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We propose a method for variable selection in multivariate regression with
random predictors. This method is based on a criterion that permits to reduce
the variable selection problem to a problem of estimating a suitable set. Then, an
estimator for this set is proposed and the resulting method for selecting variables is
shown to be consistent. A simulation study that permits to study several properties
of the proposed approach and to compare it with existing methods is given.

Keywords: Multivariate linear regression, Selection criterion, Variable selection.

1. Introduction
The problem of variable selection is an old and important problem in statistics, and several approaches
have been proposed to deal with it for various methods of multivariate statistical analysis, including
linear regression analysis. Surveys on earlier works in this field may be found in Hocking (1976),
Thomson (1978a), Thomson (1978b), Breiman and Spector (1992), and some monographs on this
topic are avalaible (e.g., Linhart and Zucchini, 1986; Miller, 1990). Most of the methods that have
been proposed for variable selection in linear regression deal with the case of fixed design, where the
covariates are assumed to be nonrandom. For this case, many selection criteria have been introduced
in the literature. These include the final prediction error (FPE) criterion (Thomson, 1978a,b; Shibata,
1984; Shao, 1993; Zhang, 1993), cross-validation (Shao, 1993; Zhang, 1993), Akaike information
criterion (AIC) and Mallows’s 𝐶𝑝 type criterion (e.g., Fujikoshi and Sato, 1997), the prediction error
criterion (Fujikoshi et al., 2011). There is just a few works dealing with the case where the covariates
are random which arises in many regression applications where the covariates values can only be
observed and are not controllable. Differences between the two cases have been highlighted in
Thomson (1978a) and Breiman and Spector (1992) where it is recognised that methods for the fixed
design case do not perform in the same way in the random design case. That is why they introduced
modifications of criteria used for fixed design in order to deal with the case of random design. Later,
variable selection for linear regression with random design was considered in Zheng and Loh (1997)
and Nkiet (2001) but only for univariate models in which the response is a real random variable.
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However, it often occurs in applications that one has to consider a set of response variables for the
same predictors. For such situations, multivariate linear regression offers an adequate framework
considered in An et al. (2013) which introduced a method for selecting both predictors and responses
based on re-casting the multivariate regression problem as a classical canonical correlation analysis
(CCA) problem for which a least squares type formulation is constructed, and applying an adaptive
LASSO type penalty together with a selection criterion of the type of Bayesian information criterion
(BIC). Multivariate linear regression has also been considered for variable selection purposes in
Yuan et al. (2007), Giraud (2011) and Lu et al. (2012).

In this paper we extend the approach of Nkiet (2001) to the case of multivariate linear regression.
In Section 2, the multivariate regression model that is used is presented as well as a statement of the
variable selection problem. Then, we introduce a criterion by means of which the variable selection
problem reduces to that of estimating a suitable set. In Section 3, an estimator of this set is introduced,
so achieving our method for selecting variables. It is interesting to note that the proposed approach
does not require assuming some particular distribution for the random vector 𝑋 of predictors nor for
the error term 𝜀; we only have to assume that the moments up to order four of these random vectors
are bounded, and that the covariance matrix of 𝑋 has full rank. In Section 4, we present a simulation
study made in order to study several properties of the proposal and to compare it to the adaptive sparse
canonical correlation analysis (ASCCA) method given in An et al. (2013) and to methods based on
traditional criteria (see, e.g., Nishii, 1984). The first issue that was addressed concerns the impact of
choosing penalty functions that are involved in our procedure. We show the importance of choosing
an appropriate penalty function since it has significant impact on the performance of the method.
But there is no theoretical investigation for this problem and it seems that more work is needed in
this direction. Secondly, we studied the influence of tuning parameters on the performance of our
method. The simulation results clearly show their impact on the performance, so it is of interest to
apply a method defined in Section 3 for obtaining optimal values of these parameters. When using
this approach, we obtain better results in the simulations than all the considered existing methods.
The proofs of the main results of the paper are postponed to Section 5.

