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In this paper, we propose a new simple method for estimating the shape parameter of
the inverse Gaussian distribution. This new method makes use of the reciprocal property
of the distribution. Also, bias-reduced versions of this proposed estimator are introduced.
Furthermore, a new test for the coefficient of variation in an inverse Gaussian distribution is
derived. The performance of the estimators are evaluated via Monte Carlo simulations. In
general, compared with the maximum likelihood estimator, the proposed method has smaller
bias. Two real data sets are used to illustrate the proposed methodology.
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1. Introduction
A first detailed study on the inverse Gaussian (IG) distribution was presented by Tweedie (1957a,b).
Posteriorly, Folks and Chhikara (1978) presented its main properties and applications, and a complete
study was provided by Chhikara and Folks (1989). Also, Johnson, Kotz and Balakrishnan (1994)
summarized important statistical properties of this distribution. The IGmodel is an alternative failure
time distribution, such as the Birnbaum–Saunders, gamma, lognormal and Weibull distributions. A
random variable X follows an IG distribution with parameters µ > 0 and λ > 0, denoted by
X ∼ IG(µ, λ), if its cumulative distribution function (CDF) is given by

F(x; µ, λ) = Φ
(√

λ

x

(
x
µ
− 1

))
+ exp

(
2λ
µ

)
Φ

(
−
√
λ

x

(
x
µ
+ 1

))
, x > 0, µ > 0, λ > 0, (1)

where Φ(·) is the standard normal CDF, µ is the mean and λ is a shape parameter.
The IG distribution has been applied in several areas including actuarial science, engineering,

hydrology, meteorology, management, physiology, etc. For details, see Chhikara and Folks (1989)
and Seshadri (1999).
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The maximum likelihood estimators (MLEs) of µ and λ have been discussed by Tweedie (1957a).
Patel (1965) derived moment estimators of µ and λ and their asymptotic variances for the one-sided
and two-sided truncated IG distributions. Padgett and Wei (1979) have discussed moment and
maximum likelihood estimation and Cheng and Amin (1981) have discussed maximum likelihood
estimation, both for the three-parameter IG distribution, which includes an unknown shifted origin
parameter. In this context, the main aim of this paper is to propose a simple alternative estimator
(hereafter NE) of the shape parameter of the IG distribution, based on the reciprocal property of this
distribution. We also propose bias-reduced versions of the NE based on the theoretical bias and upon
inspecting the pattern of the bias via Monte Carlo (MC) simulation studies. Additionally, we derive
a test for the coefficient of variation of the IG distribution.
The rest of the paper proceeds as follows. Section 2 introduces the IG distribution and some of

its basic properties. In Section 3, we describe the MLEs, the NE and its bias-reduced form. Also,
some properties of the estimators are discussed. In Section 4, we introduce a test statistic based on
the proposed estimator for testing hypotheses about the coefficient of variation of the IG distribution.
Comparisons of the estimators and tests via MC simulation studies are shown in Section 5. In
Section 6, we consider two empirical examples, and conclusions are outlined in Section 7.

2. The inverse Gaussian distribution and some of its properties
The probability density function (PDF) associated with (1) is given by

f (x; µ, λ) =
√

λ

2π
x−3/2 exp

(
−λ(x − µ)

2

2µ2x

)
, x > 0. (2)

The coefficient of variation, skewness and kurtosis of the IG distribution are given by
√
µ/λ, 3

√
µ/λ

and 15
√
µ/λ, respectively. Some PDFs are presented in Figure 1 for various values of λ(µ = 1) and

µ(λ = 1). Figure 1(left) shows that the skewness of the IG distribution increases, for a fixed value of
µ, as λ decreases.
The characteristic function of X ∼ IG(µ, λ) is given by

ϕX (t) := E(eitX ) =
∫ ∞

0
eitx f (x; µ, λ)dx = exp

{
λ

µ

[
1 −

(
1 − 2iµ2t

λ

)1/2]}
.

The kth moment of X is obtained by taking the kth derivative of (−i)kϕX (t) and letting t = 0,

E(Xk) = µk
k−1∑
l=0

(k − 1 + l)!
l!(k − 1 − l)!

