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Traditionally when predicting loss given default (LGD), the following models can be used:
beta regression, inverse beta model, fractional response regression, ordinary least squares
regression, survival analysis, run-off triangles and Box–Cox transformation. The run-off
triangle method is commonly used in practice.

When using survival analysis to model LGD a standard method to use is exposure at default
(EAD) weighted survival analysis (denoted by EWSA). This article will aim to enhance the
survival analysis estimation of LGD. Firstly by using default weighted LGD estimates and
incorporating negative cash flows and secondly catering for over-recoveries. We will denote
this new method to predict LGD as the default weighted survival analysis (DWSA). These
enhancements were motivated by the fact that the South African Reserve Bank requires banks
to use default weight LGD estimates in regulatory capital calculations. Therefore by including
this into the survival analysis approach, the model is aligned more closely to regulations.
Recovery datasets used by banks include both negative and over-recoveries. By including
these into the LGD estimation, the models more are closely aligned to the actual data. The
assumption is that the predictive power of the model should therefore be improved by adding
these changes. The proposed model is tested on eight datasets. Three of these are actual retail
bank datasets and five are simulated. The datasets used are representative of the data typically
used in LGD estimations in the South African retail environment.

This article will show that the proposed DWSA model outperforms the EWSA model by
resulting in not only the lowest mean squared error (MSE), but also the lowest bias and variance
across all eight datasets. Furthermore, the DWSA model outperforms all other models under
review.
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1. Introduction and literature overview
Loss given default (LGD) is the loss incurred by a bank (economic loss) when a customer is unable
to pay back a loan, and this is stated as the exposure at default (EAD) portion that remains unpaid.
LGD is one of the estimates that a retail bank uses to calculate regulatory capital and forms

the focus of this article. LGD can either be modelled through the direct approach or the indirect
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approach. The indirect LGDmodelling approach combines two components namely the loss severity
component and probability component. The probability component predicts the probability that a
defaulted account will remain in default or that a loss will occur on this account. The loss severity
component gives the value of the estimated loss. In this article, LGD will be modelled directly by
estimating LGD as one minus the recovery rate. Witzany, Rychnovsky and Charamza (2012) propose
a direct modelling approach using EAD weighted survival analysis (EWSA).
The Basel accord introduced the concept of long run default weighted average LGD. It is compul-

sory to use this measure (BCBS, 2006, par. 468). BCBS (2006) states that LGD estimates cannot
materially differ from the long run default weighted average LGD. In the interest of aligning LGD
estimates to the Basel accord this article proposes a default weighting survival analysis (DWSA)
approach.
The DWSA approach further extends the EWSA approach by including negative cash flows into

cash flow streams when modelling LGD and adapting methodology to cater for over-recoveries.
Over-recoveries occur when more of the previously unpaid loan is received than the EAD. The
proposed enhancements align the modelling approach to produce more accurate results and decrease
the mean squared error (MSE) and bias of the model. Other methods used in literature to model
LGD include beta regression, ordinary least squares, fractional response regression, inverse beta
transformation, run-off triangle and Box–Cox transformation. We will compare our technique with
these seven techniques, but first we will give a brief overview of each.
Although a run-off triangle (Braun, 2004, p. 401) is most often used, it cannot take covariates

into account. A separate run-off triangle needs to be created for every segment or attribute of a
covariate. In the other methods mentioned above, the covariates can be grouped into attributes
and modelled onto the LGD. In the beta regression suggested by Brown (2014, pp. 65–66) a beta
distribution is fitted to the LGD. The beta distribution is reparametrised and covariates are modelled
onto the new parameters. For the ordinary least squares approach a linear regression is used to
model LGD directly (Witzany et al., 2012, p. 12). The LGD is the dependent variable in the linear
regression and the covariates are modelled onto LGD. Bastos (2010, p. 2512) describes the fractional
response regression, where the LGD is taken as the dependent variable. The Bernoulli log-likelihood
is maximised to estimate the parameters, and a logistic function is used for the functional form.
Brown (2014, p. 64) describes the inverse beta model in his article, where he applies a cumulative
beta distribution to the recovery rate and estimates the parameters. The inverse standard normal
cumulative distribution function is then applied in reverse to get the predicted LGD. Braun (2004,
p. 401) describes the run-off triangle approach. Recovery amounts are summed by default date and
months since default. The available recovery information forms a triangle and is used to predict
future recovery information by applying a technique called the chain ladder approach. The Box–Cox
transformation is applied to the recovery rate variable. Ordinary least squares is applied to the
transformed variable and the transformation is applied in reverse (Brown, 2014, p. 66).
Section 2 is dedicated to evaluating the contributions made by Witzany et al. (2012) (EWSA

approach). Implementing the EWSA model is explored in this section. The new DWSA approach
is discussed in Section 3, where the enhancements to the EWSA model are explained in detail.
The three enhancements serve to incorporate common practice into modelling techniques and to
align modelling of LGD to ruling legislation on this topic in the Basel accord (BCBS, 2006). Data
specification and data simulation form the topic of Section 4. Actual retail bank data for credit cards,
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revolving loan and cheque accounts are used. Data simulation techniques that are representative of
a typical retail bank’s LGD modelling data are discussed. The fit of the model to the actual data is
discussed and the MSE, bias and variance are described. Section 5 contains the results of both the
retail bank data and simulated data. In both these sections the results are unanimous that the DWSA
model outperforms all other models, including the EWSA model. The beta regression model is the
second best performing model. The performance of these models are gauged by comparing the MSE,
bias and variances. Section 6 concludes the article.

2. EAD weighted survival analysis (EWSA)
In this section, the EWSA approach by Witzany et al. (2012) is discussed. Witzany et al. (2012) use
survival analysis to directly model LGD. The EWSAmodel is the starting point for the DWSAmodel
discussed in the subsequent section.