2. Model and criterion for selection
We consider the multivariate linear regression model given by:

𝑌 = 𝐵𝑋 + 𝜀, (1)

where 𝑋 and 𝑌 are random vectors with values in R𝑝 and R𝑞 respectively with 𝑝 ≥ 2 and 𝑞 ≥ 2, 𝐵 is
a 𝑞 × 𝑝 matrix of real coefficients, and 𝜀 is a random vector with values in R𝑞 , which is independent
of 𝑋 and such that E (𝜀) = 0. Writing

𝑋 =
©­­«
𝑋1
...

𝑋𝑝

ª®®¬
, 𝑌 =

©­­«
𝑌1
...

𝑌𝑞

ª®®¬
, 𝜀 =

©­­«
𝜀1
...

𝜀𝑞

ª®®¬
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and

𝐵 =

©­­­­­«

𝑏11 𝑏12 · · · 𝑏1𝑝
𝑏21 𝑏22 · · · 𝑏2𝑝
...

... · · · ...

𝑏𝑞1 𝑏𝑞2 · · · 𝑏𝑞𝑝

ª®®®®®¬
,

it is easily seen that model (1) is equivalent to having a set of 𝑞 univariate regression models given
by

𝑌𝑖 =
𝑝∑︁
𝑗=1

𝑏𝑖 𝑗𝑋 𝑗 + 𝜀𝑖 , 𝑖 = 1, · · · , 𝑞,

and can also be writen as

𝑌 =
𝑝∑︁
𝑗=1

𝑋 𝑗b• 𝑗 + 𝜀, (2)

where

b• 𝑗 =
©­­­­­«

𝑏1 𝑗
𝑏2 𝑗
...

𝑏𝑞 𝑗

ª®®®®®¬
.

We are interested with the variable selection problem, that is identifying the 𝑋 𝑗 that are not relevant
in model (2), on the basis of an i.i.d. sample (𝑋 (𝑘 ) , 𝑌 (𝑘 ) )1≤𝑘≤𝑛 of (𝑋,𝑌 ). We say that a variable 𝑋 𝑗
is not relevant if the corresponding coefficients vector b• 𝑗 equals 0. So, putting 𝐼 = {1, · · · , 𝑝}, and
denoting by ∥ · ∥R𝑘 the usual Euclidean norm ofR𝑘 , we consider the subset 𝐼0 = { 𝑗 ∈ 𝐼 / ∥b• 𝑗 ∥R𝑞 = 0}
which is assumed to be non-empty, and we tackle the variable selection problem in model (1) as
a problem of estimating the set 𝐼1 = 𝐼 − 𝐼0. In order to simplify the estimation of 𝐼1 we will first
characterise it by means of a criterion which introduced below. We assume that E

(∥𝑋 ∥2R𝑝 ) < +∞
and E

(∥𝑌 ∥2R𝑞 ) < +∞; then, it is possible to define the covariance matrices

𝑉1 = E
((𝑋 − 𝜇) (𝑋 − 𝜇)⊤) and 𝑉12 = E

((𝑋 − 𝜇) (𝑌 − 𝜈)⊤) ,
where 𝜇 = E(𝑋), 𝜈 = E(𝑌 ) and 𝑢⊤ denotes the transposed of 𝑢. In all of the paper, the matrix 𝑉1 is
assumed to be invertible. For any subset 𝐽 := {𝑖1, · · · , 𝑖𝑘} of 𝐼, consider the 𝑘 × 𝑝 matrix defined by

𝐴𝐽 =

©­­­­­­«

𝑎 (𝐽 )11 𝑎 (𝐽 )12 · · · 𝑎 (𝐽 )1𝑝
𝑎 (𝐽 )21 𝑎 (𝐽 )22 · · · 𝑎 (𝐽 )2𝑝
...

...
...

...

