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An important question when modelling option prices is which of the multitude of option
pricing models to use. In this paper, the calculation of barrier option prices is considered.
These exotic options are found in many financial markets the world over. It is demonstrated
numerically that it is possible to replicate (with a high degree of accuracy) the barrier option
prices obtained from one model by making use of a different model; these models are referred
to as ‘interchangeable’. Tests for the interchangeability of barrier option pricing models are
developed and applied. However, the tests developed are not specific to barrier option pricing
models and can also be applied to the prices of other exotic options.
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1. Introduction and motivation
Schoutens, Simons and Tistaert (2004) demonstrated that it is possible to nearly perfectly replicate the
observedmarket prices of European call options using variousmodels. The authors demonstrated this
phenomenon by calibrating the models to the observed prices which entails choosing the parameters
of each model so that the model prices resemble the observed prices as closely as possible. The near
identical prices achieved by the various models indicate that the models are interchangeable, meaning
that the prices obtained using one model can be nearly perfectly replicated under another model.
However, when the calibrated models are used to calculate the prices of exotic options (including
barrier options) the resulting prices vary substantially. In Schoutens et al. (2004), the authors do not
calibrate the models to exotic option prices. One possible reason for not considering calibrations to
exotic option prices is that the market prices of these options are not as readily available as those of
their European counterparts. It remains unclear whether or not the prices of exotic options calculated
using a given model can be replicated using a different model.
In this paper, various option pricing models are calibrated to barrier option prices and the prices

obtained under these models are compared. It is demonstrated numerically that it is possible to
choose the parameters of a given model such that the option prices calculated under this model
conform closely to the option prices calculated under another model. It is not surprising that the
parameters of two models can be chosen so as to ensure that these models provide similar prices for
a given set of options, however, this paper shows that, in certain instances, models can be calibrated
such that the difference between the resulting prices are negligible (in a way made precise below).
The models considered are the Heston stochastic volatility model, the Black–Scholes model, the
geometric normal inverse Gaussian model and the time changed geometric lognormal-normal model.
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Observed barrier option prices are not always readily available. As a result, the models considered
are not calibrated to prices observed in a financial market. Instead, a hypothetical market containing
three different types of barrier call options is constructed. The mentioned barrier options are digital
barriers, down-and-out barriers and up-and-out barriers. The payoff of a barrier option is a function
of whether or not the underlying stock price reaches some predetermined barrier level during the
lifetime of the option.
In practice, barrier options are usually monitored at discrete times. This means that the stock

price used to determine whether or not the barrier level has been reached is monitored at discrete
intervals (often daily). Therefore, the price of a barrier option is a function of the minimum or the
maximum of the stock price when observed in discrete time. The joint distributions of the stock price
and its minimum or maximum observed at discrete times are generally unknown for the majority of
option pricing models (including the Black–Scholes model). As a result, Monte Carlo techniques are
employed to estimate barrier option prices.
The use of Monte Carlo simulation introduces Monte Carlo error into the option price estimates

calculated under the models used and, because of this error, it is not feasible to require that the option
prices calculated using two different models coincide exactly in order for the models to be called
interchangeable. In order to determine whether or not two models are interchangeable, the concept
of a perfect calibration is introduced. When a model is calibrated to a set of observed option prices,
the difference between the observed and calculated option prices contains two components; the first
is due to the misspecification of the model and the second is ascribed to the Monte Carlo error
introduced by the calculation method used. In the remainder of the text, a calibration is considered
to be perfect if the contribution to the discrepancy between the observed and calculated prices due
to model misspecification is negligible when compared to the Monte Carlo error. This definition is
made exact in Section 5. If a model can be perfectly calibrated to option prices obtained from another
model, then these models are called interchangeable.
In Section 2 the various option pricing models considered are discussed. Section 3 introduces the

types of barrier options used while the construction of the hypothetical financial market is discussed
in Section 4. In Section 5, the calibration of the models to barrier option prices is discussed together
with an analysis of the results obtained. Some conclusions are presented in Section 6.
The numerical results presented in the paper are limited to barrier options, however, the method-

ology developed can be applied more generally; it can also be used to compare the prices calculated
under different models for other exotic options.