(
2
λ

µ

)−l
.

In particular, the mean and variance associated with (2) are given by

E(X) = µ and Var(X) = µ3

λ
.

Moreover, if X ∼ IG(µ, λ), then W = X−1 has the PDF given by

f (w; µ, λ) =
(
λ

2πw

)1/2
exp

(
−λ(1 − µw)

2

2µ2w

)
, w > 0.
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Figure 1: PDF of the IG(µ = 1,λ ) (left) and IG(µ ,λ = 1) (right) distributions for the indicated
values of λ and µ .
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The kth moment of W is given by

E(Wk) = E(Xk+1)
µ2k+1 .

Therefore, we also readily have

E(W) = 1
µ
+

1
λ

and Var(W) = 1
λµ
+

2
λ2 .

3. Maximum likelihood and proposed estimators
In this section, we present the MLE and propose two new estimators for the shape parameter of the
IG distribution.

3.1 Maximum likelihood estimators
Suppose X1, X2, . . . , Xn is a random sample of size n from a random variable X with the PDF in (2).
Then, the log-likelihood function for the vector of parameters (µ, λ) can be written as

`(µ, λ) = n
2

log
(
λ

2π

)
− 3

2

n∑
i=1

log(Xi) − λ
n∑
i=1

(Xi − µ)2
2µ2Xi

,

and the MLEs of µ and λ are given by

µ̂ =
1
n

n∑
i=1

Xi and λ̂ =
n∑n

i=1 (1/Xi − 1/µ̂) .

µ̂ follows an inverse Gaussian distribution with parameters µ and n λ, whereas n/λ̂ ∼ (1/λ)χ2
n−1.

Also, µ̂ and λ̂ are independent; see Chhikara and Folks (1989).
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Consider again the random sample X1, X2, . . . , Xn and x1, x2, . . . , xn their observations. Denote
the sample arithmetic and harmonic means by

x =
1
n

n∑
i=1

xi and r =

[
1
n

n∑
i=1

x−1
i

]−1

,

respectively. Note that we can rewrite µ̂ and λ̂ as

µ̂ = x and λ̂ =
x

x/r − 1
=

x r
x − r

=
x

x/r − 1
. (3)

Property 3.1 Let X1, X2, . . . , Xn be a random sample of size n from the IG(µ, λ) distribution with
the PDF in (2). Consider the random variables X = n−1 ∑n

i=1 Xi and R = [n−1 ∑n
i=1 X−1

i ]−1. Then,
(X, R−1)> is asymptotically bivariate normal distributed, that is, we have that

√
n
(

X − E(X)
R−1 − E(X−1)

)
−−−−→
n→∞ N

( (
0
0

)
,

(
σ11 σ21
σ21 σ22

) )
,

where

σ11 = Var(X) = µ3

λ
, σ22 = Var(X−1) = 1

λµ
+

2
λ2 , σ12 = σ21 = Cov(X, X−1) = − µ

λ
.

Proof. By the strong law of large numbers, it follows that X and R−1 converge almost surely to
E(X) and E(X−1), respectively. Additionally, from the central limit theorem, X and R−1, as well
as any linear combination of these quantities, asymptotically follow a bivariate normal distribution.
Therefore,

√
n
(

X − E(X)
R−1 − E(X−1)

)
−−−−→
n→∞ N

( (
0
0

)
,

(
σ11 = Var(X) σ12 = 1 − E(X)E(X−1)

σ21 = 1 − E(X)E(X−1) σ22 = Var(X−1)
) )
. �

3.2 Proposed estimator
Let X1, X2, . . . , Xn be a random sample of size n where X ∼ IG(µ, λ), then define

Zi j = Xi X−1
j , for 1 ≤ i , j ≤ n,

where Zi j = 1/Z ji; see Balakrishnan and Zhu (2014) and Balakrishnan, Saulo, Bourguignon and
Zhu (2017). Now, it is possible to show that

E(Zi j) = E(Xi X−1
j ) = µ

(
1
µ
+

1
λ

)
. (4)

Note that the sample mean of Zi j is given by

Z =
1

2
(n
2
) ∑

1≤i,j≤n
Zi j . (5)
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Now, if we equate (5) to (4) with µ̂ = x̄, we get an estimator of λ as

λ̃∗ =
x

Z − 1
. (6)

We are now going to show that the proposed estimator λ̃∗ can be written as a function of the MLE
λ̂. From (5), we have

Z =
1

2
(n
2
) ∑

1≤i,j≤n

Xi

Xj
=

1
n(n − 1)


∑

1≤i,j≤n

Xi

Xj
+ n


− n

n(n − 1)

=
n(x/r)
n − 1

− 1
n − 1

=
n(x/r) − 1

n − 1
.

