JR 1.37 358.68 1.57 × 108 1.08 128.53 6.89 × 106

0.1 20 2 Coverage IJ 95.30 95.23 95.52 95.80 94.95 95.63
0.1 20 2 Coverage JR 94.50 94.38 94.70 93.45 93.13 93.10
0.1 20 2 Length IJ 90.33 2.02 × 105 2.50 × 1011 69.40 2.70 × 104 2.79 × 109

0.1 20 2 Length JR 75.41 1.95 × 104 9.28 × 109 59.40 7074.4 3.74 × 108

0.1 50 0 Coverage IJ 94.99 95.00 95.33 95.37 94.92 95.45
0.1 50 0 Coverage JR 95.28 94.93 94.74 94.92 94.20 93.77
0.1 50 0 Length IJ 0.62 27.362 6647.40 0.57 20.02 2964.50
0.1 50 0 Length JR 0.60 24.152 4975.80 0.55 17.91 2335.90
0.1 50 2 Coverage IJ 95.03 95.05 94.51 95.49 94.85 94.71
0.1 50 2 Coverage JR 95.10 94.83 94.70 94.69 93.99 93.75
0.1 50 2 Length IJ 34.28 1460.60 4.16 × 105 31.27 1070.30 1.82 × 105

0.1 50 2 Length JR 32.46 1337.30 2.67 × 105 29.72 990.61 1.25 × 105

0.2 10 0 Coverage IJ 95.12 95.07 95.06 95.04 94.75 95.32
0.2 10 0 Coverage JR 93.48 93.11 93.40 91.16 90.76 91.28
0.2 10 0 Length IJ 9.90 × 1015 6.40 × 1045 1.00 × 10105 6.83 × 105 6.90 × 1026 6.80 × 1064

0.2 10 0 Length JR 50.23 1.50 × 1018 1.10 × 1043 4.62 1.50 × 1011 4.40 × 1028

0.2 10 2 Coverage IJ 95.60 95.29 94.77 94.81 95.06 95.36
0.2 10 2 Coverage JR 94.02 93.47 93.50 91.85 91.67 91.52
0.2 10 2 Length IJ 1.00 × 10182 9.90 × 1052 1.00 × 10291 1.30 × 1049 6.10 × 1030 6.00 × 10129

0.2 10 2 Length JR 7.40 × 104 1.40 × 1025 4.10 × 1041 367.61 5.20 × 1015 3.40 × 1028

0.2 20 0 Coverage IJ 95.57 94.91 95.10 95.67 94.64 95.35
0.2 20 0 Coverage JR 94.72 94.53 94.54 93.00 92.88 92.98
0.2 20 0 Length IJ 1.99 2729.80 1.50 × 1014 1.44 469.51 1.60 × 1011

0.2 20 0 Length JR 1.56 1328.80 1.00 × 1011 1.20 277.71 8.13 × 108

0.2 20 2 Coverage IJ 94.80 94.67 95.05 95.00 94.79 95.10
0.2 20 2 Coverage JR 94.15 94.24 94.09 92.76 92.97 92.47
0.2 20 2 Length IJ 104.79 3.03 × 105 1.30 × 1018 77.28 3.61 × 104 1.70 × 1014

0.2 20 2 Length JR 83.83 8.69 × 104 7.40 × 1011 64.48 1.61 × 104 6.24 × 109

0.2 50 0 Coverage IJ 95.22 94.74 95.12 95.50 95.09 95.08
0.2 50 0 Coverage JR 95.05 94.88 95.12 94.63 93.95 94.06
0.2 50 0 Length IJ 0.67 30.77 1.15 × 104 0.61 21.60 4463.10
0.2 50 0 Length JR 0.63 26.43 8758.90 0.58 18.89 3418.20
0.2 50 2 Coverage IJ 95.15 95.39 95.32 95.25 95.25 95.45
0.2 50 2 Coverage JR 94.65 94.90 94.61 94.07 93.93 93.68
0.2 50 2 Length IJ 36.60 1640.70 6.32 × 105 33.20 1152.30 2.46 × 105