2. Option pricing models

The option pricing models that will be employed throughout the remainder of this paper are briefly
discussed below. It is well known that, in order to ensure that option prices calculated as discounted
expected payoffs under a given model are arbitrage free, the discounted value of the stock price is
required to form a martingale, see Chapter 2.5 of Schoutens (2003). The calibration procedures used
in Schoutens et al. (2004) enforce this restriction using the mean correcting martingale measure. This
means that each of the parameters in the models are allowed to vary freely with the exception of the
location parameter. The value of the location parameter is chosen so as to ensure the martingaleness
of the discounted stock price using a predetermined formula. The same technique is used in this paper
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and the formulae for the location parameters are included in the discussions below. The algorithms
used to simulate price paths under each of the models are provided in Appendix A.
In the remainder of the paper stock prices are indexed daily. Let St denote the stock price at time

t such that, if t is a whole number, then St denotes the stock price at the end of day t. A constant,
continuously compounded risk free daily interest rate, denoted by r , is assumed throughout.

2.1 The Heston model
This model was introduced in Heston (1993). The dynamics of the stock price under the Heston
model are as follows:

dSt
St
= µdt + σtdWt,

dσ2
t = κ(η − σ2

t )dt + θσtdW̃t,

where Wt and W̃t are two correlated standard Brownian motions with Corr(dWtdW̃t ) = ρdt. In the
calibration procedure used, µ is set to r in order to ensure the martingaleness of e−rtSt .
Under the Heston model, the volatility process σ2

t follows a Cox-Ingersoll-Ross process. As a
result, if 2κη ≥ θ2, then the volatility of the process is strictly positive and the stationary distribution
of σ2

t is gamma(2κη/θ2, θ2/2κ), where the densty function of a gamma(a, b) random variable is

f (x) = xa−1

baΓ(a) exp
(
− x

b

)
,

for a > 0, b > 0 and x > 0. In the numerical analysis to follow, the restriction 2κη ≥ θ2 is enforced,
meaning that the calibration procedure chooses parameters under the constraint that 2κη ≥ θ2.

2.2 The Black–Scholes model
Under this model, introduced in Black and Scholes (1973), the dynamics of the stock price are given
by

St = S0 exp (µt + σWt ) ,
with µ ∈ R, σ > 0 and Wt a standard Brownian motion. Enforcing the martingaleness requirement
placed on e−rtSt entails setting µ = r − σ2/2.

2.3 The geometric normal inverse Gaussian (N ◦ IG) model
A randomvariable X : Ω→ R is said to follow aN ◦ IG distributionwith parameter set θ = (α, β, µ, δ)
if it has density

f (x; θ) = αδ

π
exp

(
δ

√
α2 − β2 + β(x − µ)

) K1

(
α
√
δ2 + (x − µ)2

)
√
δ2 + (x − µ)2

,

where α > 0, |β| < α, µ ∈ R, δ > 0 and K1 denotes the modified Bessel function of the third kind
with index 1.
A stochastic process L = (Lt ; t ≥ 0) is a N ◦ IG process with parameter set (α, β, µ, δ) if L0 = 0, L

has stationary and independent increments, and

Lt+s − Lt ∼ N ◦ IG (α, β, µs, δs) ,
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for all s > 0.
Under the geometric N ◦ IG model the stock price is represented as

St = S0 exp (Lt ) ,

where Lt is a N ◦ IG (α, β, µ, δ) process. The martingaleness condition is enforced by setting

µ = r + δ
(√
α2 − (β + 1)2 −

√
α2 − β2

)
.

As a result, in order for e−rtSt to form a martingale it is required that −α < β < α − 1. This
requirement is enforced in the calibration procedure used. For more details regarding this model, see
Schoutens et al. (2004).

2.4 The geometric lognormal-normal model
Clark (1973) proposed the use of time changed models in option pricing. The mentioned paper
argues that changes in a stock price follow a normal distribution, but that the number of price changes
per time unit is not constant. Clark proposed the use of a normal distribution to model individual
price changes and a lognormal distribution to model the number of these changes per unit time. The
resulting stochastic process is referred to as lognormal-normal. In Clark’s 1973 paper this process is
proposed as a model for the first differences in observed stock prices. However, this process is used
in order to model log-returns in the remainder of this paper. Formally the model is defined as

St = S0 exp(LTt ),

where Tt is a lognormal process (Tt+1 − Tt ∼ logN (α, β)) and Lt is a Brownian motion, with
parameters µ and σ2, which is independent of Tt .
The discounted stock price forms a martingale if, and only if,

E [St ] = S0ert ⇐⇒ E
[
exp

(
LT1

) ]
= ert ⇐⇒

∫ ∞

0
ex f (x) dx = er , (1)

where f is the density of LT1 . Standard calculations yield

f (x) = 1
2πσβ

∫ ∞

0
y−

3
2 exp

(
−(x − µy)

2

2σ2y
− (log (y) − α)2

2β2

)
dy. (2)

Using (1) and (2) we can solve for the value of µ that ensures themartingaleness of e−rtSt numerically.

