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In this paper, the maximum likelihood estimators of the unknown parameters, as well as
some lifetime parameters survival and hazard rate functions, of a three-parameter generalised
Gompertz lifetime model based on progressively first-failure censored sampling are obtained.
Approximate confidence intervals for the unknown parameters and the reliability character-
istics are constructed based on the s-normal approximation to the asymptotic distribution of
maximum likelihood estimators. Although the proposed estimators cannot be expressed in ex-
plicit forms, these can be easily obtained through the use of appropriate numerical techniques.
Finally, a real data set has been analysed for illustrative purposes.
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1. Introduction
In life testing and reliability studies, the experimenter may not always obtain complete information
on failure times for all experimental units. Data obtained from such experiments are called censored
data. Cohen (1963) suggested Type-I and Type-II progressive censored samples (PCSs) to overcome
the drawback of conventional Type-I and Type-II censoring schemes. The PCSs enables an efficient
exploitation of the available resources by continual removal of a pre-specified number of surviving
test units at each failure time. On the other hand, the removal of units before failure may be intentional
to save time and cost or when some items have to be removed for use in another experiment, for
more detail, see Balakrishnan and Cramer (2014). The Gompertz distribution (GD) was originally
introduced by Gompertz (1825) and is one of the classical mathematical models that represent the
survival function based on laws of mortality. This lifetimemodel plays an important role in modelling
human mortality as well as fitting actuarial tables. The three-parameter generalised Gompertz
distribution (GGD) with the bathtub shape or increasing failure rate function was suggested by El-
Gohary, Alshamrani and Al-Otaibi (2013), as was done for the exponentiated Weibull distribution
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by Mudholkar, Srivastava and Freimer (1995), to provide a better fit for the real data than very well-
known distributions such as the exponential distribution (ED), the Gompertz distribution (GD) and
the generalised exponential distribution (GED). The GGD contains some models as special cases:
if putting θ = 0, the two-parameter GED(α, λ) can be derived; if putting α = 1, the two-parameter
GD(λ, θ) can be derived; also, the one-parameter ED(λ) can be derived by setting θ = 0 and α = 1.
Further, the hazard rate function of the GGD is a decreasing function with θ = 0 and α < 1, it is an
increasing function for α > 1, and it is a bathtub for θ > 0 and α < 1. For more detail, see El-Gohary
et al. (2013).
Recently, many statistical inferences of the unknown parameters of some reliability models based

on progressive first-failure censored sampling (PFFCS) and Type-II PCS have been studied by
several authors, such as: Soliman, Abd-Ellah, Abou-Elheggag and Abd-Elmougod (2012) obtained
the maximum likelihood and Bayes estimators of the parameters of GD based on PFFCS, Soliman
and Al Sobhi (2015) discussed the maximum likelihood estimators (MLEs) and Bayes estimates
of GD under PFFCS, Ahmed (2015) studied the maximum likelihood and Bayesian estimations of
parameters of a GGD based on Type-II PCS, Demġr and Saraçoğlu (2015) obtained the MLEs for
the parameters of the GGD under Type-II PCS, also, Abu-Zinadah and Bakoban (2017) discussed
the MLEs and Bayes estimators for two shape parameters and reliability characteristic of GGD based
on Type-II PCS.
The main aim of this paper is to discuss the likelihood inference of the unknown parameters,

survival function (SF) and hazard rate function (HRF) of GGD compared with ED and GD based
on different samples such as: complete, first-failure, Type-II PCS and PFFCS. Several works such
as Soliman et al. (2012), Abu-Zinadah (2014), Ghitany, Alqallaf and Balakrishnan (2014), Soliman
and Al Sobhi (2015), Ahmed (2015), Demġr and Saraçoğlu (2015), Mohan and Chacko (2016), also,
Abu-Zinadah and Bakoban (2017) can be obtained as a special cases from the new results. The rest
of the paper is organised as follows: In Section 2, the model of PFFCS is described. Section 3 deals
with maximum likelihood estimation of the unknown parameter, survival and hazard rate functions
of the GGD under PFFCS. Approximate confidence intervals (ACIs) of the unknown parameters and
the reliability characteristics are constructed based on the asymptotic normality of the MLEs and the
delta method, respectively. An illustrative example with real data is provided in Section 4. Finally,
in Section 5, some concluding remarks are provided.