𝑎 (𝐽 )𝑘1 𝑎 (𝐽 )𝑘2 · · · 𝑎 (𝐽 )𝑘𝑝

ª®®®®®®¬
,

where

𝑎 (𝐽 )ℓ 𝑗 =

{
1 if 𝑗 = 𝑖ℓ
0 if 𝑗 ≠ 𝑖ℓ

, 1 ≤ ℓ ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑝.

This matrix transforms any vector 𝑥 = (𝑥1, · · · , 𝑥𝑝)⊤ to the vector 𝐴𝐽𝑥 = (𝑥𝑖1 , · · · , 𝑥𝑖𝑘 )⊤ of lower
dimension, whose components are selected from the initial vector 𝑥 by taking only the components
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𝑥𝑖 such that 𝑖 ∈ 𝐽. We are seeking for a criterion allowing to measure the degree of relevance of
variables whose indices belong to 𝐽. From (1), we obtain 𝜈 = 𝐵𝜇 and, therefore,

𝑉12 = E
((𝑋 − 𝜇) (𝐵(𝑋 − 𝜇))⊤) + E ((𝑋 − 𝜇) 𝜀⊤)

= E
((𝑋 − 𝜇) (𝑋 − 𝜇)⊤) 𝐵⊤ + E (𝑋 − 𝜇) E (𝜀)⊤

= 𝑉1𝐵
⊤,

so 𝐵⊤ = 𝑉−1
1 𝑉12. If we only consider in (1) the selected variables, that is the variables whose

indices belong to 𝐽, we just have to replace 𝑋 by 𝐴𝐽𝑋 . Then, since the related covariance and
cross-covariance matrices are

𝑉 𝐽1 = E
((𝐴𝐽 (𝑋 − 𝜇)) (𝐴𝐽 (𝑋 − 𝜇))⊤) = 𝐴𝐽E ((𝑋 − 𝜇) (𝑋 − 𝜇)⊤) 𝐴⊤𝐽 = 𝐴𝐽𝑉1𝐴

⊤
𝐽

and
𝑉 𝐽12 = E

((𝐴𝐽 (𝑋 − 𝜇)) (𝑌 − 𝜈)⊤) = 𝐴𝐽E ((𝑋 − 𝜇) (𝑌 − 𝜈)⊤) = 𝐴𝐽𝑉12,

we deduce from a reasoning similar to that given before that the corresponding matrix of model
coefficients is the 𝑞 × 𝑘 matrix 𝐵𝐽 given by

𝐵⊤𝐽 =
(
𝑉 𝐽1

)−1
𝑉 𝐽12 =

(
𝐴𝐽𝑉1𝐴

⊤
𝐽

)−1
𝐴𝐽𝑉12.

This matrix contains the coefficients of model (1) when only the variables corresponding to 𝐽 are
used; these variables are relevant if 𝐵𝐽 is closed to 𝐵. But 𝐵𝐽 can not be compared to 𝐵 because it
has different dimensions; we consider rather the 𝑞 × 𝑝 matrix 𝐵 = 𝐵𝐽 𝐴𝐽 which contains the same
terms as 𝐵𝐽 to which are added the same null columns as 𝐵. Then, a measure of the degree of
relevance of variables whose indices belong to 𝐽 is given by a distance between 𝐵 and 𝐵. Using the
matrix norm ∥ · ∥𝑉1 given by

∥𝐴∥2𝑉1
= tr

(
𝑉1𝐴

⊤𝐴𝑉1
)
= ∥𝑉1𝐴

⊤∥,

where ∥ · ∥ denotes the usual matrix norm defined by ∥𝐴∥2 = tr (𝐴𝐴⊤), leads to the criterion

𝜉𝐽 = ∥𝐵 − 𝐵∥2𝑉1
= ∥𝑉1 (𝐵⊤ − 𝐵⊤)∥ = ∥𝑉12 −𝑉1Π𝐽𝑉12∥,

where Π𝐽 = 𝐴⊤𝐽
(
𝐴𝐽𝑉1𝐴

⊤
𝐽

)−1
𝐴𝐽 . Naturally, the required set 𝐼1 may be obtained by minimising 𝜉𝐽

over all subsets 𝐽 of 𝐼. But such an approach will not be used since it may lead to high computational
cost. We will rather use another strategy that allows a faster procedure. This is made possible thanks
to the following lemma:

Lemma 1. We have 𝐼1 ⊂ 𝐽 if, and only if, 𝜉𝐽 = 0.