2.1 Loss given default
Witzany et al. (2012, p. 8) distinguish between the market LGD and the workout LGD. The market
LGD is calculated on instruments such as bonds and other debt instruments, while for other receivables
a workout LGD is used. More specifically, the workout LGD is used when modelling unsecured
retail credit portfolios (Witzany et al., 2012, p. 19). Market LGD is calculated as the market value
over the face value shortly after the point of default.
The workout LGD assumes a workout process that ends Tw months after the default point and

that no further recoveries are made past this point. Unsecured retail credit portfolios are used in this
article and the workout LGD is used. Mathematically the workout LGD is expressed as

LGDi,0 =
E ADi,0 −

∑Tw
t=1 DCFi,t

E ADi,0
,

where DCFi,t = CFi,t/(1 + r)t is the discounted future cash flows for account i at time t. LGDi,0 is
the LGD value for account i at time t = 0. The recovery time t for a defaulted account i is measured
in months and takes only values {1, 2,...,Tw}. Cash flows CFi,t are calculated as the difference
between account balances now, versus account balances in the previous month, adding back the
interest and the fees, subtracting the amount written off. The post write-off recoveries represent
recovery or additional expense amounts post the write-off date, which are added to the cash flows
(Witzany et al., 2012, p. 8). The rate r used to discount cash flows to the present value is represented
by the relationship between a measure of the LGD systematic risk and a price of risk on average.
Witzany et al. (2012, p. 8) assume that one cannot recover more than the EAD, in which case LGD
has a floor value of zero. The total discounted future recovery is assumed to be positive and LGD
therefore capped at one. Put differently: LGD can therefore not be lower than zero or higher than
one. The realised LGD for worked out accounts can be calculated, but for non-worked out accounts
recovery data will not yet be available. The observed realised recovery rate on defaulted accounts
can be used to estimate expected LGD for non-default accounts (Witzany et al., 2012, p. 8).
The EWSA model is based on a survival analysis model and we will discuss in the next section

the general concept of survival analysis (Section 2.2) and in Section 2.3 the Cox proportional hazard
model used in the EWSA model.
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2.2 Survival analysis
To define the survival analysis used in the EWSAmodel we will first give a brief definition of survival
analysis and then explain the concept of the survival function and the hazard rate and how these relate
to LGD.
Survival analysis is generally defined as the set of procedures to study data where the end result is

the time until the manifestation of a certain event (such as death or, in this instance, failure to repay
a loan). Within this analysis some observations are censored. Censoring of observations takes place
where observations survive up to a point in time, but where further information is unavailable. Where
defaulted receivables are examined the elementary amounts are observed with individuals which are
in the process of collection, up to the point where they repay. According to Kalbfleisch and Prentice
(2002, pp. 6–7), Collet (2003, p. 11) and Greene (2003, pp. 903–904) the most important concepts
central to the survival analysis methodology are the survival function and the hazard rate (Witzany
et al., 2012, p. 13).
Where observations typically remain in a specific state until such a time as when a change occurs,

survival analysis is an appropriate methodology. Survival analysis is typically used to view a person’s
mortality. However, in this article, the current state is referred to as survival and the exit point is
where failure occurs. Observations that have survived with certainty will be censored where no
more information is obtainable. In an LGD scenario the EAD is assessed in terms of whether it has
survived the default state or not. A repayment can be interpreted as some of the EAD not having
survived the default rate.
The survival function is defined as the probability of an event occurring after a specified time t

such as that the EAD will remain in the default state. Witzany et al. (2012, p. 13) define the survival
function as

S (t) = 1 − F (t) = 1 − P(T < t),

where the random variable T denotes the time of the event and the cumulative distribution function is
denoted as F(t). S (t) and F(t) respectively give the expected loss rate at t and the expected recovery
rate given that the process terminates at t. The corresponding probability density function is f (t).
The hazard rate, h (t) = f (t)/S(t), is the instantaneous rate of exit at t, given that survival has been
attained up to point t. In an LGD setting the hazard rate is the instantaneous rate of recovery at point
t given that the EAD survived default up to point t. The probability that the EAD exits default in
the time interval (t, t +∆ t], given that E ADi,t is still in default at t, is h(t)∆t. The survival function,
S (t) = e−H(t), is expressed in terms of the cumulative hazard function H(t) =

∫ t

0 λ(t)ds (Witzany
et al., 2012, pp. 13–14).
There are two options to define the hazard rate: the parametric and semi-parametric methods. In

this paper, the semi-parametric method is adopted, which is described in the following section.

2.3 The Cox proportional hazard model
Witzany et al. (2012, pp. 13–14) define the semi parametric Cox proportional hazards model as

h(t,x) = h0 (t) exp(x′β),

with the 0 emphasising that h0(t) is the baseline hazard. The baseline hazard is independent of the
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covariate values, x. The matching survival function is

S (t,x) = exp
(
−

∫ t

0
h0 (s) exp (x′β) ds

)
= S0 (t)exp(x′β) ,

where S0(t) = exp(−
∫ t

0 h0(s)ds). The partial likelihood is used to estimate the parameter vector β.
The partial likelihood for a specific account i that exits at time t is defined as

Li (β) = h(t, xi)∑
j∈Ai

h(t, xj) =
exp (−x′iβ)∑

j∈Ai

exp (−x′j β)
,

with xi the set of covariates at the point of exiting default and Ai the set of objects in default at t. It
is assumed that there is only one exit at time t. Given that there are K accounts, the equation

ln (L) =
K∑
i=1

ln(Li)

is maximised by using the Newton–Raphson algorithm to obtain the estimate for β. When modelling
LGD, multiple exits may occur and the partial likelihood is adapted to handle ties. An approximation
of the partial likelihood is used to solve the parameter estimates in the case where ties occur. The
baseline hazard function is assumed to be constant for each unit time interval and are estimated
separately. The likelihood function

Lt =

n∏
i=1
[h0 (t) exp(x′iβ)]dNi (t) exp

( − h0(t) exp(x′iβ)Yi(t)
)

is then maximised. Each indicator Yi (t) indicates that observation i has not exited default at t − 1
and is incomplete. Each indicator dNi(t) indicates that observation i exited from default at (t − 1, t]
by curing or writing off. The Breslow–Crowley form for the maximum likelihood estimator of the
baseline hazard is then

ĥ0(t) =
∑n

i=1 dNi(t)∑n
i=1 exp(x′iβ)Yi(t)

(Witzany et al., 2012, pp. 13–14).

2.4 Survival analysis in LGD modelling
In order to tailor the survival analysis methodology, we need to make a few assumptions and need to
construct the data. This section outlines the assumptions and data collection methodology.
All accounts with recovery information up until time Tw are deemed to have complete recovery

information. The time when the recovery process ends for account i will be denoted by ti,end .
The recovery process is completed if ti,end < Tw , for example, if an account closes before Tw .
Alternatively, the recovery process is incomplete if Tw ≤ ti,end . The constructed dataset contains
not only a record for each recovered amount, but also a record for each amount not recovered. This
can be constructed in the following way. First create a record for each discounted recovered amount
(cash flow) that is positive, DCFi,t . A positive recovery indicates that a portion of the EAD exited
the default state. Represent this recovery by creating an observation containing a frequency weight
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equal to the DCFi,t amount. To accommodate censoring we need to create a censoring variable. Let
the censoring variable be equal to zero to indicate that we are dealing with an exit event. The amount
in the frequency weight is recovered and is exiting default. This record is created at the time that the
recovery occurs, t. The unrecovered amount is calculated as

di = E ADi,0 =

Tw∑
t=1

DCFi,t .