2. Model Description

The PFFCS proposed by Wu and Kuş (2009) to overcome the drawback of the first-failure censoring,
that is, that the first-failure censoring does not allow for sets to be removed from the test at the points
other than the final termination point. They therefore suggested PFFCS to allow for removal of some
of the survival sets from the life-test. The PFFCS is defined as a combination between the concepts
of first-failure censoring and Type-II PCS, therefore, an extension of Type-II PCS is referred to as
PFFCS. This censoring can be describe as follows: Suppose that n independent groups with k items
within each group are put on a life-testing experiment at time zero, m is a pre-fixed number of failures,
and the progressive censored sample R = (R1,R2, . . . ,Rm) is pre-fixed such that R1 groups and the
group in which the first failure is observed are randomly removed from the experiment as soon as
the first failure (say XR

1:m:n:k) has occurred. R2 groups and the group in which the second failure is
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observed are randomly removed from the remaining live n − R1 − 1 groups at the time of the second
failure (say XR

2:m:n:k), and so on. This procedure continues until all remaining live Rm groups and the
group in which the mth failure (say XR

m:m:n:k) has occurred are removed at the time of the mth failure.
Let XR

1:m:n:k , XR
2:m:n:k ,. . . ,X

R
m:m:n:k , be the PFFCS order statistics with the progressive censoring R.

If the failure times of the n × k items originally in the test, where n is the number of independent
groups with k items within each group, are from a continuous population with cumulative distribution
function (CDF), F(x; θ), and probability density function (PDF), f (x; θ), the likelihood function for
X(i) instead of XR

i:m:n:k , i = 1,2, . . . ,m, is given by

L(θ |data) = CKm
m∏
i=1

f (x(i); θ)[1 − F(x(i); θ)]k(Ri+1)−1, (1)

where C = n(n − R1 − 1)(n − R1 − R2 − 2) · · · (n −∑m
i=1(Ri + 1)) and n = m +

∑m
i=1 Ri .

It should be noted that, the PFFCS (1) is a generalisation of some different samples such as:
If putting R = (0,0, . . . ,0), the PFFCS reduces to the joint PDF of the first-failure-censored order
statistics. If putting k = 1, the PFFCSbecomes the joint PDFofType-II PCSorder statistics. If putting
R = (0,0, . . . ,n − m) and k = 1, the PFFCS reduces to Type-II censoring. If putting R = (0,0, . . . ,0)
and k = 1, then n = m which yields the PFFCS corresponds to the complete sample.

3. Maximum likelihood estimation
In this section, we discuss the MLEs of the three-parameter generalised Gompertz parameters as
well as SF and HRF based on PFFCS and construct the corresponding ACIs. Suppose that the
lifetime random variable X has a GGD(α,λ, θ) distribution, with shape parameters α,λ > 0 and scale
parameter θ ≥ 0, then the CDF, PDF, SF and HRF of X are given, respectively, by

F(x;α,λ, θ) =
[
1 − exp

(
−λ
θ
(eθx − 1)

)]α
, x ≥ 0, (2)

f (x;α,λ, θ) = αλeθx exp
(
−λ
θ
(eθx − 1)

) [
1 − exp

(
−λ
θ
(eθx − 1)

)]α−1
, x ≥ 0, (3)

S(x;α,λ, θ) = 1 −
[
1 − exp

(
−λ
θ
(eθx − 1)

)]α
, x ≥ 0, (4)

H(x;α,λ, θ) = αλeθx exp
(−λθ (eθx − 1)) [

1 − exp
(−λθ (eθx − 1)) ]α−1

1 − [
1 − exp

(−λθ (eθx − 1)) ]α , x ≥ 0. (5)

3.1 Maximum likelihood estimators
Suppose that n × k independent units taken from a population are placed on a progressively first-
failure censored life-test with the corresponding lifetimes being identically distributed having CDF
and PDF as defined in (2) and (3), respectively. Substituting (2) and (3) into (1), one can show that

L($ |data) ∝ (αλ)m exp
(
θmx̄ − λ

m∑
i=1

W(x(i); θ)
) m∏

i=1

[
1 − exp

(−λW(x(i); θ)
) ]α−1

×
[
1 − [

1 − exp
(−λW(x(i); θ)

) ]α]k(Ri+1)−1
, (6)

GENERALISED GOMPERTZ DISTRIBUTION UNDER PROGRESSIVE FIRST-FAILURE 117



where $ = (α,λ, θ)T is the parameter vector and W(x(i); θ) = (exp(x(i)θ) − 1)/θ, i = 1,2, . . . ,m.
Using the general binomial expansion series, (6) is equivalent to

L($ |data) ∝ (αλ)m exp
(
θmx̄−λ

m∑
i=1

W(x(i); θ)
) m∏

i=1

k(Ri+1)−1∑
d=0

Qd

[
1 − exp

(−λW(x(i); θ)
) ]αV−1

, (7)

where V = k(Ri + 1) − d, i = 1,2, . . . ,m, and Qd = (−1)d (k(Ri+1)−1
d

)
.