0.2 50 2 Length JR 34.67 1428.00 4.46 × 105 31.58 1021.50 1.84 × 105

0.3 20 0 Coverage IJ 95.22 95.04 94.87 94.56 95.08 95.19
0.3 20 0 Coverage JR 94.15 94.29 94.12 92.94 92.78 92.69
0.3 20 0 Length IJ 2.41 6.41 × 104 2.70 × 1021 1.64 3010.50 5.40 × 1014

0.3 20 0 Length JR 1.77 5833.80 2.70 × 1013 1.30 688.14 4.10 × 1010

0.3 20 2 Coverage IJ 95.39 95.18 94.79 95.14 95.13 95.11
0.3 20 2 Coverage JR 94.52 93.86 94.34 92.83 92.83 92.74
0.3 20 2 Length IJ 133.20 2.21 × 107 1.80 × 1027 89.54 3.27 × 105 1.20 × 1019

0.3 20 2 Length JR 100.49 5.00 × 106 3.60 × 1017 72.48 1.80 × 105 1.20 × 1013

0.3 50 0 Coverage IJ 95.36 95.24 95.09 95.50 95.19 95.04
0.3 50 0 Coverage JR 94.53 94.67 94.76 94.07 93.88 94.03
0.3 50 0 Length IJ 0.72 36.28 3.76 × 104 0.64 24.00 1.03 × 104

0.3 50 0 Length JR 0.67 30.93 1.97 × 104 0.60 20.86 6224.70
0.3 50 2 Coverage IJ 95.22 94.69 95.03 95.31 94.88 95.13
0.3 50 2 Coverage JR 94.75 94.68 94.84 94.49 94.35 94.01
0.3 50 2 Length IJ 39.30 2029.40 2.39 × 106 35.20 1337.20 6.36 × 105

0.3 50 2 Length JR 36.78 1738.80 9.99 × 105 33.13 1171.60 3.28 × 105
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Table 12. 95% credibility intervals for the ratio ψ1 = Var(X1)/Var(X2).
Prior Equal-tail intervals HPD intervals

Lower Upper Length Lower Upper Length

Independence Jeffreys 0.347 279 2 2.582 510 2.235 231 0.238 225 1 2.159 510 1.921 285
Jeffreys Rule 0.344 921 9 2.528 715 2.183 793 0.233 901 7 2.099 736 1.865 834

Table 13. 95% credibility interval for the difference ψ2 = Var (X1) − Var (X2).
Prior Equal-tail intervals HPD intervals

Lower Upper Length Lower Upper Length

Independence Jeffreys −5.166 438 4.931 006 10.097 440 −5.269 847 4.750 744 10.020 590
Jeffreys Rule −5.124 059 4.422 148 9.546 207 −5.258 599 4.165 873 9.424 472

2. Using the prior distributions described previously simulate the posterior distribution of:

(a) ψ1 = Var(X1)/Var(X2).
(b) ψ2 = Var (X1) − Var(X2).

The results are given in Tables 12 and 13.
In this example, both methods agree that there is no difference between the two populations. We

can see a similar trend as was identified in the simulation study previously. The Independence
Jeffreys prior results in the largest interval length, but the use of HPD intervals minimises this as
a disadvantage. In particular, all HPD intervals decrease the interval length considerably for both
the ratio and difference between the variances. The Independence Jeffreys prior, due to its superior
coverage (as indicated in the simulation study) is the preferred choice here.

10. Other estimators for the variance σ2 = exp(2µl + σ2
l
)[exp(σ2

l
) − 1]

Zellner (1971) derived two estimators, conditional on the parameter σ2
l
, for the mean µ = exp(µl +

1
2σ

2
l
). First, he considered the class of estimators (k)exp(Y ) whereY = 1

n

∑n
i=1 Yi and k a constant. He

showed that the estimator µ∗ = exp(Y + 1
2σ

2
l
− 3

2σ
2
l
/n) is a minimum means square error estimator

of µ. By using a relative quadratic error loss function it is also noted that µ∗ is a minimum posterior
expected loss estimator. He further indicated that µ̃ = exp(Y + 1