Therefore, based on (3) the estimator λ̃∗ in (6) can be rewritten as

λ̃∗ =
x

n(x/r)−1
n−1 − 1

=
n − 1

n
x

x/r − 1
=

n − 1
n

λ̂.

Property 3.2 The estimator λ̃∗ is consistent.

Proof. First, note that for Z
p→ 1 + µ/λ, Var[Z] → 0. Then, taking probability limits in (6), we

obtain
plimn→∞λ̃

∗ = plimn→∞
x

Z − 1
=

µ

µ/λ = λ. �

Property 3.3 Let X1, X2, . . . , Xn be a random sample of size n from the IG distribution with PDF as
given in (2). Then, λ̃∗ ≤ λ̂.

3.2.1 Asymptotic distribution of Z

Here, the asymptotic behaviour of Z is considered in order to derive the asymptotic distribution of
λ̃∗. Note that

E(Z) = E
(

Xi

Xj

)
= µ

(
1
µ
+

1
λ

)
=
λ + µ

λ
,

and

E(Z2) = 1
n2(n − 1)2 E


∑

1≤i,j,k,l≤n

XiXj

XkXl
+

∑
1≤i,j,k≤n

X2
i

XjXk
+

∑
1≤i,j,k≤n

XjXk

X2
i

+2
∑

1≤i,j,k≤n

XiXj

XiXk
+

∑
1≤i,j≤n

X2
i

X2
j

+
∑

1≤i,j≤n

XiXj

XjXi


=
(n − 2)(n − 3)

n(n − 1)
(λ + µ)2
λ2 +

(n − 2)
n(n − 1)

(λ + µ)3 + µλ(λ + 2µ) + λ(λ + µ)2 + 2λ2(λ + µ)
λ3

+
1

n(n − 1)
µ(λ + 2µ)(λ + µ) + (λ + µ)3 + λ3

λ3 .
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The above results yield

Var(Z) = E(Z2) − (λ + µ)
2

λ2

=
(n − 2)(n − 3)

n(n − 1)
(λ + µ)2
λ2 +

(n − 2)
n(n − 1)

(λ + µ)3 + µλ(λ + 2µ) + λ(λ + µ)2 + 2λ2(λ + µ)
λ3

+
1

n(n − 1)
µ(λ + 2µ)(λ + µ) + (λ + µ)3 + λ3

λ3 − (λ + µ)
2

λ2

=
6 − 4n

n(n − 1)
(λ + µ)2
λ2 +

(n − 2)
n(n − 1)

(λ + µ)3 + µλ(λ + 2µ) + λ(λ + µ)2 + 2λ2(λ + µ)
λ3

+
1

n(n − 1)
µ(λ + 2µ)(λ + µ) + (λ + µ)3 + λ3

λ3 − (λ + µ)
2

λ2

≈ − 4
n − 1

(λ + µ)2
λ2 +

1
n − 1

(λ + µ)3 + µλ(λ + 2µ) + λ(λ + µ)2 + 2λ2(λ + µ)
λ3

=
(λ + µ)3 − 3λ(λ + µ)2 + µλ(λ + 2µ) + 2λ2(λ + µ)

(n − 1)λ3

=
µ2(2λ + µ)
λ3(n − 1) .