The corresponding log-likelihood function of (7), ` = log L, becomes

`($ |data) ∝ mlog(αλ) + θmx̄ − λ
m∑
i=1

W(x(i); θ)

+

m∑
i=1

log

(
k(Ri+1)−1∑

d=0
Qd

[
1 − exp

(−λW(x(i); θ)
) ]αV−1

)
. (8)

Differentiating (8) with respect to α, λ and θ, respectively, we get

∂`($ |data)
∂α

=
m
α
+

m∑
i=1

{∑k(Ri+1)−1
d=0 Qd[1 − exp(−λW(x(i); θ))]αV−1 log [1 − exp(−λW(x(i); θ))]∑k(Ri+1)−1

d=0 Qd[1 − exp(−λW(x(i); θ))]αV−1

}
,

(9)

∂`($ |data)
∂λ

=
m
λ
−

m∑
i=1

W(x(i); θ)

+

m∑
i=1

{∑k(Ri+1)−1
d=0 Qd(αV − 1)W(x(i); θ) exp(−λW(x(i); θ))[1 − exp(−λW(x(i); θ))]αV−2

∑k(Ri+1)−1
d=0 Qd[1 − exp(−λW(x(i); θ))]αV−1

}
, (10)

and

∂`($ |data)
∂θ

= mx̄ − λ
m∑
i=1

W ′(x(i); θ)

+

m∑
i=1

{∑k(Ri+1)−1
d=0 Qd(αV − 1)W ′(x(i); θ) exp(−λW(x(i); θ))[1 − exp(−λW(x(i); θ))]αV−2

∑k(Ri+1)−1
d=0 Qd[1 − exp(−λW(x(i); θ))]αV−1

}
, (11)

where W ′(x(i); θ) = −[W(x(i); θ) − x(i) exp (θx(i))]/θ, i = 1,2, . . . ,m. Equating each result in (9)–(11)
to zero, three equations must be simultaneously satisfied to obtain the MLEs α̂, λ̂ and θ̂ of the three
unknown parameters of GGD α, λ and θ, respectively.
It is clear that the MLEs α̂, λ̂ and θ̂ cannot be solved analytically and can be obtained by solving

the set of nonlinear equations, therefore, numerical methods such as Newton–Raphson can be used
to solve these equations. Furthermore, once the estimates of α̂, λ̂ and θ̂ are obtained, using the
invariance property of MLE, the MLEs of S(t) and H(t), as in (4) and (5), respectively, for a given
mission time t can be derived by replacing α, λ and θ by their MLEs α̂, λ̂ and θ̂, respectively.
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3.2 Approximate interval estimation
Two-sided ACIs for the unknown parameters are constructed based on the asymptotic normal approx-
imation of the maximum likelihood estimators as well as the reliability characteristic such as survival
and hazard rate functions are constructed based on the delta method. The Fisher information matrix
can be obtained by taking the expectation of the second partial derivatives of the log-likelihood
function as

Ii j($) = E[−(∂2ln(θ |x/∂θi∂θ j)], i, j = 1,2,3. (12)

Unfortunately, the exact mathematical expressions for the expectation (12) are very difficult to obtain.
For convenience, the Fisher information matrix is approximated by

Ii j($̂) � [−(∂2ln(θ |x/∂θi∂θ j)]$=$̂, i, j = 1,2,3.

which is obtained by dropping E and replacing $ = (α,λ, θ) with $̂ = (α̂, λ̂, θ̂), respectively, for
more detail, see Cohen (1965).
The observed Fisher information matrix has second partial derivatives of (8) as the elements,

which easily can be obtained. Hence, the asymptotic variance covariance matrix is obtained by
inverting the Fisher information matrix, practically, estimating I−1

0 ($) by I−1
0 ($̂), as

I−1
0 ($̂) �


− ∂2`($ |data)

∂α2 − ∂2`($ |data)
∂α∂λ − ∂2`($ |data)

∂α∂θ

− ∂2`($ |data)
∂λ∂α − ∂2`($ |data)

∂λ2 − ∂2`($ |data)
∂λ∂θ

− ∂2`($ |data)
∂θ∂α − ∂2`($ |data)

∂θ∂λ − ∂2`($ |data)
∂θ2


=


σ̂2
α̂ σ̂2

α̂,λ̂
σ̂2
α̂,θ̂

σ̂2
λ̂,α̂

σ̂2
λ̂

σ̂2
λ̂,θ̂

σ̂2
θ̂ ,α̂

σ̂2
θ̂ ,λ̂

σ̂2
θ̂


. (13)

From (6), the elements of the observed information matrix (13) are obtained and reported in the
Appendix. Under regularity conditions for the asymptotic properties of the MLEs of the three-
parameter GGD, the asymptotic normality of the MLEs α̂, λ̂ and θ̂ is approximately multivariate
normal with mean $ and variance-covariance matrix I−1