This lemma shows that 𝐼1 is the minimal subset of 𝐼 for which the above criterion vanishes.
Furthermore, an index 𝑖 belongs to 𝐼0 if and only if 𝜉𝐾𝑖 = 0, where 𝐾𝑖 is the subset of 𝐼 obtained by
removing 𝑖 from 𝐼, that is 𝐾𝑖 = 𝐼 − {𝑖}. Indeed,

𝑖 ∈ 𝐼0 ⇔ {𝑖} ⊂ 𝐼0 ⇔ 𝐼 − 𝐼0 ⊂ 𝐼 − {𝑖} ⇔ 𝐼1 ⊂ 𝐾𝑖 ⇔ 𝜉𝐾𝑖 = 0,
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the last equivalence coming from Lemma 1. Consequently, 𝐼1 is the set of indices of 𝐼 for which we
have 𝜉𝐾𝑖 > 0. So it can be described from sorting the 𝜉𝐾𝑖 in decreasing order. Indeed, this approach
allows to highlight the non-zero tems and those which are zero, and 𝐼1 is made up of the indices
corresponding to the non-zero terms. More specically, there exist integers 𝜈1, · · · , 𝜈𝑝 and an integer
𝑑 ∈ {1, · · · , 𝑝 − 1} such that:

𝜉𝐾𝜈1 ≥ 𝜉𝐾𝜈2 ≥ · · · ≥ 𝜉𝐾𝜈𝑑 > 0 = 𝜉𝐾𝜈𝑑+1 = · · · = 𝜉𝐾𝜈𝑝 , (3)

with
𝜈𝑖 < 𝜈ℓ if 𝜉𝐾𝑖 = 𝜉𝐾ℓ and 𝑖 < ℓ. (4)

Note that if some of the 𝜉𝐾𝑖 are tied there are several ways to order them in nonincreasing order, but
there is a unique way for which (4) is satisfied. So (4) ensures the unicity of the 𝜈ℓ . From (3) we get

𝐼1 = {𝜈1, · · · , 𝜈𝑑}, (5)

so this set is completely determined if one determines the 𝜈ℓ and 𝑑. The 𝜈ℓ are determined by ordering
the 𝜉𝐾𝑖 in nonincreasing order so that (4) holds. On the other hand, putting 𝐽ℓ = {𝜈1, · · · , 𝜈ℓ }, we see
that 𝐼1 ⊂ 𝐽ℓ for all ℓ ∈ {𝑑, · · · , 𝑝}. Then, from Lemma 1, we deduce that 𝜉𝐽ℓ = 0 if ℓ ∈ {𝑑, · · · , 𝑝},
and 𝜉𝐽ℓ > 0 if ℓ ∈ {1, · · · , 𝑑 − 1}. Hence

𝑑 = min
{
ℓ ∈ 𝐼 / 𝜉𝐽ℓ = min

𝑖∈𝐼
(
𝜉𝐽𝑖

) }
. (6)

Selection of variables in (1) is reduced to the estimation of the subset 𝐼1 from an i.i.d. sample{(𝑋 (𝑘 ) , 𝑌 (𝑘 ) )}1≤𝑘≤𝑛 of (𝑋,𝑌 ), which, according to (5), amounts to estimating the 𝜈ℓ and 𝑑. For
doing that, we first have to estimate the above criterion. We consider the sample means

𝑋
(𝑛)

= 𝑛−1
𝑛∑︁
𝑘=1

𝑋 (𝑘 ) , 𝑌
(𝑛)