Create a record with a frequency weight equal to the unrecovered amount di . Let the censoring
variable be equal to 1 for an unrecovered amount, meaning that this amount did not exit default and
is unrecovered. The time of this entry will differ depending on whether the unrecovered amounts are
complete or incomplete. Create the record at time ti,end in the case where the recovery process is
incomplete at ti,end . If the recovery point is complete at ti,end the records need to be created at time
Tw at the end of the recovery process (Witzany et al., 2012, pp. 16–17).

An example of data constructed for the survival analysis methodology is illustrated in Table 1. A
recovery of DCFi,1 = 100 is made at t = 1 on account 14. A record with a frequency weight equal
to 100 and a censoring variable of 0 is created at time t = 1. A similar record is created for every
other recovery made on account 14. The record created for the last recovery on account 14 has a
frequency weight of DCFi,Tw = 148 and a censoring variable of 0 that is created at point t = Tw .
Account 14 has complete recovery information since the unrecovered amount of di = 123 occurs at
tend = Tw . A record with a frequency weight equal to 123 and a censoring variable of 1 is created.
Account 15 has a recovered amount of DCFi,1 = 300 at t = 1. A record with a frequency weight
equal to 300 is created at point t = 1 and the censoring variable has a value of 0. A similar record
is created for every other recovery made on account 15. The last recovery on account 15 occurs at
t = 8 and the value of this recovery is DCFi,1 = 169. The record for the over recovery that is created
at t = 8 will have a frequency weight of 169 and a censoring variable of 1. There is no further
information on this account and the account is deemed to be incomplete at this point. The record for
the unrecovered amount is therefore created at point t = 8 with a frequency weight of di = 256 and
a censoring variable of 1.
A survival curve S (t, i) = 1− P(T < t) is defined as the (unrecovered) proportion of E ADi,0 that

remains in default up to a specific recovery time t, where t ∈ {1, . . . ,Tw} for account i. Thus

S (t, i) = E ADi,0 −
∑t

s=1 DCFi,s

E ADi,0
.

The Kaplan–Meier estimate Ŝ(t, i) is the empirical value of the survival curve calculated from the
data and is equal to

Ŝ(t, i) =
�E ADi,0 −

∑t
s=1

�DCFi,s�E ADi,0
,

where �E ADi,0 is the exposure at the default point for account i and �DCFi,s is the value of the cash
flow for account i at point s. The survival curve for the population is then calculated as

Ŝ0(t) =
�E AD0 −

∑t
s=1

�DCFs�E AD0
,
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Table 1. Example of a dataset for survival analysis.

Account i t Frequency weight Censoring

14 1 100 0
14 2 89 0
14 3 0 0
.
.
.

.

.

.
.
.
.

.

.

.

14 8 158 0
.
.
.

.

.

.
.
.
.

.

.

.

14 Tw 148 0
14 Tw di = 123 1
15 1 300 0
15 2 400 0
15 3 155 0
.
.
.

.

.

.
.
.
.

.

.

.

15 8 169 0
15 8 di = 256 1
.
.
.

.

.

.
.
.
.

.

.

.

where �E AD0 =
∑

i
�E ADi,0 and �DCFs =

∑
i
�DCFi,s .

The general form of the Cox model can be written as

S(t, xi) = S0(t)exp(x′iβ).

The weighted survival curve at time t in default contains a component S0(t) that is known as the
baseline survival curve. The baseline survival curve is the Kaplan–Meier estimate of the portfolio
where the dummy variables are equal to the base group. If an account falls outside of the base of the
dummy variable, the baseline S0(t) is shifted by the exponent of exp(x′iβ). The loss given default for
account i at point t in default is calculated as

LGDi,t =
S (Tw,xi)
S (t,xi) .

3. Default weighted survival analysis (DWSA)
The main contribution of this article is the following three enhancements that were made to the EAD
weighted methodology byWitzany et al. (2012): over-recoveries, default weighted and negative cash
flows.

3.1 Over-recoveries
Witzany et al. (2012) did not cater for over-recoveries, which will occur in practice when the expected
amount recovered is more than the EAD, i.e.

∑Tw
t=1 DCFi,t>E ADi,0. In this article, a technique to

cater for over-recoveries will be included. In the following example we will explain how over-
recoveries are accommodated for in the algorithm. In Table 2 we give an example of three accounts
with recovered discounted cash flows and EAD.
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Table 2. Loss given default example.

Discounted cash flows
Months since default

EAD 1 2 3

Account A 100 20 0 60
Account B 250 150 320 0
Account C 320 180 10 18

Total 670 350 330 78

The LGD for the portfolio is calculated as

LGD0 =
�E AD0 −

∑t
s=1

�DCFs�E AD0
=

670 − (350 + 330 + 78)
670

= −13.134%,

where �E AD0 =
∑
i

�E ADi,0 and �DCFs =
∑
i

�DCFi,s .

The Kaplan–Meier estimate of the survival curve is

S (t) =
�E AD0 −

∑t
s=1

�DCFs�E AD0

and is calculated from the data as:

Ŝ (1) =
�E AD0 −

∑1
s=1

�DCFs�E AD0
=

670 − 0
670

= 1,

Ŝ (2) =
�E AD0 −

∑2
s=1

�DCFs�E ADi,0
=

670 − 350
670

= 47.76%,

Ŝ (3) =
�E AD0 −

∑3
s=1

�DCFs�E AD0
=

670 − 350 − 330
670

= −1.49%,

Ŝ (4) =
�E AD0 −

∑4
s=1

�DCFs�E AD0
=

670 − 350 − 330 − 78
670

= −13.13%.