3. Barrier options
The payoff of a barrier option depends on whether or not the stock price reaches some predetermined
barrier level before the maturity of the option. In practice, barrier options are usually monitored
at discrete time intervals. Throughout the paper, the barrier options considered are assumed to be
monitored daily. This means that the stock price at the end of each business day is used in order to
assess whether or not the barrier level has been reached. We consider three types of barrier options;
digital barrier (DB) call options, down-and-out barrier (DOB) call options and up-and-out barrier
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(UOB) call options. We denote by h and π respectively the payoff function and price of a barrier
option.
A DB call option pays a fixed amount (set equal to 1 unit of currency throughout) at maturity if the

stock price reaches the predetermined level H > S0 before the maturity of the option. If this barrier
is not reached the option expires worthless. The payoff and price of a DB call option with barrier
level H and time to maturity T are therefore

h = I
(

max
j∈0,...,T

Sj ≥ H
)

and π = e−rT E
[
I

(
max

j∈0,...,T
Sj ≥ H

)]
.

A DOB barrier call option has the same payoff as a European call option if the stock price does
not reach or drop below the level H < S0 during the lifetime of the option. If the stock price reaches
this level the option becomes worthless. The payoff and price of a DOB call option with strike price
K , barrier level H and time to maturity T are therefore

h = I
(

min
j∈0,...,T

Sj > H
)
(ST − K)+ and π = e−rT E

[
I

(
min

j∈0,...,T
Sj > H

)
(ST − K)+

]
,

where (a)+ = max(a,0).
As was the case for a DOB barrier call option, the payoff of an UOB barrier call option is the same

as that of a European call option if the stock price does not achieve or exceed some level H > S0
before the maturity date of the option. If the stock price reaches H > S0, then the option has a payoff
of 0. The payoff and price of an UOB barrier call option with strike price K , barrier level H and time
to maturity T are therefore

h = I
(

max
j∈0,...,T

Sj < H
)
(ST − K)+ and π = e−rT E

[
I

(
max

j∈0,...,T
Sj < H

)
(ST − K)+

]
.

The empirical results shown in Section 5 require the prices of the three types of barrier options
discussed under various models. If the options are monitored continuously (meaning that the stock
price is continuously observed in order to determine whether or not a barrier crossing has taken
place) closed form formulae are available for the option prices under certain models, for example,
see Chapter 9.1 of Schoutens (2003) for the prices of barrier options under the Black–Scholes model
if the monitoring occurs in continuous time. However, in the case considered (where the stock price
is monitored at discrete times), no closed form formulae are available for the option prices under
the models considered. As a result, the option prices are estimated using Monte Carlo simulation as
follows. A price path for the stock is simulated. The length of this price path is equal to the maximum
time to maturity of the options under consideration. Next, the payoff of each of the options given
this price path is calculated. The simulation of the price path is repeated 1000 times, resulting in
1000 realised payoffs for each option. The price of a given option is estimated by discounting the
average of the payoffs associated with this option. Below, we refer interchangeably to the estimates
calculated using this method as option prices and option price estimates. A general discussion of
barrier option pricing can be found in Cont and Tankov (2004).
The calibration procedure used to obtain the numerical results is computationally expensive and

therefore the number of Monte Carlo replications is fixed at 1000 in order to keep the computer time
required for calculations within manageable limits while allowing for option price estimates with
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small standard errors relative to their means. Various variance reduction techniques were considered
in order to increase the accuracy of the estimates. However, these techniques were discarded because
the associated computational cost outweighed the reduction in the variance of the option price
estimates.

4. Construction of a hypothetical market
In the following discussion, rather than using observed option price data, the prices calculated
from a hypothetical market are used in order to obtain the numerical results. This hypothetical
market contains a risk free bond with a daily interest rate of r = 0.1/252 as well as a single
stock. The daily price of the stock follows a Heston model with parameter set (r, κ, η, ρ, θ) =
(0.1/252,0.1,0.0001,−0.7,0.001). The current price of the stock is 1.
In this market, the three types of barrier options defined in Section 3 are available for various

barrier levels and times to maturity. In this study, 25 options for each option type, with times to
maturity ranging from 21 days to 111 days, are considered. The strike prices of each of the DOB
and UOB options are fixed at 1 (the same convention is used in Schoutens et al., 2004). In order
to calculate the market prices of the options defined in this hypothetical market, the option price
estimates are calculated using the Monte Carlo method discussed in Section 3. These estimates are
considered the known, fixed market prices of the options available in the hypothetical market. The
prices, barrier levels and times to maturity of the options are reported in Appendix B. Various models
are calibrated to these option prices in order to establish whether or not it is possible to accurately
replicate the option prices using these models.