0 ($̂), i.e., $̂ ∼ N($, I−1
0 ($̂)), see Lawless

(1982).
Hence, the 100(1 − γ)% two-sided ACIs for the three-parameter GGD α, λ and θ, based on PFFCS

are given, respectively, by

α̂ ± zγ/2
√
σ̂2
α̂
, λ̂ ± zγ/2

√
σ̂2
λ̂

and θ̂ ± zγ/2
√
σ̂2
θ̂
,

where σ̂2
α̂, σ̂

2
λ̂
and σ̂2

θ̂
, are the elements on the main diagonal of the asymptotic variance-covariance

matrix (13), and zγ/2 is the percentile of the standard normal distribution with right-tail probability
(γ/2).
Furthermore, to construct the asymptotic ACIs of the SF and HRF of GGD based on PFFCS, which

are functions of the parameters α, λ and θ. The delta method is considered to obtain the approximate
estimates of the variance of S(t) and H(t). The delta method is a general approach for computing
ACIs for functions of MLEs, for more detail, see Greene (2003). According to this method, the
variances σ̂2

Ŝ(t) and σ̂
2
Ĥ(t) of Ŝ(t) and Ĥ(t) can be approximated, respectively by

σ̂2
Ŝ(t) = [∇Ŝ(t)]TI−1

0 ($̂)[∇Ŝ(t)] and σ̂2
Ĥ(t) = [∇Ĥ(t)]TI−1

0 ($̂)[∇Ĥ(t)],

where
[∇Ŝ(t)]T = [

∂∇S(t)/∂α, ∂∇S(t)/∂λ, ∂∇S(t)/∂θ] (α=α̂, λ=λ̂, θ=θ̂) ,
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Table 1. Failure times of Aarset real data set.

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32
36 40 45 45 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

and
[∇Ĥ(t)]T = [

∂∇H(t)/∂α, ∂∇H(t)/∂λ, ∂∇H(t)/∂θ] (α=α̂, λ=λ̂, θ=θ̂)
are the gradients of Ŝ(t) and Ĥ(t), respectively, with respect to α, λ and θ.
Hence, the 100(1 − γ)% two-sided ACIs of S(t) and H(t), are given, respectively, by

Ŝ(t) ± zγ/2
√
σ̂2
Ŝ(t) and Ĥ(t) ± zγ/2

√
σ̂2
Ĥ(t),

where zγ/2 is the percentile of the standard normal distribution with right-tail probability (γ/2).

4. Real data analysis
In this section we consider a real-life data set representing the lifetimes of 50 devices, originally
analysed by Aarset (1987), and use it to illustrate the estimation methods in the preceding section.
These lifetimes of the 50 devices are given in Table 1.
Recently, this data set has been analysed by El-Gohary et al. (2013), Abu-Zinadah (2014), Ahmed

(2015), Abu-Zinadah and Al-Oufi (2016), Abu-Zinadah and Bakoban (2017). Before progressing
further, we first fit the GGD to the complete data set and compare its fitting with two well-established
lifetime distributions namely, Gompertz(λ, θ) and exponential(λ) distributions with PDFs given,
respectively, by

f (x; λ, θ) = λ exp
(
θx − λ

θ
(eθx − 1)

)
, x ≥ 0, λ, θ > 0,

and
f (x; λ) = λe−λx, x ≥ 0, λ > 0.

One question arises about whether the data fit the GGD, GD and ED or not. To check for the
goodness of fit, we employed different methods to test the goodness-of-fit of the GGD, GD and ED
based on the maximum likelihood estimation method. In order to compare the different lifetime
models, we consider the Kolmogorov-Smirnov (K-S) statistics with its p-value, as well as model
selection criterion such as: the estimated negative log likelihood function − ˆ̀, the Akaike information
criterion (AIC) proposed by Akaike (1973), defined as AIC = −2 ˆ̀+ 2S, the Bayesian information
criterion (BIC) proposed by Schwarz (1978), defined as BIC = −2 ˆ̀ + 2S log n, the consistent
Akaike information criterion (CAIC), defined as CAIC = −2 ˆ̀+ 2nS/(n − k − 1), the Hannan-Quinn
information criterion (HQIC), defined as HQIC = −2 ˆ̀ + 2S log(log n), where ˆ̀ denotes the log-
likelihood function evaluated at the MLEs, S is the number of model parameters and n is the sample
size. The better distribution corresponds to the lowest values of − ˆ̀, AIC, BIC, CAIC, HQIC and the
K-S statistic values and highest p-values. The values of MLEs of the parameters of the ED, GD and
GGD reliability models, along with the values of − ˆ̀, AIC, BIC, CAIC, HQIC and the K-S statistic

120 ASHOUR, EL-SHEIKH & ELSHAHHAT



Table 2. Summary fit for Aarset data set.