The empirical survival curve values are negative for months on book equal to three and four.
Traditional survival analysis does not allow for negative empirical values on a survival curve and
the proportional hazards procedure in SAS software will only cater for survival curves with positive
empirical values.
In order to accommodate the over-recoveries the unrecovered amount (E ADi,0 −

∑t
s=1 DCFi,s)

at each recovery time is adjusted upwards in such a way that the resulting values of the empirical
survival curve will be positive. Typical survival analysis software (e.g., the proportional hazards
procedure in SAS) will now be able to fit the survival curve with positive values. The effect of
this adjustment will be reversed and the original survival curve, which contains negative empirical
values, obtained.
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The adjusted value is simply the maximum over recovered amount of all the accounts. Thus we
define the maximum over recovered amount OR as:

OR = max
i

(�E ADi,0 −
Tw∑
s=1

�DCFi,s

)
.

Therefore S (t, i) is updated as

S∗(t, i) = E ADi,0 −
∑t

s=1 DCFi,s +OR
E ADi,0

.

S∗ (t, i) is calculated by making use of the proportional hazards procedure in SAS software. The
inflated survival curve for the example is calculated and given in Table 3. The values that are required
to adjust the inflated survival curve S∗ (t, i) back to its original values are the month on month inflated
recovery rate MR∗ (t) as defined by

MR∗(t, i) = 1 − S∗(t, i)
S∗(t − 1, i) .

We define the inflated exposure ratio R∗(t, i) as

R∗(t, i) = E ADi,0 −
∑t

s=1 DCFi,s +OR

E ADi,0 −
∑t

s=1 DCFi,s

.

To obtain the month on month recovery rate MR (t, i) the month on month inflated recovery rate is
multiplied by the inflated exposure ratio,

MR(t, i) = MR∗(t, i) × R∗(t, i).

The values for the survival curve are then updated as

S(t, i) = S(t − 1, i) − S(t − 1, i) × MR(t, i).

For the empirical portfolio survival curve Ŝ0 (t) the subscript i is dropped and we take �E AD0 =∑
i
�E ADi,0 and �DCFs =

∑
i
�DCFi,s , then Ŝ0(t) = Ŝ0(t − 1) − Ŝ0(t − 1) × M̂R(t).

The values for M̂R (t), M̂R
∗ (t), R̂∗ (t), Ŝ∗0 (t) and Ŝ0 (t) for the example in Table 2 are given in

Table 3. The empirical loss given default value is calculated as

�LGD0 =
Ŝ0 (Tw)
Ŝ0 (0)

=
−13.13%

100%
= −13.13%.

This value is equal to the empirical loss given default that is calculated from Table 3.

3.2 Default-weighting
The methodology by Witzany et al. (2012) results in a E ADi,0 weighted LGDi,t estimate. The Basel
accord states that LGD cannot be less than the long run default weighted average loss rate (BCBS,
2006, p. 103). An approach to estimate the default weighted LGDi,t estimates will be developed and
described.
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Table 3. Over recovery adjustments.

Months since default

0 1 2 3

Unrecovered amount 670 320 -10 -88
Unrecovered amount +OR 890 540 210 132
Ŝ∗0(t) 100.00% 60.67% 23.60% 14.83%
M̂R

∗ (t) 39.33% 61.11% 37.14%
R̂∗t 132.84% 168.75% -2100.00% -150.00%
M̂R(t) 52.24% 103.13% -780.00%
Ŝ0(t) 100.00% 47.76% -1.49% -13.13%

The data are constructed in a specific way when applying the DWSA methodology. The dataset
contains a record for every recovery made and for every recovery that is not made. The recovery
made on account i at point t in default is discounted to the default point. In the case of the ESWA
methodology a record with a frequency weight equal to the discounted recovery DCFi,t is created.
For the DWSA approach, the discounted recovery DCFi,t is divided by E ADi,0 to obtain the default
weighted discounted recovery DCFi,t/E ADi,0. The value of the frequency vector for the DWSA
approach is set equal to the default weighted discounted recovery. The censoring variable for this
record will be equal to zero to indicate that we are dealing with an exit event. This record will be
created at the time that the cash flow takes place. The unrecovered amount for the EWSA approach
equals

di = E ADi,0 −
Tw∑
t=1

DCFi,t ,

with Tw the last possible point for a recovery to take place. The unrecovered amount is divided by the
exposure at the default point to obtain the default weighted unrecovered amount di/E ADi,0. A record
with a frequencyweight equal to the default weighted unrecovered amount will be added to the dataset
for the DWSA approach. The censoring variable will be equal to one to indicate an unrecovered
amount. The timing of this record will differ depending on whether the unrecovered amount is used
in the calculation of the default weighted unrecovered amount is complete or incomplete. A record
is deemed complete if the record contains recovery information up until Tw and the record for a
complete recovery will be created at Tw . The record can be complete or incomplete if no further
recovery for a record is available from point tend onwards depending on the reason for the missing
information. A closed account will have no further information from point tend onwards, but is
deemed complete and the record created at Tw . The record for an incomplete account is created at
point tend (Witzany et al., 2012, pp. 16–17).
The actual value of the survival curve Ŝt calculated from the data is equal to

Ŝ(t, i) =
�E ADi,0 −

∑t
s=1

�DCFi,s�E ADi,0
.

The Cox proportional hazards model is

S (t,xi) = S0(t)exp(x′iβ),
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with S0(t) the baseline survival curve. The baseline survival curve is the Kaplan–Meier estimate for
the base population. The base population is the population where the dummy variables are equal to
the base group. This baseline survival curve S0 (t) is adjusted by exp(x′iβ) when the covariates fall
outside of the baseline group. The loss given default for account i at point t is

LGDi,t =
S(Tw,xi)
S(t,xi) .

The above-mentioned default weighted LGDi,t is averaged over an extended period to produce
the long run default weighted average loss rate. The Basel accord stipulates that the LGD that is used
to calculate regulatory capital should not be less than this long run default weighted average loss rate
(BCBS, 2006, p. 103).