5. Model calibration
Calibrating an option pricing model to a set of market prices entails varying the parameters of the
model freely (with the exception of the location parameter) in an attempt to minimise some distance
measure between the market prices and the prices calculated using the model. The distance measure
used to obtain the numerical results shown is the root mean square error (RMSE). In the case where
π1, j and π2, j , j = 1,2, ...,n denote two sets of option prices,

RMSE =

√√√
1
n

n∑
j=1

(
π1, j − π2, j

)2
.

The RMSE is often used to evaluate the fit of calibrated option pricing models (see, for example,
Schoutens et al., 2004).
Each of the models is calibrated to the market prices of the DB, DOB and UOB options separately.

5.1 Optimisation method
The calibration procedure employed in this paper minimises the RMSE using particle swarm opti-
misation (PSO) (see Kennedy and Eberhart, 1995) in Matlab. PSO falls within the class of swarm
intelligence techniques used for optimisation and the algorithm searches for a global minimum by
evaluating several posible points within the parameter space of the model concerned. The RMSE is
calculated at each of the points under consideration. These points, referred to as particles, are then
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moved within the parameter space of the model in search of a global minimum. The movements of
each of the particles are determined by a number of factors such that each particle has a tendency to
move towards the most optimal position that has been located jointly by all of the particles, as well as
a tendency to move to the most optimal position that has been located by that specific particle. Once
a particle is moving in a specific direction, it also has a tendency to keep moving in that direction.
This tendency is referred to as the inertia of the particle.
The numerical results presented in Section 5 are obtained using PSO with 50 particles. The initial

location coordinates of each of these particles is obtained by specifying a range for each parameter
and then simulating a uniform random number within the range specified for each parameter. (where
the random numbers associated with the various parameters are independent). The ranges for the
parameters are chosen so as to include the parameter values deemed likely by the user’s previous
experience, which is, of necessity, a subjective procedure. The ranges for the parameters associated
with each of the models used are provided in Appendix C. The value of the objective function is
evaluated for each particle using the simulation method described in Section 3.
The code used is an adaptation of code that can be downloaded from http://yarpiz.com/50/

ypea102-particle-swarm-optimization.

5.2 Perfect calibrations
The aim of this paper is to ascertain the extent to which it is possible to accurately replicate the option
prices calculated in the hypothetical market using the various models considered. In order to aid
this determination, a calibration will be classified as either perfect or imperfect. For each individual
calibration, we are interested in testing the following hypotheses:

H0 : The calibration is perfect.
HA : The calibration is not perfect.

(3)

In order to explore this line of thought further, it is necessary to define what is meant by a perfect
calibration. When calibrating simple models to European option prices, the RMSE can be computed
exactly and a calibration can be defined to be perfect if the resulting RMSE equals 0. However,
because of theMonte Carlo error contained in the barrier option prices calculated using the calibrated
model, the RMSE associated with a given calibration is a random variable. This means that one
cannot simply insist on a RMSE being equal to 0 in order for the calibration to be called perfect. As
was explained before, the RMSE contains two components; the first is due to the misspecification
of the model, while the second is due to the Monte Carlo error contained in the price estimates.
The relative sizes of these errors will be used in order to classify a calibration as either perfect or
imperfect.
In the hypothetical market under consideration, the stock price follows a Heston model. We

calibrate the Heston model to the observed prices of each option type separately. Using Monte
Carlo simulation, we calculate the option prices as well as the associated RMSE under the calibrated
Heston model. This process is repeated 500 times in order to obtain as many samples of the RMSE
under the correctly specified model. Note that the observed values of the RMSE are obtained in the
absence of model misspecification. As a result, these values can be used in order to approximate the
distribution of the RMSE when only Monte Carlo error is present.
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Table 1. Means and standard deviations of calculated RMSEs
(multiplied by 100).