= 𝑛−1
𝑛∑︁
𝑘=1

𝑌 (𝑘 ) ,

and the empirical covariance matrices

𝑉 (𝑛)1 = 𝑛−1
𝑛∑︁
𝑘=1
(𝑋 (𝑘 ) − 𝑋 (𝑛) ) (𝑋 (𝑘 ) − 𝑋 (𝑛) )⊤,

and

𝑉 (𝑛)12 = 𝑛−1
𝑛∑︁
𝑘=1
(𝑋 (𝑘 ) − 𝑋 (𝑛) ) (𝑌 (𝑘 ) − 𝑌 (𝑛) )⊤.

Then, for any 𝐽 ⊂ 𝐼, an estimator of 𝜉𝐽 is given by

𝜉 (𝑛)𝐽 = ∥𝑉 (𝑛)12 −𝑉
(𝑛)
1 Π̂ (𝑛)𝐽 𝑉 (𝑛)12 ∥, (7)

where Π̂ (𝑛)𝐾 = 𝐴⊤𝐽 (𝐴𝐽𝑉 (𝑛)1 𝐴⊤𝐽 )−1𝐴𝐽 . Since the above empirical covariance matrices are consistent
estimators of the related covariances matrices, it is easy to see that 𝜉 (𝑛)𝐽 is a consistent estimator of
𝜉𝐽 . We will consider this estimator for estimating 𝐼1.
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3. Selection of variables
In this section we propose a new method for selecting variables in the model (1). More precisely, the
estimator given in (7) is used in order to obtain an estimator of 𝐼1, so achieving variable selection.
The latter estimator depends on two tuning parameters wich are introduced below, so a procedure for
choosing optimal values for these parameters, based on 𝐾-fold cross-validation, is introduced.

3.1 Estimation of 𝐼1
The subset 𝐼1 has been characterised in (5) as depending on the 𝜈ℓ and 𝑑, so it would be natural to
obtain an estimator of this subset by estimating the 𝜈ℓ and 𝑑 from a use of the 𝜉 (𝑛)𝐾𝑖 as it was done in
(3), (4) and (6) with the 𝜉𝐾𝑖 . But we found that such an approach does not make it possible to obtain
consistency of the resulting estimators because of possible ties in the values of the 𝜉 (𝑛)𝐾𝑖 . This is
why we rather adopt an approach consisting of adding to the 𝜉 (𝑛)𝐾𝑖 positive penalisation terms tending
towards 0 as 𝑛→ +∞, in order to obtain consistent estimators of the 𝜉𝐾𝑖 for which there are no ties.
More precisely, by putting

𝜙 (𝑛)𝑖 = 𝜉 (𝑛)𝐾𝑖 +
𝑓 (𝑖)
𝑛𝛼

, (8)

where 𝛼 ∈ ]0, 1/2[ and 𝑓 is a strictly decreasing function from 𝐼 to R+, we obtain a consistent
estimator 𝜙 (𝑛)𝑖 of 𝜉𝐾𝑖 for which the above required property is satisfied. Indeed, if 𝜉 (𝑛)𝐾𝑖 = 𝜉 (𝑛)𝐾 𝑗 for

𝑖 ≠ 𝑗 then 𝜙 (𝑛)𝑖 ≠ 𝜙 (𝑛)𝑗 . By ordering the 𝜙 (𝑛)𝑖 in nonincreasing order we obtain estimates 𝜈̂1, · · · , 𝜈̂𝑝
of 𝜈1, · · · , 𝜈𝑝 respectively; they satisfy

𝜙𝜈̂1 ≥ 𝜙𝜈̂2 ≥ · · · ≥ 𝜙𝜈̂𝑝 .