Now, note that it is possible to rewrite Z as

Z =
n

n − 1

(
X
R

)
− 1

n − 1
. (7)

By using Property 3.1, which says X and R−1 are asymptotically distributed as bivariate normal, and
the delta method, we obtain from (7) that

√
n
(
Z − λ + µ

λ

)
−−−−→
n→∞ N

(
0,
µ2(2λ + µ)

λ3

)
. (8)

3.2.2 Asymptotic distribution of λ̃∗

In order to obtain the distribution of λ̃∗ we use the result in (8) and the Taylor series expansion of λ̃∗.
Note that

λ̃∗ =
x

Z − 1
= g(x, Z) = g(a, b) + (x − a) ∂

∂s
g(a, b) + (Z − b) ∂

∂Z
g(a, b)

+ (x − a)(Z − b) ∂2

∂x∂Z
g(a, b) + 1

2
(x − a)2 ∂2

∂x2 g(a, b) +
1
2
(Z − b)2 ∂2

∂Z
2 g(a, b) + R2

= λ + (x − µ)λ
µ
−

(
Z − λ + µ

λ

)
λ2

µ
− (x − µ)

(
Z − λ + µ

λ

)
λ2

µ2 +
1
2

(
Z − λ + µ

λ

)2 2λ3

µ2 + R2,

where a = µ, b = (λ + µ)/λ and

|Rk | ≤ 1
(k + 1)!

k+1∑
l=0

(
k + 1

l

)
M |x − a|l |Z − b|k+1−l =

M
(k + 1)! (|x − a| |Z − b|)k+1, (9)
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with (9) holding if all partial derivatives of g of order k + 1 are bounded in magnitude by M . Note
that to find the order of convergence we compute��� M

(k+2)! (|x − a| |Z − b|)k+2
������ M

(k+1)! (|x − a| |Z − b|)k+1
���r =

����M1−r (k + 1)!r
(k + 2)! (|x − a| |Z − b|)((k+1)(1−r)+1)

���� ,
and find the largest value of r such that the following limit is finite

lim
k→+∞

����M1−r (k + 1)!r
(k + 2)! (|x − a| |Z − b|)((k+1)(1−r)+1)

���� .
When r = 1 this limit is zero. Therefore, the order of convergence is 1.
Note that the asymptotic distribution of λ̃∗ is

√
n(λ̃∗ − λ) −−−−→

n→∞ N (0,Ω) ,

where Ω = E([(X − µ)λ/µ − (Z − (λ + µ)/λ)λ2/µ]2), which can be solved numerically.

3.2.3 Bias-reduced versions of the proposed estimator λ̃∗

We here present two bias-reduced estimators.

1. Based on the Taylor series expansion of λ̃∗, we have

Bias1(λ̃∗) ≈ 2λ + µ
n − 1

.

Note that
E(λ̃∗) = λ + Bias1(λ̃∗) = λ(n + 1) + µ

n − 1
.

Then, solving the above equation for λ and denoting it by λ̃∗
u1, we get

λ̃∗u1 =

(
λ̃∗ − µ̂

n − 1

)
n − 1
n + 1

.

2. Now, by inspecting the pattern of the bias of the NE through MC simulation studies (based on
the simulation results, we study the possible relationship between the bias, n and λ by means
of regression), we verify that for small and moderate sample sizes,

Bias2(λ̃∗) ≈ 3λ
n
.

Thus, by implementing a standard bias reduction method, we can obtain a bias-reduced version
of the NE, which is given by

λ̃∗u2 =
n

n + 3
λ̃∗. (10)

Note that λ̃∗
u1 is the bias-reduced estimator of λ based on the second order bias and λ̃∗

u2 (alternative
bias-reduced estimator for λ̃∗) is the bias-reduced estimator of λ based on the MC simulation. For an
account of the bias-reduced estimator based on the MC simulation, see Ng, Kundu and Balakrishnan
(2003).
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4. Hypothesis testing
In this section, we propose a new test on the coefficient of variation defined as φ =

√
µ/λ for the

IG(µ, λ) population. The testing problem may, equivalently, be considered in terms of the parameter
υ = φ2 = µ/λ. In particular, the interest lies in testing the null hypothesis

H0 : υ ≤ υ0 against the alternative hypothesis Ha : υ > υ0,

for a given υ0. Seshadri (1988) showed that the estimator of the square of the coefficient of variation
in the IG distribution is a U-statistic, which is given by