Heston Black–Scholes Exp N ◦ IG Time changed

DB 0.428(0.131) 0.755(0.182) 0.498(0.130) 0.749(0.174)
DOB 0.056(0.028) 0.058(0.027) 0.068(0.032) 0.056(0.027)
UOB 0.044(0.015) 0.153(0.028) 0.046(0.015) 0.154(0.028)

Consider a specific calibration where the model is misspecified, for example, where the Black–
Scholes model is calibrated to the option prices in the hypothetical market. In order to estimate
the distribution of the RMSE in this case, the procedure continues in a manner similar to the one
described above. The option prices and the RMSE under the calibrated model are obtained using
Monte Carlo simulation. The process is repeated 500 times, resulting in 500 realisations of the
RMSE . In this case, however, the misspecification of the model will contributed to the RMSE .
Let RMSEH and RMSEM denote the values calculated for the RMSEs under the Heston and

the misspecified models respectively. Table 1 contains the means and the standard deviations (in
brackets) of the calculated RMSEs associated with each calibration. In the notation used above, the
results pertaining to RMSEH are found in the first column of the table, while those associated with
RMSEM are found in the remaining columns. Please note that the calculated values of RMSEs are
close to zero. In order to aid comparison, all values in Table 1 have been multiplied by 100. The
geometric N ◦ IG process model is abbreviated by “Exp N ◦ IG” in the table. The same convention
is also used in the tables to follow.
Returning to the definition of a perfect calibration, a calibration is defined to be perfect if the

populationmean of the RMSEM does not exceed that of the RMSEH . Therefore, a perfect calibration
is achieved if the contribution of the misspecification of the model to the RMSE is negligible when
compared to the contribution of the Monte Carlo error.
The hypotheses in (3) can be restated as follows;

H0 : µM = µH ,
HA : µM > µH ,

(4)

where µM and µH denote the population means of RMSEM and RMSEH respectively. Perhaps
the first idea that comes to mind when considering the hypotheses in (4) is a two sample t-test
for the equality of the means. However, because of the large sample sizes used, this test will
reject the null hypothesis for very small differences between the sample means. As a result, this
approach is discarded in favour of the two formal tests considered next. The first utilises a mixed
Bayesian-frequentist approach and the second uses a bootstrap methodology.

5.3 Mixed Bayesian-frequentist hypothesis test
The test considered below is based on an alternative to frequentist significance tests explained in
Cox and Hinkley (1976). This method is outlined in general terms before describing the specifics
of the test used to answer questions relating to the classification of calibrations as either perfect or
imperfect.
Using Bayesian techniques to draw inference about the value of some parameter θ, it is assumed
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that the parameter is a realisation of a random variable Θ with a known probability distribution.
Consider the case where one has a sample y from a known distribution with unknown parameter θ
and the null hypothesis (H0) to be tested specifies θ = θ0. In order to specify the distribution of
Θ completely, a probability of p0 is assigned to the event {θ = θ0} and a prior distribution pA (θ)
is assigned to Θ under the alternative hypothesis (HA). This means that the prior distribution of Θ
consists of an atom of probability p0 at θ0 and a probability density function of (1 − p0) pA (θ) over
the remaining values of θ.
In order to determine whether or not θ = θ0, we use the posterior odds given y; this is defined as

the probability of H0 given y divided by the probability of HA given y. The posterior odds is then
calculated as follows:

P (H0 |Y = y)
P (HA |Y = y) =

p0 fY |Θ (y|θ0)
(1 − p0)

∫
θ,θ0

pA (θ) fY |Θ (y|θ) dθ
, (5)

where fY |Θ denotes the likelihood function associated with the data for a given value of θ. If the data
support H0, then the value of the posterior odds will be large.
In order to apply the technique outlined above, one can proceed in a way similar to Example 10.12

in Cox and Hinkley (1976). However, the approach used in the current paper deviates from the
methodology described in this example in that here a mixed Bayesian-frequentist approach is chosen;
this is explained below.
The Bayesian technique discussed above can be applied to test hypotheses regarding a single

population. In order to apply the test to classify calibrations as perfect or imperfect, define X =
RMSEM − RMSEH . The hypotheses in (4) can now be reformulated as follows:

H0 : µX = 0,
HA : µX > 0,

where µX denotes the expected value of X . In order to sample from X , simply subtract the realised
values of RMSEH from those of RMSEM , resulting in a sample of size 500. In order to apply
the method described above the distribution of X needs to be specified. The normal distribution is
considered as a possible candidate and the Lilliefors test is used to test the hypothesis of normality
for each of the nine calibrations under consideration. Using a 1% significance level, the assumption
of normality is not rejected for any of the samples considered.
Under the null hypothesis X ∼ N(0, σ2