2σ
2
l
− 1

2σ
2
l
/n) is aminimumvariance

unbiased estimator of µ.
We considered the class of estimators, (k)exp(2Y ) , for the variance σ2. In the section that follows

as well as the derivations in the appendix, σ2 = δ. This is in no way related to the value of δ used in
previous sections and is used for notational simplicity. In the appendix it is shown that

δ∗ = exp
{
2Y + σ2

l

(
1 − 6

n

)} [
exp(σ2

l ) − 1
]

is a minimum mean square error estimator as well as a minimum posterior expected loss estimator
of δ = σ2. It is also shown that

δ̃ = exp
{
2Y + σ2

l

(
1 − 2

n

)} [
exp(σ2

l ) − 1
]
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Figure 2. Distributions of δ, δ∗ and δ̃ – Example 1.

Table 14. Distribution summary of other estimators – Example 1.

Mean Median Mode Variance 95% HPD interval

δ 1.6360 1.4862 1.2820 0.4678 (0.670 – 2.935)
δ∗ 1.5593 1.4441 1.2800 0.3173 (0.718 – 2.645)
δ̃ 1.5967 1.4710 1.2840 0.3493 (0.719 – 2.727)

is a minimum variance unbiased estimator of σ2 for a given σ2
l
.

The following three examples illustrate the application of these results. In all three examples
Y ∼ N(µl, σ2

l
) and X = exp(Y ). In the first instance parameter values are assumed as follows:

µl = 1, σ2
l
= 0.2 and n = 31. The chosen values result in a “true” value for δ = σ2 = exp(2µl +

σ2
l
)[exp(σ2

l
) − 1] = 1.9982, against which the simulated results can be compared. Furthermore, if

we observe y = 0.9972 and s2 = 0.1560 then we have “true” values for δ∗ = 1.9116 and δ̃ = 1.9615
against which to compare the simulated results. Figure 2 presents the simulated distributions of these
estimators (as obtained using simulations A or B).
Table 14 presents summary statistics and HPD intervals based on the above simulated distributions.
In addition to this, Table 15 indicates the coverage and length of equal-tailed (EQ) and highest

posterior density (HPD) credibility intervals for the different estimators, using 50 000 simulated
observations.
Based on the results in Tables 14 and 15 it is evident that δ∗ results in the shortest interval length.

For the equal-tailed intervals however, this comes at the cost of less than adequate coverage. However,
the advantage of the Bayesian approach is the possibility of obtaining of HPD intervals. For the HPD

Table 15. Coverage and interval length of other estimators – Example 1.

Method EQ coverage EQ mean length HPD coverage HPD mean length

δ 0.9506 4.1683 0.9518 3.6251
δ∗ 0.9241 3.3264 0.9525 2.9672
δ̃ 0.9243 3.5396 0.9525 3.1403
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Figure 3. Distributions of δ, δ∗ and δ̃ – Example 2.

Table 16. Distribution summary of other estimators – Example 2.

Mean Median Mode Variance 95% HPD interval

δ(= σ2) 1739.5 1107.1 689.1 1.3005 × 107 (195.6 – 4673.7)
δ∗ 1274.2 933.5 648.7 2.3884 × 106 (252.3 – 3085.8)
δ̃ 1485.6 1047.1 712.3 4.4859 × 106 (260.1 – 3702.3)

intervals the coverage is similar (and acceptable) for all estimators and δ∗ still results in the most
efficient intervals.
In the next example, the assumed parameter values are changed to µl = 3, σ2

l
= 1 and n = 30.

This results in a “true” value of δ = 1 884.3 and (if y = 2.9182 and s2 = 0.8422) δ∗ = 1.9116 and
δ̃ = 1.9615. For the sake of comparison, the distributions are once again simulated together with the
summary statistics obtained previously and the results are shown in Figure 3 and Table 16.
From the results in Figure 3 and Table 16 it can be noticed in both cases that the estimator with

the narrowest HPD intervals is δ∗. However, this comes at the cost of coverage (for at least the
equal-tailed intervals), as shown in the previous simulation example.