U =
XV

n − 1
= µ̂/λ̂∗ = υ̂∗, (11)

where V =
∑n

i=1(X−1
i − X

−1). For testing H0 against Ha, the new statistic, based on (10), is

U∗ =
n + 3

n
(Z − 1) = µ̂/λ̂∗u = υ̂∗u . (12)

We opt to use (10) because it provides the best performance; see Section 5. The limiting distributions
(from (8)) of the statistics

√
n − 1(υ̂∗u − υ0)/(υ0

√
υ0 + 2) and

√
n − 1(υ̂∗ − υ0)/(υ0

√
υ0 + 2) are both

normal with mean zero and variance 1, under H0. The null hypothesis is rejected for a given nominal
level, γ say, if the test statistic exceeds the upper 100(1 − γ)% quantile of the N(0,1) distribution.

5. Numerical evaluation
In this section we carry out two MC simulation studies, the first one to evaluate the performance
of the proposed estimators and the second one to evaluate the performance of the new test statistic
described in Section 4. The numerical evaluations were implemented using the R software (R Core
Team, 2016) by means of some packages already available at http://cran.r-project.org and
new routines added to these packages.

5.1 Numerical results: estimation
Here we conduct an extensive MC simulation study in order to evaluate the performances of the
estimators presented anteriorly. The scenario of this simulation considers the sample sizes n ∈
{10, 20, 50, 100, 200, 500}, the values of the true shape parameter as λ ∈ {0.10, 0.25, 0.75, 1.00, 1.50,
2.00, 3.00}, 10 000 MC replications, and without loss of generality the value of µ is set at 1.00. Note
that the values of λ cover high, moderate and low skewness.
Table 1 presents the empirical values of the bias and MSE of the NE and its bias-reduced versions,

as well as the corresponding values for theMLEs. From these results, we have the following findings:

1. As n increases, the bias and MSE of all the estimators decrease, as expected;

2. The NE of λ displays biases and MSEs that are, in most cases, smaller than or equal to those
of the corresponding MLE for all sample sizes considered in this study;

3. As λ increases, the finite sample performances of the estimators of λ, the shape parameter,
deteriorate;
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4. The bias-reduced estimator we propose, λ̃∗
u2, outperforms, in most cases, all other estimators

by delivering an adjusted estimator with smaller bias and MSE.

5.2 Numerical results: hypothesis testing
We shall now turn to the evaluation of the finite-sample behavior of the U-statistic test (Seshadri,
1988) (the test statistic for this test is given in (11)) and the new statistic (see (12)) for the parameter
υ = φ2 = µ/λ of the IG distribution. The MC simulation was carried out based on the following
cases:

Case 1. H0 : υ ≤ 2 versus Ha : υ > 2;

Case 2. H0 : υ ≤ 2.5 versus Ha : υ > 2.5.

The simulation scenario considers: sample size n ∈ {10, 20, 30, 40, 50, 60, 100, 200, 500}, vector of
true parameters [µ, λ] = [2.0, 1.0], nominal levels γ ∈ {10%, 5%, 1%}, and 10,000 MC replications
for each sample size. Note that in Case 2 the null hypothesis is not true.
Table 2 presents the null rejection rates of the two tests for Case 1. We note that in both tests, U

and U∗, the size distortion decreases as the sample size increases. It is noteworthy that the U test is
considerably liberal in small samples. For instance, when n = 100 and γ = 5%, the null rejection
rate of the U test is 0.1064, i.e., nearly twice the nominal level of the test. The new test (U∗) is much
less size distorted. For example, its null rejection rate in the same situation is 0.0813; see Table 2.
Table 3 displays the the null rejection rates for Case 2. In this case, we observe that in both tests,

U and U∗, the size distortion increases as the sample size increases. For instance, when n = 100
and γ = 5%, the null rejection rate of the U∗ test is 0.3660, and when n = 500 and γ = 5%, the
null rejection rate of the U∗ test is 0.8020. In the simulation results for Case 2, presented in Table 3,
we observe that the powers associated with both tests increase as a function of the sample size. The
results presented in this table indicate that, although the test based on U outperforms the test based
on U∗ in terms of power, the discrepancy between the powers decreases as a function of the sample
size.