3.3 Negative cash flows
A description of the cash flow calculation is given in Section 2.1. In practice negative cash flow
will occur in the form of recovery process cost such as legal and administrative costs. The negative
recoveries in the EWSA approach are set to zero. The LGD will be underestimated if these recovery
process costs are not included in estimating LGD. A technique to include negative cash flows into
LGD modelling under the DWSA approach will be developed and described.
The EWSA approach that is used by Witzany et al. (2012) sets all negative cash flows to zero,

DCFi,t= 0 when DCFi,t< 0. For each defaulted account, negative cash flows may be contained
within the observed cash flow stream. As survival analysis cannot cater for negative cash flows, the
adjustment methodology for the DWSA approach is explained.
Two separate datasets will be constructed. In the first dataset, all negative cash flows will be set to

zero. A record for every recovery is created with the frequency variable equal to the default weighted
discounted recovery DCFi,t/E ADi,0, and the negative recoveries are set to zero, DCFi,t = 0 if
DCFi,t < 0. The censoring variable will be equal to zero to indicate that a recovery is made.
This record will be created at time t where the cash flow takes place. A record is created for every
unrecovered amount. The frequency variable for the unrecovered amount will equal

di
E ADi,0

=
E ADi,0 −

∑Tw
s=1 DCFi,s

E ADi,0
,

and the negative cash flows will be set to zero, DCFi,t = 0 if DCFi,t < 0. The censoring variable
will be set to one to indicate an unrecovered amount. This record will be created at Tw for a complete
record and created at tend for an incomplete account. Create the positive survival curve Sp(t) from
the dataset where all negative cash flows are set to zero. The actual value of the survival curve Ŝp(t)
calculated from the data is equal to

Ŝp(t, i) =
�E ADi,0 −

∑t
s=1

�DCFi,s�E ADi,0
,

where DCFi,t = 0 if DCFi,t < 0. The Cox proportional hazards model is

Sp(t,xi) = Sp
0 (t)

exp(x′iβ),
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with Sp
0 (t) the baseline survival curve. The second dataset is constructed by setting all the positive

cash flows to zero and changing the signs of the negative cash flows by multiplying them with minus
one. A record for every recovery is created with the frequency variable equal to the default weighted
discounted recovery, DCFi,t/E ADi,0 where the positive recoveries are set to zero, DCFi,t = 0 if
DCFi,t ≥ 0 and the negative recoveries are made positive DCFi,t = −1 × DCFi,t if DCFi,t < 0.
The censoring variable will be equal to one and the time value of the record will be the time when
the cash flow takes place. The frequency weight for the unrecovered amount is equal to

Ŝn(t, i) =
�E ADi,0 −

∑t
s=1

�DCFi,s�E ADi,0
,

where DCFi,t = 0 if DCFi,t ≥ 0 and DCFi,t = −1 × DCFi,t if DCFi,t < 0. The Cox proportional
hazards model is

Sn(t,xi) = Sn
0 (t)exp(x′iβ),

with Sn
0 (t) the baseline survival curve. Combining these two survival curves produces

S(t,xi) = Sp(t,xi) + 1 − Sn(t,xi),
and the loss given default can be calculated as

LGDi,t =
S(Tw,xi)
S(t,xi) .

Three enhancements were made to the EWSA methodology. By making use of default weighted
survival analysis, the methodology was brought into closer alignment with the Basel requirements.
By catering for negative cash flows and over-recoveries the modelling technique was brought into
closer alignment with practice. The resulting DWSA methodology will be applied to the data
described in the next section and is compared to alternative modelling techniques.

4. Data
The three datasets utilised in this paper are obtained from one of the big South African retail banks.
These datasets are described in Section 4.1. In addition, we simulate five datasets which are described
in Section 4.2. In the remainder of this article, various approaches to model LGD will be compared.

4.1 Retail banks datasets
A retail bank’s credit card, revolving loan and cheque account datasets are used to compare various
LGD modelling techniques. The three product sets chosen are derived from unsecured retail credit
loan products from a large South African bank which are available for this study. The data has a
significant history available and gives a good representation of a typical unsecured product within the
South African context. The EAD, cash flows, discount rate, month of default and account number
are stored monthly for each of these products. The cash flows are discounted to the default point and
the loss given default calculated. The loss given default for the retail datasets is displayed in Figure
1. The cash flow values CFi,t include both positive and negative values in the actual data and the
discounted cash flow is DCFi,t = CFi,t/(1 + r)t . The loss given default is calculated as

LGDi,0 =
E ADi,0 −

∑Tw
t=1 DCFi,t

E ADi,0
,
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Figure 1. Retail banks datasets loss given default.
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Figure 2. Retail banks datasets LGD distribution.

for account i at time t. The loss given default values that are displayed in Figure 1 consist of both
negative and positive cash flow values. The LGD axis in all figures is left out due to confidentiality.
The percentage of negative cash flows for each of the respective datasets are 1.89%, 2.17% and

1.72%. The distribution of the loss given default for the retail banks datasets is displayed in Figure 2.
Figure 2 shows that over-recoveries are present on these datasets. Over-recoveries occur where the
loss given default value is greater than one.
Variables used in this study are selected from the following main data categories: behavioural,

application, customer, bureau, demographic and macroeconomic. The reference period for all
the development datasets ranges from December 2007 to November 2009. The period used was
determined by using the representative economic downturn conditions as required by Basel (BCBS,
2006, par. 468). The highest twenty-four month average losses occurred during the stated period.
The three development datasets respectively have 90 691, 22 300 and 55 983 accounts.
The actual values for the hazard rate, distribution and survival curve for the positive, negative and

combined cash flows are displayed for the credit card, revolving loan and cheque account datasets.
The top left graph in Figure 3 displays the actual values of the hazard rate and the distribution for
the entire credit card portfolio. The top right graph displays the actual values for the hazard rate and
the probability where only positive cash flow values are included. The bottom left graph contains
the actual values for the hazard rate and the distribution where only negative cash flows are included.
The bottom right graph contains the survival curves for the total population, positive cash flows and
negative cash flows. The same layout is repeated in Figure 4 and Figure 5 for the empirical values of
the cheque data and revolving loan data, respectively.
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Figure 3. Credit card actual hazard rate, distribution and survival curve.
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Figure 4. Cheque actual hazard rate, distribution and survival curve.
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Figure 5. Revolving loan actual hazard rate, distribution and survival curve.