In order to estimate 𝑑, we will consider a consistent estimator of 𝜉𝐽ℓ obtained, for the same reasons
as above, from an appropriate penalisation of 𝜉 (𝑛)

𝐽𝑖
by a term which tends towars 0 as 𝑛→ +∞, where

𝐽𝑖 = {𝜈̂1, · · · , 𝜈̂𝑖}. More specifically, we put

𝜓 (𝑛)𝑖 = 𝜉 (𝑛)
𝐽𝑖
+ 𝑔 (𝜈̂𝑖)

𝑛𝛽
, (9)

where 𝛽 ∈ ]0, 1[ and 𝑔 is a strictly increasing function from 𝐼 to R+. Then, copying (6), we define
an estimate 𝑑 of 𝑑 by

𝑑 = arg min
𝑖∈𝐼

(
𝜓 (𝑛)𝑖

)
,

and we estimate 𝐼1 by the set
𝐼̂ (𝑛)1 =

{
𝜈̂1, 𝜈̂2, · · · , 𝜈̂𝑑

}
,

so achieving our variable selection procedure. The following theorem establishes consistency for
this procedure:

Theorem 1. We assume that 𝐼0 ≠ ∅, E (∥𝑋 ∥4R𝑝 ) < ∞ and E
(∥𝑌 ∥4R𝑞 ) < ∞.

lim
𝑛→+∞ 𝑃

(
𝐼̂ (𝑛)1 = 𝐼1

)
= 1.

Remark 1. Technical arguments for the proofs explain the choice of 𝑓 , 𝑔, 𝛼 and 𝛽 with the related
properties. Indeed:
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(i) in the proof of Lemma 3 we have, for instance, an inequality of the form���𝑛𝛼 (
𝜉 (𝑛)𝐾𝜈𝑖
− 𝜉 (𝑛)𝐾𝜈𝑖+1

)��� ≤ 𝑛𝛼−
1
2𝑈𝑛,

from which we want to prove that |𝑛𝛼 (𝜉 (𝑛)𝐾𝜈𝑖 − 𝜉
(𝑛)
𝐾𝜈𝑖+1
) | converges in probability to 0 as 𝑛→ +∞.

So we have to take 𝛼 < 1/2 since it is proved that𝑈𝑛 converges in distribution to an appropriate
random variable.

(ii) For proving Theorem 1, a similar argument leads to 0 < 𝛽 < 1 (see the proof of Theorem
3.1 in Nkiet, 2012). Further, we want to obtain 𝑓 (𝜈𝑖) − 𝑓 (𝜈𝑖+1) > 0 and 𝑔(𝜈𝑖) − 𝑔(𝜈𝑠) > 0
for (𝑖, 𝑠) ∈ 𝐼2 satisfying 𝜈𝑖 < 𝜈𝑖+1 and 𝜈𝑖 > 𝜈𝑠 . That is why 𝑓 (resp. 𝑔) is taken as a strictly
decreasing (resp. increasing) function.

Remark 2. Theorem 1 holds for any numbers 𝛼 and 𝛽 satisfying 0 < 𝛼 < 1/2 and 0 < 𝛽 < 1. So
our procedure depends on these two parameters and its performance could vary depending on their
values. The simulation results presented in the following section show the impact of these values.
This brings us back to the problem of choosing optimal values for 𝛼 and 𝛽. A method for doing that,
based on cross-validation procedure, is proposed in the following subsection.

Remark 3. The choice of the penalty functions 𝑓 and 𝑔 may also have an impact on the performance
of our method. Following Kundu and Murali (1976), we studied in the simulations this impact by
varying these functions from a given list.

3.2 Choosing optimal tuning parameters
The procedure for variable selection introduced in the preceding section depends on two tuning
parameters 𝛼 and 𝛽. These parameters may have influence on the performance of our method; then
the problem of choosing these parameters naturally occurs. We propose a method for obtaining an
optimal choice of (𝛼, 𝛽) based on 𝐾-fold cross-validation (with 𝐾 ∈ N∗) used in order to minimise
prediction loss. More precisely, consider a partition {S1, · · · ,S𝐾 } of the set S = {1, · · · , 𝑛}, each
Sℓ having the same size 𝑚 ∈ N∗ (then, 𝑛 = 𝐾 𝑚). For each ℓ in {1, · · · , 𝐾}, after removing
the ℓth subset Sℓ from S, we apply our method for selecting variable on the remaining sample
{(𝑋 (𝑘 ) , 𝑌 (𝑘 ) ); 𝑘 ∈ S − Sℓ } with a given value for (𝛼, 𝛽); this leads to estimates 𝑑 and 𝐼̂1. Putting
Sℓ = {𝑠1, · · · , 𝑠𝑚}, we consider the 𝑚 × 𝑑 and 𝑚 × 𝑞 matrices given by