6. Illustrative examples
We illustrate our methodology by using two real data sets. The first data set (Set I) gives themaximum
flood levels inmillions of cubic feet per second for the Susquehanna River at Harrisburg, Pennsylvania
(1890–1969); see Seshadri (1999, p. 34). The second data set (Set II) corresponds to active repair
times (hours) for an airborne communication transceiver; see von Alven (1964, p. 156). Table 5
provides some descriptive statistics of the corresponding data sets presented in Table 4, including
central tendency statistics, as well as the standard deviation (SD), skewness (CS) and kurtosis (CK).
From these statistics, we note that the IG model can be a good candidate for modeling these data
mainly due to their asymmetric nature. In order to know whether the IG distribution fits these data or
not, we computed Kolmogorov-Smirnov (KS) distances between the empirical and fitted distribution
functions. We found the KS distances and the corresponding p-values (reported within brackets) for
Set I and Set II to be 0.1528 (0.7384) and 0.0635 (0.9933), respectively. These results suggest that
the IG distribution is indeed a good model for the Set I and Set II data sets.
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Table 1. Simulated values of relative biases and MSEs of the NE and its bias-reduced version
in comparison with those ofMLEs (µ = 1.0). The best result (the smallest bias and the smallest
MSE) in each row is in bold.

Estimator of λ Estimator of µ

Bias MSE Bias MSE

n λ λ̂ λ̃∗ λ̃∗
u1 λ̃∗

u2 λ̂ λ̃∗ λ̃∗
u1 λ̃∗

u2 µ̂ µ̂

10 0.10 0.0422 0.0280 −0.0871 −0.0015 0.0096 0.0071 0.0200 0.0037 0.0096 1.0383
0.25 0.1092 0.0733 −0.0783 −0.0013 0.0632 0.0469 0.0369 0.0246 0.0061 0.4149
0.75 0.3307 0.2226 −0.0552 −0.0018 0.5876 0.4370 0.2352 0.2292 −0.0034 0.1299
1.00 0.4348 0.2913 −0.0265 −0.0067 0.9935 0.7365 0.4913 0.3856 −0.0015 0.1019
1.50 0.6411 0.4270 −0.0062 −0.0177 2.2863 1.7013 1.0566 0.8991 0.0014 0.0703
2.00 0.8483 0.5635 −0.0051 −0.0281 3.9629 2.9446 1.6800 1.5552 −0.0014 0.0494
3.00 1.2592 0.8333 −0.0491 −0.0513 8.7029 6.4594 4.1381 3.4139 −0.0033 0.0334

20 0.10 0.0178 0.0119 −0.0469 −0.0027 0.0021 0.0018 0.0047 0.0012 −0.0089 0.4972
0.25 0.0421 0.0275 −0.0451 −0.0087 0.0129 0.0108 0.0113 0.0076 −0.0062 0.1962
0.75 0.1339 0.0897 −0.0369 −0.0198 0.1203 0.1005 0.0795 0.0703 −0.0021 0.0655
1.00 0.1721 0.1135 −0.0288 −0.0317 0.2031 0.1695 0.1423 0.1194 −0.0024 0.0502
1.50 0.2637 0.1755 −0.0370 −0.0430 0.4931 0.4131 0.3024 0.2909 −0.0028 0.0327
2.00 0.3495 0.2320 −0.0255 −0.0591 0.8296 0.6923 0.5374 0.4863 −0.0019 0.0250
3.00 0.5289 0.3525 −0.0222 −0.0848 1.9295 1.6131 1.2276 1.1330 0.0004 0.0166

50 0.10 0.0060 0.0039 −0.0198 −0.0020 0.0005 0.0005 0.0009 0.0004 0.0060 0.2034
0.25 0.0154 0.0101 −0.0194 −0.0046 0.0033 0.0030 0.0031 0.0026 0.0027 0.0825
0.75 0.0489 0.0329 −0.0172 −0.0114 0.0311 0.0286 0.0257 0.0246 −0.0002 0.0270
1.00 0.0656 0.0443 −0.0188 −0.0148 0.0532 0.0489 0.0440 0.0420 0.0007 0.0197
1.50 0.0929 0.0611 −0.0195 −0.0273 0.1220 0.1126 0.0990 0.0976 −0.0003 0.0137
2.00 0.1228 0.0803 −0.0184 −0.0374 0.2140 0.1975 0.1760 0.1714 0.0006 0.0102
3.00 0.1796 0.1160 −0.0193 −0.0603 0.4680 0.4319 0.4065 0.3761 −0.0005 0.0066