4.2 Simulated datasets

To construct the simulated datasets we use the beta distribution to simulate recovery rates and the
gamma distribution to simulate EAD. The beta distribution is widely used to simulate recovery rates
(Chen and Wang, 2013, p. 1). The EAD is simulated from a gamma distribution (Jimenez and
Mencia, 2009, p. 8). These values are simulated for every account.
A workout process of 60 months is assumed and a random uniform number between 0 and 60 is

generated to represent the point at which an account will exit default. A record is created for every
point at which an account is in default. The first record is where the account is zero months since
default and the months since default variable is populated until the account exits default. A random
number is used to assign the total recoveries for an account to the various months that account is
in default. This random number can take a positive or a negative value and the assigned monthly
recovery values can therefore be positive or negative. For every account, the sum of the monthly
recoveries is equal to the total recovery simulated for that account. The percentage of negative cash
flows simulated for each of the respective simulated datasets are 1.74%, 2.17%, 1.72%, 1.79% and
2.02%. Some individuals recover by paying the same amount every month, others start off by paying
bigger amounts which then become less over time. There are many differences in how recoveries
are structured and therefore a uniform random variable was used to indicate how many months there
are to recovery and then randomly determine how many recoveries would be collected. Since all the
recoveries are aggregated at the end of the period, the effect of the type of time-recovery is assumed
to be negligible and was omitted for this paper. The investigation of this effect is for future research.
The process to determine the beta distributions parameter estimates, used in the recovery rates

simulation, is described next. Beta distributions are fitted to various retail bank portfolios and the
parameter estimates are illustrated in Figure 6. Parameter estimates in the same range are used in the
simulation study.
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Figure 6. Beta distribution parameter estimates.
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Figure 7. Beta distribution pdf.

The probability density function (pdf) of the beta distributions,

f (x;α; β) = Γ (α + β)
Γ (α)Γ (β) x

α−1(1 − x)β−1, 0 ≤ x ≤ 1, α, β > 0,

for each pair of parameter estimates, α and β, used in the simulation is displayed graphically in
Figure 7.
The parameters in Figure 6 give rise to pdfs as displayed in Figure 7. In Figure 7 one can deduce

that an LGD of close to zero (lower LGD value) occurs frequently and that an LGD of close to one
(higher LGD value) occurs frequently in some instances and infrequently in other instances. LGD
values between the lower and higher LGD values have a constant frequency. The form of these
simulated pdfs is typical of retail banks in South Africa. The distribution of the overall loss given
default is displayed in Figure 7. The loss given default has a similar shape and outcome than that
of the graph in Witzany et al. (2012, p. 20). The reality therefore matches expectations around full
recovery. Over-recoveries are artificially added to the dataset used to produce Figure 7 resulting in
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Figure 8. Beta distribution pdf with artificially added over-recoveries.
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Figure 8. The actual simulated LGD values are displayed in Figure 9 and correspond to the datasets
displayed in Figure 8.
The parameter estimates of a gamma distribution are used to estimate the EAD in the simulation.

Gamma distributions are fitted to the EAD for retail bank portfolios. The values of the gamma
distribution for these portfolios are graphically displayed in Figure 10. Again parameter estimates
in the same range are used in the simulation study. The probability density function of the gamma
distributions is

f (x; k; θ) = xk−1e−x/θ

θkΓ(k) , x > 0, k > 0, θ > 0,

and is graphically displayed in Figure 11 for the parameter estimate used to simulate the EAD.
The beta parameters and gamma parameters that are used in the simulations are given in Table 4.
The hazard rate distribution and survival curves for each of the simulated datasets are displayed

for the positive cash flow values, negative cash flow values and the total population.
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Figure 10. Gamma distribution parameter estimates.
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Figure 11. Gamma distribution pdf.
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Figure 12. Simulated dataset 1 actual hazard rate, distribution and survival curve.
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Figure 13. Simulated dataset 2 actual hazard rate, distribution and survival curve.
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Figure 14. Simulated dataset 3 actual hazard rate, distribution and survival curve.
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Figure 15. Simulated dataset 4 actual hazard rate, distribution and survival curve.
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Figure 16. Simulated dataset 5 actual hazard rate, distribution and survival curve.
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Table 4. Beta and gamma parameter estimates used in simulation.

Beta parameters used Gamma parameters used

Simulated data set 1 α = 0.2, β = 0.3 k = 1.0, θ = 20 000
Simulated data set 2 α = 0.3, β = 0.5 k = 1.0, θ = 25 000
Simulated data set 3 α = 0.3, β = 0.7 k = 1.4, θ = 25 000
Simulated data set 4 α = 0.4, β = 0.7 k = 1.0, θ = 30 000
Simulated data set 5 α = 0.4, β = 0.9 k = 0.6, θ = 25 000

4.3 Model fit

The following approaches to model LGD directly are used in this paper: beta regression, ordinary
least squares, fractional response regression, inverse beta, run-off triangle and Box–Cox model.
These are compared to the survival analysis approach namely the EAD weighted survival analysis
approach (EWSA) and the enhancements made to the default weighted survival analysis (DWSA)
technique by Witzany et al. (2012). The Cox proportional hazards model is used to fit the DWSA
and EWSA model. Descriptions of the beta regression, ordinary least squares, fractional response
regression, inverse beta, run-off triangle and Box–Cox model are given in Appendix A. Data are
simulated and the models are applied to both the retail and simulated data. The mean squared error,
bias and variance are calculated.

4.3.1 Mean squared error, bias and variance

The mean squared error is equal to the squared bias plus the variance:

MSE = Var
(�LGDi,0

)
+ Bias

(�LGDi,0, LGDi,0
)2
,

with �LGDi,0 the actual value of the LGD, calculated as

�LGDi,0 =
�E ADi,0 −

∑Tw
t=1

�DCFi,t�E ADi,0
.

The expected value of the LGD is obtained from the model. As an example, the expected value for
the DWSA LGD is expressed as

LGDi,0 =
S(Tw,xi)

S(0) ,

where S (0) = 1.

5. Results

Previous studies made use of the EAD weighted survival analysis method (EWSA) and the main aim
of this study is to improve on it by default weighting the LGD estimates, including negative cash
flows into LGD modelling and catering for over-recoveries. The secondary aim of this study is to
compare eight techniques to model LGD.
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5.1 Retail bank datasets
In each of the retail datasets used, i.e. credit card, revolving loan and cheque, the account level
expected LGD and actual LGD, defined in the Section 4.3 above, are used to calculate the account
level MSE. The portfolio average MSE values are displayed in Figure 17.
When considering all three data sets, the results of the default weighted survival analysis (DWSA)

model, displayed on the far left of Figure 17, yield the best result. Judging by the MSE the survival
analysis displays the best fit. Not only does this model result in the lowest MSE, but it also displays
the lowest bias and lowest variance. Despite the DWSA model outperforming all other models, the
beta regression also performed well. The MSE for the beta regression is on average 2.08% higher
than that of the DWSA method, when compared over the three retail datasets. The default weighted
survival analysis (DWSA) method yielded favourable results in that the MSE is significantly lower
than that estimated by the EWSA model. The improvements made therefore aid in estimating the
LGDmore accurately. It is interesting to note that the survival analysis method yields the lowest MSE
on the cheques data, whereas all the other models yield the lowest MSE on the revolving loan data.
Run-off triangles are traditionally used in practice; however, they underperform all other methods
used in this comparison, except for the Box–Cox transformation, which performs the worst. Note
that the squared bias is included in Figure 17, but due to low squared bias values, it is not always
visible. Figure 18 displays the bias in more detail.
The bias is calculated by taking the difference between the actual LGD value and the expected LGD