0 ), where σ2
0 is a fixed constant. Since there is no prior

knowledge regarding the value of σ2
0 , a mixed Bayesian-frequentist approach is followed. Set σ2

0
equal to the variance of the realisations of X . Under the alternative hypothesis X ∼ N(µ,σ2

0 ), where
µ is a random variable following some known (a priori) distribution. In the interest of simplicity, we
would like to assume that µ is normally distributed with mean 0 and variance ν > 0. However, since
the alternative hypothesis is concerned with the case where µ > 0, assume that, under HA, µ follows
a half-normal distribution with density function

fHA (µ) =
√

2
πν

exp
(
− µ

2

2ν

)
,

for µ > 0.
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Table 2. Posterior odds associated with each of the
calibrations. using the mixed Bayesian-frequentist
hypothesis test.

Black–Scholes Exp N ◦ IG Time changed

DB 0.000 0.000 0.000
DOB 1.045 0.000 4.059
UOB 0.000 6.761 0.000

It remains to specify the value of ν. Again, we opt for a mixed approach by estimating the value
of ν from the data as follows. The average of X is calculated, this can be viewed as a realisation
of µ. Let Y = RMSE (1)M − RMSEH and Z = RMSE (2)M − RMSEH , where RMSE (1)M and RMSE (2)M

denote the RMSEs associated with the calibration of the remaining two misspecified models (DB,
DOB and UOB options are treated separately). In the same way as before, sample from Y and Z , so
that the averages of these samples can be viewed as a second and third realisation of µ. As a result,
a total of three realisations from the distribution of µ are obtained. The value of ν is set equal to the
variance of this (admittedly small) sample.
The last quantity required for the test that remains unspecified is p0 (the prior probability of H0

being true). Since one would have no prior knowledge, and little in the way of intuition, regarding
whether or not the null hypothesis holds, the value is arbitrarily set to of p0 = 0.5 for the purposes of
this discussion.
If the realised values of X are denoted by x = (x1, x2, ..., x500), then the posterior odds defined in

(5) can be calculated using

P (H0 |X = x)
P (HA |X = x) =

p0
√
πν exp

(
−

∑
x2
j

2σ2
0

)
√

2 (1 − p0)
∫ ∞

0
exp

(
−

∑(x j−µ)2
2σ2

0
− µ2

2ν

)
dµ
.

The posterior odds associated with each of the nine calibrations under consideration are reported in
Table 2. Reject H0 for posterior odds smaller than 1.
Table 2 indicates the presence of three perfect calibrations; that of the Black–Scholes and the time

changed models to the DOB options, as well as that of the geometric N ◦ IG process model to the
UOB options.
Consider, for example, the calibration of the time changed model to the DOB options. This

calibration is deemed perfect. In order to gain some understanding of the level of precision involved
in this calibration, the market prices are compared to a single set of price estimates obtained from
the calibrated model. Figure 1 shows the market prices as circles and the option price estimates
calculated under the calibrated model as crosses.
Table 2 classifies one calibration relating to each of the three alternative models as perfect.

Therefore, the mixed Bayesian-frequentist hypothesis test provides some evidence that, for the
specific market used, there are instances where the models considered are interchangeable. However,
several imperfect calibrations serve to indicate that this is not always the case.
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Figure 1. Market prices (circles) and prices under the calibrated model (crosses).

5.4 Bootstrap based hypothesis test
Efron and Tibshirani (1993) explain how to test hypotheses of the form specified in (4) using the
bootstrap. For ease of notation, let X = RMSEM and let Y = RMSEH ; let x1, ..., x500 and y1, ..., y500
represent the samples taken from X and Y respectively. Let x and y be the means of the two samples
and let s2

x =
1

500
∑500

j=1(xj − x)2 and s2
y =

1
500

∑500
j=1(yj − y)2. µM and µH respectively denote the

population means of X and Y . The test statistic used to test the hypotheses in (4) is

T =
x − y√
s2
x

500 +
s2
y

500

.

In order to test the hypotheses in question, calculate the realised value of T and use the bootstrap
to estimate the distribution of T under H0 as follows. Under the null hypothesis µX = µY and this
equality is mimicked when using bootstrap hypothesis testing procedures by applying the following
transformation to the sample data: rj = xj − x and sj = yj − y for j = 1, ...,500. A simple random
sample of size 500 is then drawnwith replacement from r1, ...,r500; denote the elements of this sample
by x?1 , ..., x

?
500. We also draw a simple random sample of size 500 with replacement from s1, ..., s500;

denote the elements of this sample by y?1 , ..., y
?
500. Using notation similar to those defined above,

calculate
T? =

x? − y?√
s2
x?