100 0.10 0.0032 0.0022 −0.0099 −0.0008 0.0002 0.0002 0.0003 0.0002 −0.0036 0.0971
0.25 0.0075 0.0049 −0.0102 −0.0025 0.0015 0.0014 0.0014 0.0013 −0.0028 0.0401
0.75 0.0243 0.0166 −0.0104 −0.0058 0.0135 0.0129 0.0121 0.0119 0.0033 0.0133
1.00 0.0306 0.0202 −0.0086 −0.0095 0.0226 0.0216 0.0213 0.0201 0.0008 0.0100
1.50 0.0455 0.0300 −0.0063 −0.0145 0.0515 0.0493 0.0479 0.0459 −0.0003 0.0067
2.00 0.0655 0.0449 −0.0064 −0.0147 0.0933 0.0892 0.0844 0.0824 0.0019 0.0051
3.00 0.0953 0.0644 −0.0066 −0.0249 0.2132 0.2042 0.1882 0.1892 0.0002 0.0033

200 0.10 0.0014 0.0009 −0.0051 −0.0006 0.0001 0.0001 0.0001 0.0001 0.0003 0.0503
0.25 0.0041 0.0028 −0.0048 −0.0009 0.0007 0.0007 0.0007 0.0007 −0.0001 0.0194
0.75 0.0110 0.0072 −0.0055 −0.0040 0.0060 0.0059 0.0058 0.0057 0.0006 0.0069
1.00 0.0132 0.0081 −0.0055 −0.0068 0.0106 0.0104 0.0104 0.0100 −0.0003 0.0049
1.50 0.0249 0.0173 −0.0045 −0.0051 0.0248 0.0242 0.0226 0.0232 −0.0009 0.0033
2.00 0.0245 0.0144 −0.0052 −0.0154 0.0423 0.0415 0.0420 0.0403 0.0002 0.0025
3.00 0.0452 0.0300 −0.0125 −0.0148 0.0977 0.0956 0.0910 0.0922 0.0000 0.0016

500 0.10 0.0007 0.0005 −0.0019 −0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0200
0.25 0.0016 0.0011 −0.0019 −0.0004 0.0003 0.0003 0.0003 0.0003 −0.0014 0.0082
0.75 0.0042 0.0026 −0.0024 −0.0018 0.0023 0.0023 0.0023 0.0022 0.0004 0.0027
1.00 0.0067 0.0047 −0.0013 −0.0013 0.0041 0.0041 0.0040 0.0040 −0.0004 0.0020
1.50 0.0097 0.0067 −0.0013 −0.0023 0.0094 0.0093 0.0092 0.0091 0.0003 0.0013
2.00 0.0135 0.0095 −0.0005 −0.0025 0.0164 0.0162 0.0160 0.0160 −0.0004 0.0010
3.00 0.0168 0.0108 −0.0032 −0.0072 0.0367 0.0364 0.0360 0.0359 0.0002 0.0007
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Table 2. Null rejection rates of the tests U∗ and U for
Case 1.

γ = 10% γ = 5% γ = 1%

n U∗ U U∗ U U∗ U

10 0.1713 0.2830 0.1384 0.2399 0.0921 0.1674
20 0.1501 0.2318 0.1147 0.1784 0.0622 0.1080
30 0.1482 0.2137 0.1007 0.1566 0.0533 0.0843
40 0.1410 0.1954 0.0946 0.1409 0.0521 0.0785
50 0.1412 0.1888 0.0921 0.1311 0.0456 0.0666
60 0.1336 0.1768 0.0884 0.1267 0.0408 0.0607

100 0.1306 0.1656 0.0813 0.1064 0.0352 0.0476
200 0.1211 0.1432 0.0763 0.0911 0.0258 0.0332
500 0.1148 0.1281 0.0617 0.0701 0.0226 0.0261

Table 3. Null rejection rates of the tests U∗ and U for
Case 2.