11. Predictive Distributions of Future Responses

Sinha (1989) obtained the predictive density of a single future lognormal variable in his article on
pg 75, equation 2.4. In this article we extend on this by obtaining the predictive density of a future
sample variance of a lognormal distribution. This is the situation described below and a complete
derivation can be found in the appendix.
Consider a future sample ofm observations froma N(µl, σ2

l
) population, denoted asY1 f , Y2 f , . . . ,Ymf .

The future sample mean and variance are respectively defined as:

Y f =
1
m

m∑
j=1

Yj f , s2
f =

1
m − 1

m∑
j=1

(
Yj f − Y f

)2
.
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Furthermore, we know that
(m − 1) s2

f

σ2
l

∼ χ2
m−1

independently of

Y f |µl, σ2
l ∼ N

(
µl,

σ2
l

m

)
.

Thus, the maximum likelihood estimator of a future sample lognormal variance is

W = exp(2y f + s2
f )

[
exp(s2

f ) − 1
]
= exp(2y f )

{
exp(s2

f )
[
exp(s2

f ) − 1
]}
= exp(2y f ){a},

where a = exp(s2
f ) [exp(s2

f ) − 1]. Using this description, it has been shown in the appendix that the
distribution of W is given by the following density function:

f
(
w

�� µ̃, σ̃2, a
)
=

1
w
√

2πσ̃2
exp

{
− 1

2σ̃2

(
ln

(w
a

)
− µ̃

)2
}
, 0 ≤ w ≤ ∞.

Using this result, the unconditional density function, f (w | data) can be simulated as follows:

Simulation A

1. Simulate σ2
l
= (n − 1) s2/χ2

n−1.

2. Given σ2
l
, simulate µl ∼ N(y, σ2

l
/n).

3. Calculate σ̃2 = 4σ2
l
/m and µ̃ = 2µl .

4. Simulate s2
f = σ

2
l
χ2
f / f , where f = m − 1.

5. Calculate a = exp(s2
f )[exp(s2

f ) − 1].

6. Substitute µ̃, σ̃2 and a into the expression for f (w | µ̃, σ̃2, a) and draw/determine the density
function.

7. Repeat steps 1-6 a large number of, say l (= 100 000 or 1 000 000), times and calculate the
average of the l densities (Rao-Blackwell method) to obtain f (w | data).

8. Obtain the mean, median, mode, variance and 95% confidence intervals.

Similarly, W = exp(2y f + s2
f ) [exp(s2

f ) − 1] can be directly simulated as follows:

Simulation B

1. Simulate σ2
l
= (n − 1)s2/χ2

n−1. Given σ
2
l
, simulate µl ∼ N(y, σ2

l
/n).

2. Using these values simulate s2
f = σ

2
l
χ2
f / f and y f |µl, σ2

l
∼ N(µl, σ2

l
/m), where f = m− 1 and

m is the size of the future sample.

3. Substitute y f and s2
f in W .

4. Repeat steps 1-3 l (= 100 000) times and obtain l observations of W .
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Figure 4. Density of W .

Figure 5. Histogram of values simulate from W .

5. Plot a histogram to illustrate the unconditional distribution of W .

6. Determine the mean, median, mode, variance and 95% confidence interval. This will coincide
with the values obtained in step 8 of simulation A.

7. If the bars of the histogram are smoothed then it will reflect the density function obtained in
simulation A.

The following example serves to illustrate the above results.
Consider the following data: n = 31, y = 0.9972, s2 = 0.1560 and m = 31. Simulations A and

B produced the results in Figures 4 and 5 and Table 17 (based on l = 100 000 simulations).
It can be noted that both the simulated distribution and the histogram-based method result in

similar summary measures.
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Table 17. Distribution Summary (based on 100 000 simulations).