K-S

Model MLE(s) − ˆ̀ AIC BIC CAIC HQIC Statistic p-value

ED λ̂ = 0.0219 241.07 484.14 489.96 484.22 484.86 0.191 0.052

GD λ̂ = 0.0097 235.33 474.65 478.47 474.91 476.11 0.169 0.114
θ̂ = 0.0203

GGD α̂ = 0.5210 225.07 456.15 457.97 456.67 458.33 0.141 0.269
λ̂ = 0.0021
θ̂ = 0.0481

Note: Values in bold type represent the best model.

Figure 1. Q-Q plots of ED, GD and GGD reliability models.

with associated p-values are reported in Table 2. The Q-Q plots support the above conclusion. Also,
we use a graphical method for goodness-of-fit of distributions by drawing quantile-quantile (Q-Q)
plots of the ED, GD and GD reliability models, which are shown in Figure 1. A Q-Q plot depicts the
points {F−1((i − 0.5)/n; θ̂), x(i)}, i = 1,2, . . . ,n, where θ̂ is the MLE of θ.
Since the p-value is much higher than 0.05, we cannot reject the null hypothesis that the data are

from the GGD, GD and ED models. Table 2 shows that the GGD is the best choice among the
competing reliability models in the literature for fitting Aarset lifetime data, since it has the smallest
− ˆ̀, AIC, BIC, CAIC, HQIC and K-S statistic values and highest p-values. Also, the Q-Q plots
support the above findings. For a clearer illustration, Figure 2 shows the fitted CDF and the empirical
CDF of ED, GD and GGD, respectively, computed at the estimated parameters. Figure 3 shows the
histogram of the real data and the fitted PDF of ED,GD and GGD, respectively, computed at the
estimated parameters. To illustrate the inferential method developed in the preceding section, we
have assumed that the failure times data of 50 devices are randomly grouped into 25 groups with
k = 2 devices within each group. The grouped data set is presented in Table 3. Finally, the following
first-failure censored sample is obtained in order as: 0.1, 0.2, 1, 1, 1, 1, 2, 3, 6, 12, 18, 18, 18, 32,
36, 45, 63, 67, 67, 67, 72, 82, 83, 84, 84.
Using Tables 1 and 3, the Aarset real data set can be discussed under different generated samples

such as:
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Figure 2. FittedCDF and the empirical CDFs
of reliability models.

Figure 3. Histogram of real data with fitted
PDFs of reliability models.

Table 3. Random grouping of Aarset real data set.

Group item 1 2 3 4 5 6 7 8 9 10 11 12 13

1 21 1 45 0.2 82 85 18 67 18 45 0.1 50 82
2 6 18 55 40 36 1 47 84 12 18 1 32 85

Group item 14 15 16 17 18 19 20 21 22 23 24 25

1 86 2 67 86 11 67 67 18 85 1 1 85
2 83 60 75 84 3 63 79 63 84 85 7 72

Note: Bold observations represent the first-failure item in a group.

• Complete sample with n = m = 50, k = 1 and R = (0*25).

• First-failure censored data with n = m = 25, k = 2 and R = (0*25).

• Three different samples of Type-II PCS are generated using three different censoring schemes
from the failure times data with n = 50, m = 25 and k = 1.

• Three different samples of PFFCSs are generated using three different censoring schemes from
the first-failure censored data with n = 25, m = 15 and k = 2.

• The different schemes of Type-II PCS and PFFCS, and corresponding samples are reported in
Table 4. For brevity, the censoring scheme R = (3,0,0,0,0,3) is denoted by R = (3,0*4,3).

All computations were performed using R statistical programming language software with the
reliaR package (developed by Kumar and Ligges, 2011) for plotting and fitting the distribution
function, as well as with the maxLik package (developed by Henningsen and Toomet, 2011), which
uses the method of Newton–Raphson maximisation in the computations. The maximum likelihood
estimates, with corresponding standard errors, the unknown parameters α, λ and θ, as well as the
reliability characteristics such as S(t) and H(t), for given t = 5, of ED, GD and GGD based on
different generated samples such as the complete sample, first-failure censored sample, Type-II PCS
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Table 4. Three different generated samples of Type-II PCS and PFFCS.

Censoring scheme

Sampling type n m k R Sample

Type-II PCS 50 25 1 R1 = (25, 0*24) 0.1, 55, 60, 63, 63, 67, 67, 67,67,
72, 75, 79, 82, 82, 83, 84,84,84,
85, 85, 85, 85, 85, 86, 86.