γ = 10% γ = 5% γ = 1%

n U∗ U U∗ U U∗ U

10 0.2430 0.3950 0.1880 0.3130 0.1030 0.2080
20 0.2400 0.3500 0.1720 0.2500 0.1070 0.1620
30 0.2840 0.3810 0.2070 0.2860 0.1100 0.1580
40 0.3210 0.4100 0.2360 0.3120 0.1350 0.1820
50 0.3610 0.4410 0.2650 0.3420 0.1550 0.2010
60 0.3510 0.4150 0.2640 0.3320 0.1450 0.1820

100 0.4700 0.5150 0.3660 0.4220 0.2200 0.2610
200 0.6530 0.6800 0.5250 0.5720 0.3240 0.3600
500 0.8690 0.8830 0.8020 0.8180 0.6130 0.6450

Table 6 presents the ML estimates and the estimates obtained by using the proposed method, as
well as the values of the KS, Cramér-von Mises (CM) and Anderson-Darling (AD) test statistics and
their corresponding p-values. In general, the smaller the values of these statistics, the better the fit
to the data. We observe in this case that the estimates from MLE and NE are quite similar. Also, the
KS, CM and AD tests presented in Table 6 supports the IG model assumption made in our analysis.
Now, for the first application, suppose that we are interested in testing H0 : υ ≤ 1.16 versus

Ha : υ > 1.16. Since the observed U∗ = 2.3382 and U = 2.1921, the respective p-values are 0.9457
and 0.9364. These values are quite large for a 1% level of significance and therefore a squared CV
of less than or equal to 1.16 is accepted. For the second application, suppose that we are interested
in testing H0 : υ ≤ 0.54 versus Ha : υ > 0.54. Since the observed U∗ = 0.0863 and U = 0.0750, the
respective p-values are close to 0. Thus, we reject H0 at 1% level.

7. Concluding remarks
In this paper, we have introduced a new method of estimating the shape parameter of the IG
distribution based on a random sample. We have provided empirical evidence that suggests that the
NE of λ has bias that is smaller than or equal to that of the corresponding MLE for all sample sizes
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Table 4. Observations from the indicated data set.

Set I

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.3235 0.296 0.740
0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265

Set II

0.2 0.3 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8
1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0 2.0
2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0 4.0 4.5 4.7 5.0
5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5

Table 5. Descriptive statistics.
n Min. Median Mean Max. SD CS CK

Set I 20 0.265 0.407 0.424 0.74 1.12 1.03 0.31
Set II 45 0.2 2 3.67 24.5 4.97 2.76 8.08

Table 6. Estimates of the parameters, KS, CM and AD statistics (p-values in
parentheses) for the indicated date set.

Parameter

Estimator µ λ KS CM AD

Set I (µ̂, λ̂) 0.4244 5.9547 0.1528 (0.7383) 0.0610 (0.3499) 0.3783 (0.3730)
(µ̂, λ̃∗) 0.4244 5.6569 0.1514 (0.7489) 0.0610 (0.3499) 0.3783 (0.3730)
(µ̂, λ̃∗

u2) 0.4244 4.9191 0.1473 (0.7781) 0.0610 (0.3499) 0.3781 (0.3734)

Set II (µ̂, λ̂) 3.6755 1.7148 0.0626 (0.9944) 0.0270 (0.8800) 0.1891 (0.8950)
(µ̂, λ̃∗) 3.6755 1.6767 0.0626 (0.9944) 0.0270 (0.8800) 0.1893 (0.8949)
(µ̂, λ̃∗

u2) 3.6755 1.5719 0.0700 (0.9800) 0.0272 (0.8787) 0.1896 (0.8946)

considered in the simulation study. Also, we have introduced a bias-reduced version of the NE which
outperformed all other estimators in our simulation study. The numerical results showed that the
new test outperforms the U-test for the coefficient of variation. As part of future work, an extension
of the proposed method of estimation to the bivariate IG (Al-Hussaini and Nagi, 1981) distribution
will be of great interest; see Saulo, Balakrishnan, Zhu, Gonzales and Leão (2017).
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