500 +
s2
y?

500

.

T? is a realisation of the test statistic under the null hypothesis. This process is repeated 100 000
times to obtain as many realisations of T?. The p-value associated with the test is equal to the
proportion of the realised values of T? that are larger than or equal to the value of T realised from
the original sample. Table 3 reports the p-value associated with each of the nine calibrations.
Using a 1% significance level, the same three calibrations that were deemed perfect by the

mixed Bayesian-frequentist test are deemed perfect using the Bootstrap methodology. The results
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Table 3. Bootstrap p-values associated with each
of the calibrations.

Black–Scholes Exp N ◦ IG Time changed

DB 0.000 0.000 0.000
DOB 0.118 0.000 0.569
UOB 0.000 0.036 0.000

presented in Tables 2 and 3 coincide, which reinforces the conclusion that the models considered are
interchangeable to a certain extent in the market under consideration. As was the case before, the
majority of the calibrations are not deemed perfect, which indicates that the models are not always
interchangeble.

6. Conclusions
This paper is concerned with the calibration of various option pricing models to barrier option prices.
The price of a barrier option depends not only on the terminal stock price, but also on whether or
not the stock price reaches some predetermined level during the lifetime of the option. In practice,
the stock prices at the end of each business day are often used in order to determine whether or not
the barrier has been reached; the same convention is used in the paper. In the discussion, three types
of barrier options are considered: digital barriers, down-and-out barriers and up-and-out barriers.
Since the market prices of barrier options are not readily available, a hypothetical financial market

is constructed which contains a single stock, the price of which follows a Heston model with a known
parameter set. The market also contains all three types of barrier option types discussed, the market
prices of which are calculated using Monte Carlo simulation.
In the paper, the degree to which it is possible to replicate the market prices of the options

(calculated under the Heston model) using three other models is ascertained. The models include the
Black–Scholes model, the geometric normal inverse Gaussian model and the geometric lognormal-
normal model. No closed-form formulae exist for the barrier options considered under these models
and, as a result, the prices of the options are estimated using a Monte Carlo procedure.
The four option pricing models considered are calibrated to the market prices of the options. The

option types are considered separately, meaning that each of the four models is calibrated to the three
different sets of market option prices separately. The calibration procedure minimises the root mean
square error (RMSE) between the market option prices and the prices calculated using the model
considered using a particle swarm optimisation algorithm. In order to determine whether or not the
models are interchangeable, the RMSE associated with the Heston model calibration and the RMSE
obtained using the remaining models are compared. Since the calculated option prices containMonte
Carlo errors, one cannot simply require that the option prices calculated using the calibrated model
exactly match the market option prices in order for the models to be interchangeable. Instead, the
concept of a perfect calibration is introduced to overcome this obstacle. The RMSE associated with
a given calibration contains two components; the first is due to the misspecification of the model and
the second is due to Monte Carlo error. A calibration is deemed perfect if the population average
of the RMSE associated with the calibration does not exceed the population average of the RMSE
associated with the calibrated Heston model (which is correctly specified). As is to be expected,
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the RMSEs obtained using the method described above are small (indicating that the option prices
obtained correspond closely). However, it is shown that, in several cases, the contribution of the
model misspecification to the RMSE is negligible when compared to that of the Monte Carlo error.
Two formal hypothesis tests are employed in order to test the hypothesis that a given calibration

is perfect; a mixed Bayesian-frequentist test and a Bootstrap based test. Both of the hypothesis
testing procedures used classify several of the calibrations considered as perfect. This demonstrates
numerically that, in the theoretical Heston market considered, it is possible to replicate, with one
model, the barrier option prices calculated using another model, with a high degree of accuracy. It
is concluded that, when the underlying market follows a Heston model, there are instances where the
models considered are interchangeable. However, the findings presented also suggest that there are
instances where these models are not interchangeable.
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A. Algorithms for the simulation of price paths
Let n represent the number of days for which we wish to simulate the stock price and let N be the
number of simulated price paths that are required. The algorithms used to simulate price paths for
the various models discussed in Section 2 are provided below.

A.1 The Heston model
1. Generate σ2 from a gamma(2κη/θ2, θ2/2κ) distribution.