value. The difference between the actual LGD and the expected LGD is smallest when the DWSA
model is used. The DWSA model yields the lowest bias on all three retail products. The average
bias on the DWSA model is −1.11%. The bias of the beta regression model is on average 2.7%,
putting it in second place when comparing the bias. The fractional response regression averages
3.8% (with a range of 3.4% to 4.53%). Other models deliver much higher bias values. The bias for
the EWSA model is much higher than that of the DWSA model. The main cause for this difference
is that the EWSA model sets the negative cash flows to zero and that this model does not cater for
over-recoveries.

5.2 Simulated datasets
One hundred thousand (100 000) accounts are simulated for each of the five simulated datasets and
the actual LGD and expected LGD calculated for each account. The MSE is calculated for each
account and the average per dataset is reported in Figure 19. Each bar on this chart gives the level of
the MSE and indicates what portion of the MSE is due to the variance and what portion is due to the
squared bias.
The numbering (1 to 5) on the bar graphs in Figure 19 corresponds to the numbering of each

simulated dataset as set out in Table 4. Table 4 indicates what parameter estimates are used to
simulate these datasets.
Not only does the DWSA model yield the lowest MSE, but all of its components also perform best

in that it yields the lowest squared bias and variance on all five simulated datasets. Figure 19 contains
the results of the simulated data. Results, when ranked from best to worst performing, rank the
same for the simulated data as for the actual data, as discussed in Section 5.1 above. Once again the
improvements suggested by this paper culminating in the DWSAmodel, do indeed yield results more
favourable to those achieved by the EWSA model. It therefore holds true that by default weighting
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Figure 17. Retail bank dataset results for direct modelling approaches.
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Figure 18. Bias, actual recovery rate and expected recovery rate for the retail bank datasets.

LGD estimates, adding negative cash flows into LGD modelling and by catering for over-recoveries,
the model’s MSE decreases. As per the retail data, simulated data indicate that the popularly used
run-off triangles are outperformed by all other models in this comparison, with one exception: the
Box Cox model, which yields the highest MSE. More detail on the biases is displayed graphically in
Figure 20.
The bias is smallest in the DWSA model. The DWSA yields the lowest bias on all five simulated

datasets. The average bias on the DWSA model is −0.82%. The beta regression model yields an
average 2.73% bias. This model performs second best when comparing biases. The other models
deliver disappointing bias values. The conclusion for the biases in the DWSA model remains the
same as for retail data. The improvements suggested by this paper deliver a superior MSE, bias and
variance when simulated data are used.

6. Conclusion
Traditionally there are seven models typically used to model LGD estimates, with varying success.
The models are: beta regression, inverse beta model, fractional response regression, ordinary least
squares regression, exposure weighted survival analysis (EWSA), run-off triangle and Box–Cox
transformation. Improvements introduced by this paper were included to align modelling with
regulatory requirements and have lead to the introduction of the default weighted survival analysis
(DWSA) methodology. A further enhancement to the existing EWSA modelling technique, as
introduced by this paper, was to cater for negative cash flows and over-recoveries, as these events
occur in practice.
Retail product data for three different types of products are used in the testing of actual data.

Five datasets are simulated to further test the accuracy of the various models. The eight datasets,
collectively, are representative of datasets that you would typically use to estimate LGD in a retail
environment. MSE, bias and variance on both retail and simulated data across the board are lowest
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Figure 19. Simulation study results for direct modelling approaches.

DEFAULT WEIGHTED SURVIVAL ANALYSIS MODEL TO DIRECTLY MODEL LGD 197



‐5%

0%

5%

10%

15%

20%

25%

30%

35%
D
W
SA

B
e
ta
 R
e
gr
es
si
o
n

O
rd
in
ar
y 
Le
as
t 
Sq

u
ar
es

Fr
ac
ti
o
n
al
 R
e
sp
o
n
se
 R
eg
re
ss
io
n

EW
SA

In
ve
rs
e 
B
et
a

R
u
n
‐o
ff
 T
ri
an

gl
e

B
o
x 
C
o
x

P
er
ce
n
ta
ge

α=0.2 β=0.3

‐5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

D
W
SA

B
e
ta
 R
e
gr
es
si
o
n

O
rd
in
ar
y 
Le
as
t 
Sq

u
ar
es

Fr
ac
ti
o
n
al
 R
e
sp
o
n
se
 R
eg
re
ss
io
n

EW
SA

In
ve
rs
e 
B
et
a

R
u
n
‐o
ff
 T
ri
an

gl
e

B
o
x 
C
o
x

P
er
ce
n
ta
ge

α=0.3 β=0.5

‐5%

0%

5%

10%

15%

20%

25%

30%

35%

D
W
SA

B
e
ta
 R
e
gr
es
si
o
n

O
rd
in
ar
y 
Le
as
t 
Sq

u
ar
es

EW
SA

Fr
ac
ti
o
n
al
 R
e
sp
o
n
se
 R
eg
re
ss
io
n

In
ve
rs
e 
B
et
a

R
u
n
‐o
ff
 T
ri
an

gl
e

B
o
x 
C
o
x

P
er
ce
n
ta
ge

α=0.3 β=0.7

‐5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

D
W
SA

B
e
ta
 R
e
gr
es
si
o
n

O
rd
in
ar
y 
Le
as
t 
Sq

u
ar
es

Fr
ac
ti
o
n
al
 R
e
sp
o
n
se
 R
eg
re
ss
io
n

EW
SA

In
ve
rs
e 
B
et
a

R
u
n
‐o
ff
 T
ri
an

gl
e

B
o
x 
C
o
x

P
er
ce
n
ta
ge

α=0.4 β=0.7

actual expected bias

‐5%

0%

5%

10%

15%

20%

25%

30%

35%

D
W
SA

B
e
ta
 R
e
gr
es
si
o
n

O
rd
in
ar
y 
Le
as
t 
Sq

u
ar
es

Fr
ac
ti
o
n
al
 R
e
sp
o
n
se
 R
eg
re
ss
io
n

EW
SA

In
ve
rs
e 
B
et
a

R
u
n
‐o
ff
 T
ri
an

gl
e

B
o
x 
C
o
x

P
er
ce
n
ta
ge

α=0.4 β=0.7

Figure 20. Bias, actual recovery rate and expected recovery rate for the simulated datasets.
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for the DWSA model when compared to all other models. The beta regression model performs
second best. The run-off triangle method, often used in practice, consistently underperforms most
other models.
It is the conclusion of this paper that the improvements suggested firstly serve to introduce a new

methodology to estimate LGD. Secondly, as mentioned above, the improvements serve to bring the
LGD model in closer alignment to requirements set by regulation. The third contribution by this
paper is to improve existing LGD modelling techniques as evidenced by improved MSE, variance
and bias.
Similar to how Miu and Ozdemir (2017) adapted Basel LGD modelling techniques to model the