Method Mean Median Mode Variance 95% interval

Distribution 1.6726 1.4333 1.110 0.9206 (0.567 – 4.285)
Histogram 1.6914 1.4410 1.075 1.0733 (0.575 – 4.297)

12. Conclusion
In this article we have implemented a Bayesian approach to answer various questions regarding the
variance of a lognormal distribution. For one of the prior distributions, namely the Independence
Jeffreys prior, the method is identical to the frequentist approach of generalised confidence intervals,
as proposed by Krishnamoorthy et al. (2006). Various non-informative prior distributions were
compared in theBayesian approach. Simulation studieswere performed to determine the performance
and examples were presented. In addition, other estimators of the lognormal variance were derived.
These are similar to a class of estimators that Zellner (1971) evaluated for the mean of the lognormal
distribution, except that here the same class of estimators is applied to the variance.
The Bayesian methods perform well in this setting. The Independence Jeffreys and the Jeffreys

Rule prior in particular seem to offer similar results. Interval length for the former prior is higher, but
coverage is better in general. Although the equal-tail credibility intervals resulted in wider intervals,
an advantage of the Bayesian paradigm is in the calculation of HPD intervals and thereby increase
the efficiency and in some cases the accuracy and coverage of the intervals.
The probability-matching and reference prior distributions were not suited to this setting in com-

parison to the other prior distributions. Specifically for the probability-matching prior the interval
length is less than the other methods and priors, but this comes at the expense of poor coverage.
One of the biggest advantages to using the Bayesian paradigm to answer questions such as these

is the flexibility. For example, when considering the possibility of the presence of zero-valued
observations, there is no known frequentist method currently available. In addition, the flexibility
of the Bayesian approach was also illustrated by deriving and simulating the predictive density of
the variance of a future sample of observations. The Bayesian methodology is able to handle the
increased complexity quite easily.

Appendix
A.1 Derivation of the probability-matching prior distribution for the variance of a lognormal

distribution
We know that the Fisher information matrix for θ = (µl, σ2

l
) per unit observation is given by

F (θ) =


1
σ2
l

0

0 1
2σ4

l


.

Define
t (θ) = exp(2µl + σ2

l )
{
exp(σ2

l ) − 1
}
.

Now,
∂t (θ)
∂µl

= 2 exp(2µl + σ2
l )

{
exp(σ2

l ) − 1
}
,
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∂t (θ)
∂σ2

l

= exp(2µl + σ2
l )

{
exp(σ2

l ) − 1
}
+ exp(2µl + σ2

l ) exp(σ2
l ),

∇′t (θ) =
[

∂t(θ)
∂µl

∂t(θ)
∂σ2

l

]
= exp(2µl + σ2

l )
{
exp(σ2

l ) − 1
} [

2 2 exp(σ2
l
)−1

exp(σ2
l
)−1

]
.

Using the Fisher Information matrix (refer to Harvey, 2012),

∇′t (θ) F−1 (θ) = ∇′t (θ)σ2
l

[
1 0
0 2σ2

l

]

= σ2
l exp(2µl + σ2

l )
{
exp(σ2

l ) − 1
} [

2 2σ2
l {2 exp(σ2

l
)−1}

exp(σ2
l
)−1

]
,

∇′t (θ) F−1 (θ) ∇t (θ) = σ2
l exp(4µl + 2σ2

l )
{
exp(σ2

l ) − 1
}2

[
4 +

2σ2
l

{
2 exp(σ2

l
) − 1

}2

{
exp(σ2

l
) − 1

}2

]
,

{
∇′t (θ) F−1 (θ) ∇t (θ)

}1/2
= σl exp(2µl + σ2

l )
{
exp(σ2

l ) − 1
}
2

[
1 +

σ2
l

{
2 exp(σ2

l
) − 1

}2

2
{
exp(σ2

l
) − 1

}2

]1/2

,

γ (θ) = [
γ1 (θ) γ2 (θ)

]
=

∇′t (θ) F−1 (θ){∇′t (θ) F−1 (θ) ∇t (θ)
}1/2

=
2σl

2
[
1 + σ2

l {2 exp(σ2
l
)−1}2

2{exp(σ2
l )−1}2

]1/2

[
1 σ2

l {2 exp(σ2
l
)−1}

exp(σ2
l
)−1

]
.