R2 = (0*11, 8, 9, 8, 0*11) 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7,
11, 36, 67, 83, 84, 84, 84, 85, 85,
85, 85, 85, 86, 86.

R3 = (0*24, 25) 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7,
11, 12, 18, 18, 18, 18, 18, 21, 32,
36, 40, 45, 45, 47.

PFFCS 25 15 2 R1 = (10, 0*14) 0.1, 18, 18, 32, 36, 45, 63, 67,
67, 67, 72, 82, 83, 84, 84.

R2 = (0*6, 3, 4, 3, 0*6) 0.1, 0.2, 1, 1, 1, 1, 2, 18, 45, 67,
72, 82, 83, 84, 84.

R3 = (0*14, 10) 0.1, 0.2, 1, 1, 1, 1, 2, 3, 6, 12, 18,
18, 18, 32, 36.

and PFFCS are computed and listed in Table 5. Moreover, the 95% two-sided ACIs with associated
lengths of the maximum likelihood estimates are obtained and listed in Table 6.

5. Concluding remarks
In this paper we consider the problem of estimating the unknown parameters and the reliability
characteristics of GGD based on PFFCS. Maximum likelihood estimates of GGD were compared
with GD and ED under different samples such as: complete sample, first-failure censored sample,
Type-II PCS and PFFCS. In addition, the 95% two-sided ACIs of the unknown parameters as well
as the reliability characteristics are constructed. It is observed that the MLEs cannot be obtained
in closed form, but can be computed and evaluated numerically. Therefore a numerical example
with the Aarset real data set has been presented to illustrate the inferential results established here.
Moreover, we generalized some results in several works which may be obtained as special cases from
the new results such as: Soliman et al. (2012) and Soliman and Al Sobhi (2015) if putting α = 1;
Abu-Zinadah (2014) if putting R = (0,0, . . . ,n − m) and k = 1; Ghitany et al. (2014), Mohan and
Chacko (2016) if putting α = k = 1; also, Ahmed (2015), Demġr and Saraçoğlu (2015), Abu-Zinadah
and Bakoban (2017) if putting k = 1. From Table 5 it can be seen that the maximum likelihood
estimates of the unknown parameters α, λ and θ, as well as reliability characteristic S(t) and H(t) are
very good in terms of the standard errors. Also, Table 6 shows that the corresponding lengths of the
two-sided 95% ACIs are shortest.

Appendix: Fisher’s elements
From (6), the elements of the observed Fisher information matrix (13) become:

∂2`($ |data)
∂α2 = − m

α2 −
m∑
i=1
{(k(Ri + 1) − 1)(Z(x(i); λ, θ))α(log Z(x(i); λ, θ))2(1 − (Z(x(i); λ, θ))α)−2},
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Table 5. The maximum likelihood estimates with corresponding standard errors of the
unknown parameters and the reliability characteristics of ED, GD and GGD in the data
obtained from complete sampling, first-failure censored sampling, Type-II PCS and PFFCS.

Censored sample

Type-II PCS PFFCS

Model Complete First failure R1 R2 R3 R1 R2 R3

ED λ̂ 0.0219 0.0012 0.0136 0.0124 0.0159 0.0183 0.0099 0.0405
0.0031 0.0002 0.0027 0.0025 0.0032 0.0047 0.0026 0.0105

Ŝ(t) 0.8963 0.9942 0.9341 0.9399 0.9238 0.9125 0.9515 0.8168
0.0139 0.0012 0.0127 0.0012 0.0146 0.0216 0.0122 0.0423

Ĥ(t) 0.0219 0.0012 0.0136 0.0124 0.0159 0.0183 0.0099 0.0405
0.0031 0.0002 0.0027 0.0025 0.0032 0.0047 0.0026 0.0105

GD λ̂ 0.0097 0.0010 0.0022 0.0065 0.0033 0.0014 0.0074 0.0026
0.0030 0.0004 0.0005 0.0027 0.0014 0.0010 0.0035 0.0008

θ̂ 0.0203 0.0042 0.0002 0.0171 0.0534 0.0422 0.0089 0.0001
0.0060 0.0088 0.0119 0.0083 0.0137 0.0127 0.0109 0.0141

Ŝ(t) 0.9501 0.9949 0.9891 0.9667 0.9814 0.9922 0.9631 0.9873
0.0143 0.0878 0.0023 0.0136 0.0075 0.0299 0.0067 0.0038

Ĥ(t) 0.0108 0.0010 0.0022 0.0071 0.0043 0.0017 0.0077 0.0025
0.0030 0.0089 0.0005 0.0028 0.0016 0.0175 0.0013 0.0007