IFRS 9 LGD, future research could focus on extending the DWSA method used on Basel models
to IFRS 9 models. In addition, the generalised additive proportional hazard model (Hastie and
Tibshirani, 1990, pp. 211–218) may be used to allow for time-varying covariates into the DWSA
model as the topic of future research. Additional topics of further research can be to use B splines
(Ohlsson and Johansson, 2010, pp. 106–108) as the smoothing function for each of these covariates.

Appendix

A.1 Beta regression
Brown (2014, pp. 65–66) suggests making use of a beta regression to model the recovery rate, where
LGD is equal to one minus the recovery rate. The beta distribution is reparametrised and covariates
are modelled onto the new parameters.
Let the recovery rate be the dependent variable y. The beta density, with parameters ω and τ, is

expressed as

f (y;ω; τ) = Γ (ω + τ)
Γ (ω)Γ (τ) y

ω−1(1 − y)τ−1, 0 ≤ y ≤ 1, ωτ > 0,

with
E(Y ) = ω

ω + τ

and
Var (Y ) = ωτ

(ω + τ)2 (ω + τ + 1)
.

The aim is to derive a log-likelihood for a beta regression. Firstly, the above equation is
reparametrise to have a location parameter µ = E(Y ) and precision parameter φ = ω + τ. Let
σ2 = Var (Y ). It follows that:

σ2 =
µ(1 − µ)
(ω + τ + 1) =

µ(1 − µ)
(φ + 1) .

The initial parameters can now be expressed as a function of the new parameters, ω = µφ and
τ = φ − µφ. Sub-models for each of the new parameters µ and φ will be developed. The sub-model
for the location parameter µ is

µi =
exp(xiβ)

1 + exp(xiβ) .
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The sub-model for the precision parameter is φi = exp(−wiδ), where xi are covariate values for
account i and wi are constant values. A log-likelihood function for the ith observation of the beta
regression is given as

l (ω,τ, yi) = ln Γ [ω + τ] − ln Γ [ω] − ln Γ [τ] + [ω − 1] ln (yi) + [τ − 1] ln(1 − yi).

A.2 Ordinary least squares
When using linear regression, the LGD is modelled by using the direct modelling approach, where
LGD = 1 − recovery rate. The recovery rate is defined as all net cash flows on an account post default
and is inclusive of all receipts, fees and costs associated therewith. Actual and predicted recoveries
are discounted to the point of default and the LGD is estimated as

LGD = 1 −
∑

present value of observed and predicted future recoveries
exposure at default

= 1 − recovery rate.

The recovery rate is taken as the response variable y and m characteristics describing the loan are
taken as covariates, x1, x2, . . . , xm. The linear regression model is given as y = Xβ + ε.
The model parameters for b can be retrieved by solving

b = (X′X)−1X′y.

Advantages of linear regression models are that they are easy to implement, easy to interpret and
the parameters are easy to estimate. A disadvantage is that possible non-linear trends in the recovery
rate will not be accounted for when using linear regression.

A.3 Fractional response regression
Fractional response regression is used tomodel the recovery rate and is described in the article written
by Bastos (2010, p. 2512). The recovery rate is taken as the dependent variable y with expected
value E (y |X) = G(Xβ) where 0 < G (Xβ) < 1. The functional form of G (·) is taken as the logistic
function,

G (Xβ) = 1
1 + exp(−Xβ) .

The Bernoulli log-likelihood function

l (βi; yi) = yi log (G (xiβi)) + (1 − yi) log (1 − G (xiβi))

is maximised to obtain an estimate for βi .

A.4 Inverse beta
Brown (2014, p. 64) applies a cumulative beta distribution

β (y; a; b) = Γ (a + b)
Γ (a + b)

∫ y

0
va−1(1 − v)b−1dv

to the recovery rate y where Γ() denotes the gamma function, and estimates the parameters

a =
µ2(1 − µ)

σ2 − µ
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and
b = a

(
1
µ
− 1

)
.

The inverse standard normal cumulative distribution function is then taken to produce the value

y∗i = N−1 (β (yi; a; b)) .
An ordinary least squares regression is applied to y∗i and the transformation is applied in reverse to
get the predicted recovery rate ŷi .

A.5 Run-off triangles
A run-off triangle contains cells that correspond to accounts defaulting in month i and being k
months in default. Each cell contains the cumulative cash flowsCi,k . The following matrix illustrates
a run-off triangle where the end of the workout period is indicated by n. The values for Ci,k are
observable where i + k <= n + 1 and need to be predicted for Ci,n with i = 2, ...,n. The chain
ladder approach does this recursively, Ĉi,k = Ĉi,k−1 f̂k with starting value Ĉi,n+1−i = Ĉi,n+i−1 and
f̂k =

∑n+1−k
i=1 Ci,k/C<,k−1 = (

∑n+1−k
i=1 Ci,k−1/C<,k−1)Fi,k a weighted average of the development

factor Fi,k := Ci,k/Ci,k−1, where C<,k−1 =
∑n+1−k

i=1 Ci,k−1 (Braun, 2004, p. 401).

0 k n
0 C0,0 C0,k C0,n

i Ci,0 Ci,k

n Cn,0

A.6 Box–Cox transformation
The Box–Cox transformation, { (yi+c)λ−1

λ if λ = 0,
log(yi + c) if λ , 0,

is applied to the recovery rate variable yi and the parameters λ and c are calculated. Ordinary least
squares is applied to the transformed variable and the transformation is applied in reverse (Brown,
2014, p. 66).
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