Therefore, for the prior pM (µ, σ2
l
) to be a probability-matching prior the following differential

equation must be satisfied:
∂

∂µ

[
γ1 (θ) pm(µ, σ2

l )
]
+

∂

∂σ2
l

[
γ2 (θ) pm(µ, σ2

l )
]
= 0.

That is,

ϕ (θ) = 2σl

2
[
1 + σ2

l {2 exp(σ2
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)−1}2

2{exp(σ2
l
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=
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2{

2
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2 exp(σ2
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Therefore, the following prior distribution will satisfy the differential equation:

pM (θ) = pM (µl, σ2
l ) ∝ σ−3

l




2
(
exp(σ2

l
) − 1

)2

{
2 exp(σ2

l
) − 1

}2 + σ2
l




1/2

.
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A.2 Derivation of the reference prior distribution for the variance of a lognormal distribution
Using the same definition for F (θ) as in the previous derivation, additionally define

t (θ) = exp
(
2µl + σ2

l

) {
exp

(
σ2
l

)
− 1

}
.

Then

ln (t (θ)) =
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Hence, the Fisher information matrix under the reparametrization
(
t (θ) , σ2

l

)
is given by:

F
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We require the prior distribution that maximised the entropy between the prior and posterior distri-
butions. This prior is derived as

pR(t(θ), σ2
l ) ∝

1
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1
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1
4
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Since ∂t(θ)/∂µl = 2t(θ), it follows that
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A.3 Derivation of the Estimators δ∗ and δ̃ for σ2

Var (X) = σ2=δ = exp(2µl + σ2
l )

[
exp(σ2

l ) − 1
]
= exp(2µl + σ2

l ) g(σ2
l ).

Consider the class of estimators δ∗ = (k)exp(2Y ), where, for a given σ2
l
, Y ∼ N(µl, σ

2
l

n ). The mean
squared error associated with δ∗ is

E(δ∗ − σ2)2 = E(ke2Y − σ2)2 = E
(
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)2
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it follows that
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Differentiating with respect to k and setting equal to zero,
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and
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{
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(
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)} [
exp(σ2
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]

is a minimum mean square error estimator of σ2.
To prove that δ∗ is also a minimum posterior expected loss estimator of σ2, consider the relative

quadratic loss function
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it follows that

E (exp (−2µl) ) = exp
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Differentiating with respect to ˜̃δ and setting equal to zero we obtain
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Therefore δ∗ is also a minimum posterior expected loss estimator.
Also, since E(exp(2Y ) ) = exp(2µl + σ2

l
/n) , for a given σ2 it follows that

δ̃ = exp
(
2Y + σ2

l

(
1 − 2

n

)) [
exp(σ2
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]

is an unbiased estimator of

σ2 = exp
(
2µl + σ2
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) {
exp(σ2

l ) − 1
}
.

A.4 Derivation of the Predictive Density
Consider the setting described in the article regarding the variance of a future sample. It was indicated
that the maximum likelihood estimator of a lognormal variance of a future sample is

W = exp(2y f + s2
f )

[
exp(s2

f ) − 1
]
= exp(2y f )

{
exp(s2

f )
[
exp(s2

f ) − 1
]}
= exp(2y f ) {a} .

It is apparent that y f will be distributed independently of exp(s2
f ) [exp(s2

f ) −1] since y f is distributed
independently of s2

f .
Let

2y f = z.

Since

2y f ∼ N
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it follows that
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.
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Let Ỹ = eZ . Then, since ln ỹ = z and dz/d ỹ = 1/ỹ, it follows that

f
(
ỹ
�� µ̃, σ̃2

)
=

1
ỹ
√

2πσ̃2
exp

{
− 1

2σ̃2 (ln ỹ − µ̃)2
}
.

To find the distribution of W , the conditional distribution first needs to be derived. Now, since
W = aỸ one has that ỹ = w/a and d ỹ/dw = 1/a. Therefore,

f
(
w

�� µ̃, σ̃2, a
)
=

1
w
√

2πσ̃2
exp

{
− 1
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(
ln

(w
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, 0 ≤ w < ∞.
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