GGD α̂ 0.8635 0.7995 1.0129 0.5496 0.2547 0.4790 0.3413 0.3449
0.0269 0.0292 0.2200 0.1001 0.0463 0.1280 0.0834 0.0835

λ̂ 0.0001 0.0004 0.0003 0.0056 0.0001 0.0001 0.0002 0.0005
0.0001 0.0002 0.0004 0.0026 0.0001 0.0001 0.0001 0.0003

θ̂ 0.0957 0.0133 0.0699 0.0014 0.0771 0.0755 0.0528 0.0406
0.0367 0.0097 0.0177 0.0102 0.0239 0.0110 0.0154 0.0374

Ŝ(t) 0.9983 0.9935 0.9984 0.8603 0.8431 0.9712 0.9009 0.8614
0.0007 0.0033 0.0025 0.0496 0.0518 0.0268 0.0546 0.0637

Ĥ(t) 0.0004 0.0011 0.0004 0.0177 0.0114 0.0034 0.0085 0.0122
0.0011 0.0005 0.0006 0.0179 0.0019 0.2006 0.4520 0.5380

Note: The second row of each estimate represent the corresponding standard error.
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Table 6. The 95% two-sided ACIs for the unknown parameters and reliability characteristics of ED,
GD and GGD in the data obtained from complete sampling, first-failure censored sampling, Type-II
PCS and PFFCS.

Censored sample

Type-II PCS PFFCS

Model Complete First failure R1 R2 R3 R1 R2 R3

ED λ Lower 0.0158 0.0007 0.0083 0.0075 0.0096 0.0090 0.0049 0.0199
Upper 0.0279 0.0016 0.0189 0.0173 0.0221 0.0276 0.0150 0.0609
Length 0.0121 0.0009 0.0106 0.0098 0.0125 0.0186 0.0101 0.0410

S(t) Lower 0.8691 0.9920 0.9091 0.9197 0.8951 0.8702 0.9276 0.7331
Upper 0.9235 0.9965 0.9591 0.9627 0.9525 0.9548 0.9754 0.9004
Length 0.0544 0.0045 0.0500 0.0456 0.0574 0.0846 0.0478 0.1673

H(t) Lower 0.0158 0.0007 0.0083 0.0075 0.0096 0.0090 0.0049 0.0199
Upper 0.0279 0.0016 0.0189 0.0173 0.0221 0.0276 0.0150 0.0609
Length 0.0121 0.0009 0.0106 0.0098 0.0125 0.0186 0.0101 0.0410

GD λ Lower 0.0038 0.0003 0.0012 0.0013 0.0005 0.0001 0.0006 0.0009
Upper 0.0156 0.0017 0.0031 0.0117 0.0061 0.0034 0.0141 0.0041
Length 0.0118 0.0014 0.0019 0.0104 0.0056 0.0033 0.0135 0.0032

θ Lower 0.0085 0.0000 0.0000 0.0008 0.0266 0.0173 0.0000 0.0000
Upper 0.0320 0.0214 0.0236 0.0334 0.0803 0.0670 0.0304 0.0278
Length 0.0235 0.0214 0.0236 0.0326 0.0537 0.0497 0.0304 0.0278

S(t) Lower 0.9219 0.8229 0.9846 0.9399 0.9668 0.9336 0.9501 0.9800
Upper 0.9782 0.9999 0.9937 0.9934 0.9959 0.9999 0.9761 0.9947
Length 0.0563 0.1770 0.0091 0.0535 0.0291 0.0663 0.0260 0.0147

H(t) Lower 0.0048 0.0000 0.0013 0.0016 0.0011 0.0000 0.0000 0.0011
Upper 0.0167 0.0186 0.0031 0.0120 0.0074 0.0324 0.0299 0.0039
Length 0.0119 0.0186 0.0018 0.0110 0.0063 0.0324 0.0299 0.0028

GGD α Length 0.8107 0.6174 0.5815 0.3526 0.1638 0.2286 0.1779 0.1814
Length 0.9163 0.9816 1.4445 0.7465 0.3456 0.7294 0.5048 0.5085
Length 0.1056 0.3642 0.8630 0.3939 0.1818 0.5008 0.3269 0.3271

λ Lower 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000
Upper 0.0001 0.0007 0.0010 0.0107 0.0003 0.0002 0.0004 0.0012
Length 0.0001 0.0007 0.0010 0.0101 0.0003 0.0002 0.0004 0.0012

θ Lower 0.0238 0.0000 0.0352 0.0000 0.0303 0.0539 0.0227 0.0000
Upper 0.1676 0.0323 0.1045 0.0213 0.1239 0.0970 0.0829 0.1139
Length 0.1438 0.0323 0.0693 0.0213 0.0936 0.0431 0.0602 0.1139