2. Generate W1 from a N (0,1) distribution.

3. Calculate S (1, k) = 1 + µ + σW1.

4. Generate W2 and W3 independently from a N (0,1) distribution.

5. Calculate W4 = ρW2 +
√

1 − ρ2W3.

6. Calculate S ( j, k) = (1 + r + σW2)S( j − 1, k).

7. Calculate σ2 = max(σ2 + κ(η − σ2) + σθW4,0).

8. Repeat steps 4 to 7 for j = 2 to n.

9. Repeat steps 1 to 8 for k = 1 to N .

A.2 The Black–Scholes model
1. Generate an n by N matrix ∆ where each element of ∆ follows a N(µ,σ2) distribution.

2. Calculate ∆?( j, k) = ∑j
l=1 ∆(l, k).
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Table 4. Digital barrier call option prices.
Barrier T = 21 T = 46 T = 68 T = 111

1.050 0.2730 0.4970 0.5940 0.6894
1.075 0.1020 0.3130 0.4312 0.5637
1.100 0.0282 0.1764 0.2933 0.4453
1.125 0.0882 0.1861 0.3394
1.150 0.0390 0.1101 0.2495
1.175 0.0603 0.1771
1.200 0.0310 0.1210
1.225 0.0799
1.250 0.0508
1.275 0.0312

Table 5. Down-and-out barrier call option prices.
Barrier T = 21 T = 46 T = 68 T = 111

0.99 0.0149 0.0188 0.0212 0.0248
0.98 0.0193 0.0262 0.0302 0.0363
0.97 0.0213 0.0309 0.0366 0.0450
0.96 0.0222 0.0337 0.0409 0.0516
0.95 0.0353 0.0437 0.0564
0.94 0.0455 0.0599
0.93 0.0465 0.0622
0.92 0.0639
0.91 0.0649

3. Calculate S( j, k) = exp(∆?( j, k)).
4. Repeat steps 2 and 3 for j = 1 to n.

5. Repeat steps 2 to 4 for k = 1 to N .

A.3 The geometric N ◦ IG model
1. Generate an n by N matrix ∆ where each element of ∆ follows a N ◦ IG(α, β, µ, δ) distribution.
2. Calculate ∆?( j, k) = ∑j

l=1 ∆(l, k).
3. Calculate S ( j, k) = exp(∆?( j, k)).
4. Repeat steps 2 and 3 for j = 1 to n.

5. Repeat steps 2 to 4 for k = 1 to N .

A.4 The time changed geometric Brownian motion model
1. Generate an n by N matrix T where each element of T follows a log N(α, β) distribution.
2. Generate an n by N matrix ∆ where each element of ∆ follows a N(0,1) distribution.
3. Calculate ∆1( j, k) = µT( j, k) + σ

√
T( j, k)∆( j, k).

4. Calculate ∆?( j, k) = ∑j
l=1 ∆1(l, k).

5. Calculate S( j, k) = exp(∆?( j, k)).
6. Repeat steps 3 to 5 for j = 1 to n.

7. Repeat steps 3 to 6 for k = 1 to N .

B. Options available in the hypothetical market
Tables 4, 5 and 6 respectively provide the details of the DB, DOB and UOB call option prices calcu-
lated in the hypothetical Heston market. Each table shows market prices of the options considered.
The tables also provide the barrier levels and times to maturity associated with the options. All of
the DOB and UOB options have a strike price of 1.
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Table 6. Up-and-out barrier call option prices.

Barrier T = 21 T = 46 T = 68 T = 111

1.100 0.0196 0.0172 0.0131
1.125 0.0219 0.0250 0.0215 0.0149
1.150 0.0225 0.0307 0.0296 0.0230
1.175 0.0227 0.0342 0.0364 0.0316
1.200 0.0359 0.0411 0.0398
1.225 0.0366 0.0442 0.0470
1.25 0.0460 0.0529
1.275 0.0574
1.3 0.0606

Table 7. Ranges for the starting values of the parameters.

Black–Scholes σ = (0, 0.02)
Heston κ = (0, 0.3); η = (0, 0.0005); ρ = (−0.95, 0.95); θ = (0, 0.005)
Exp N ◦ IG α = (5, 100); β = (−50, 50); δ = (0, 0.1)
Time changed α = (−0.2, 0.2); β = (0, 0.2); σ = (0, 0.2)

C. Starting values for the optimisation procedure
Table 7 contains the ranges of the possible starting values for each of the parameters under the various
models considered.
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