S(t) Lower 0.9969 0.9870 0.9935 0.7632 0.7415 0.9186 0.7939 0.7364
Upper 0.9996 0.9999 1.0000 0.9575 0.9447 1.0000 1.0000 0.9864
Length 0.0027 0.0129 0.0065 0.1943 0.2032 0.0814 0.2061 0.2500

H(t) Lower 0.0002 0.0000 0.0000 0.0000 0.0076 0.0000 0.0000 0.0000
Upper 0.0006 0.0022 0.0015 0.3689 0.0152 0.3957 0.8954 1.0664
Length 0.0004 0.0022 0.0015 0.3689 0.0076 0.3957 0.8954 1.0664
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∂2`($ |data)
∂λ2 = − m

λ2 − (α − 1)
m∑
i=1

{
(W(x(i); θ))2(Z(x(i); λ, θ))−2 exp (−λW(x(i); θ))

}

− α
m∑
i=1

{
(k(Ri + 1) − 1)(W(x(i); θ))2(Z(x(i); λ, θ))α−1 (1 − (Z(x(i); λ, θ))α)−2

× exp (−λW(x(i); θ))
[

exp (−λW(x(i); θ))(Z(x(i); λ, θ))−1((Z(x(i); λ, θ))α + α − 1)
+ Z(x(i); λ, θ))α − 1

]}
,

∂2`($ |data)
∂θ2 = − λ

m∑
i=1
(W ′′(x(i); θ))2 + (α − 1)λ

m∑
i=1
(Z(x(i); λ, θ))−2{Z(x(i); λ, θ) exp (−λW(x(i); θ))

× [W ′′(x(i); θ) − λ(W ′(x(i); θ))2] − λ(W ′(x(i); θ))2 exp (−2λW(x(i); θ))}

− αλ
m∑
i=1
(k(Ri + 1) − 1)(1 − Z(x(i); λ, θ))α)−2{(1 − (Z(x(i); λ, θ)α){(α − 1)

× (Z(x(i); λ, θ)(α−2)(λ(W ′(x(i); θ)))2 exp (−2λW(x(i); θ)) + λ(Z(x(i); λ, θ)(α−1)

× exp (−λW(x(i); θ))[W ′′(x(i); θ) − λ(W ′(x(i); θ))2]} + α(Z(x(i); λ, θ)2(α−1)

× (λ(W ′(x(i); θ)))2 exp (−2λW(x(i); θ))},
∂2`($ |data)

∂α∂λ
=

m∑
i=1
{(Z(x(i); λ, θ))−1W(x(i); θ) exp (−λW(x(i); θ))} −

m∑
i=1
{(k(Ri + 1) − 1)W(x(i); θ)

× (Z(x(i); λ, θ))α−1(1 − (Z(x(i); λ, θ))α)−2 exp (−λW(x(i); θ))[1 − (Z(x(i); λ, θ))α
+ αlog Z(x(i); λ, θ)]},

∂2`($ |data)
∂α∂θ

=

m∑
i=1
{(Z(x(i); λ, θ))−1W ′(x(i); θ) exp (−λW(x(i); θ))} − λ

m∑
i=1
{(k(Ri + 1) − 1)W ′(x(i); θ)

× (Z(x(i); λ, θ))α−1(1 − (Z(x(i); λ, θ))α)−2 exp (−λW(x(i); θ))[1 − (Z(x(i); λ, θ))α
+ αlog Z(x(i); λ, θ)]},

and
∂2`($ |data)

∂λ∂θ

= −
m∑
i=1

W(x(i); θ) + (α − 1)
m∑
i=1
(Z(x(i); λ, θ))−2{λW(x(i); θ)W ′(x(i); θ) exp (−λW(x(i); θ))

× [Z(x(i); λ, θ)) − exp (−λW(x(i); θ)) − 1] + (1 − Z(x(i); λ, θ))W ′(x(i); θ)

× exp (−λW(x(i); θ))} − α
m∑
i=1
(k(Ri + 1) − 1)(1 − (Z(x(i); λ, θ))α)−2{(1 − (Z(x(i); λ, θ))α)

× (Z(x(i); λ, θ))α−1W ′(x(i); θ) exp (−λW(x(i); θ))[1 + λW(x(i); θ) exp (−λW(x(i); θ))
(1 + (α − 1)(Z(x(i); λ, θ))−1)] + α(Z(x(i); λ, θ))2(α−1)λW(x(i); θ)W ′(x(i); θ)
× exp (−2λW(x(i); θ))},
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where W ′′(x(i); θ) = −2[W ′(x(i); θ) − 1
2 x2
(i) exp (θx(i))]/θ, and Z(x(i); λ, θ) = 1 − exp (−λW(x(i); θ)),

i = 1,2, . . . ,m.
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