X(ℓ )𝑠,𝛼,𝛽 =
©­­­«

(𝐴𝐼̂1𝑋 (𝑠1 ) )⊤
...

(𝐴𝐼̂1𝑋 (𝑠𝑚 ) )⊤

ª®®®¬
and Y(ℓ ) =

©­­«
(𝑌 (𝑠1 ) )⊤

...

(𝑌 (𝑠𝑚 ) )⊤

ª®®¬
that contain respectively the observations of the variables of 𝑋 that have been selected on the units
belonging to Sℓ , and the observations of the variables of 𝑌 on the units belonging to Sℓ . Then, we
consider the linear prediction

Ŷ(ℓ )𝑠,𝛼,𝛽 = X(ℓ )𝑠,𝛼,𝛽
(
(X(ℓ )𝑠,𝛼,𝛽)⊤X(ℓ )𝑠,𝛼,𝛽

)−1
(X(ℓ )𝑠,𝛼,𝛽)⊤Y(ℓ ) ,
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and the ℓth prediction loss
PL(ℓ ) (𝛼, 𝛽) = 1

𝑚
∥Y(ℓ ) − Ŷ(ℓ )𝑠,𝛼,𝛽 ∥2.

This permits to define the cross-validation index

𝐶𝑉 (𝛼, 𝛽) = 1
𝐾

𝐾∑︁
ℓ=1

PL(ℓ ) (𝛼, 𝛽),

which has to be minimised in order to obtain optimal values (𝛼𝑜𝑝𝑡 , 𝛽𝑜𝑝𝑡 ) for (𝛼, 𝛽) by

(𝛼𝑜𝑝𝑡 , 𝛽𝑜𝑝𝑡 ) = argmin
(𝛼,𝛽) ∈ ]0,1/2[×]0,1[

𝐶𝑉 (𝛼, 𝛽). (10)

Note that, if we take 𝐾 = 𝑛 and Sℓ = {ℓ}, for ℓ = 1, · · · , 𝑛, then we obtain the usual leave-one-out
cross-validation. Nevertheless, 𝐾-fold cross-validation with 𝐾 < 𝑛 is generally prefered since it
could give better results than leave-one-out cross-validation.

3.3 Algorithm of the proposed method
Our proposal is to achieve variable selection in the model (1) from the following steps:

(1) Partition the sample {(𝑋 (𝑘 ) , 𝑌 (𝑘 ) )}1≤𝑘≤𝑛 into two subsamples: a training sample
{(𝑋 (𝑘 ) , 𝑌 (𝑘 ) )}𝑘∈S1 and a test sample {(𝑋 (𝑘 ) , 𝑌 (𝑘 ) )}𝑘∈S2 , where S1 ∩ S1 = ∅ and S1 ∪ S1 =
{1, · · · , 𝑛}.

(2) Use the training sample for choosing optimal pair of tuning parameters (𝛼𝑜𝑝𝑡 , 𝛽𝑜𝑝𝑡 ) as defined
in (10), from 𝐾-fold cross-validation as defined in Section 3.2.

(3) Use the test sample for computing the estimate 𝐼̂1 as defined in Section 3.1 with tuning
parameters equal to (𝛼𝑜𝑝𝑡 , 𝛽𝑜𝑝𝑡 ) obtained in the previous step.

4. Simulations
In this section, we report results of simulations made for studying properties of the proposed method.
Several issues are adressed: the influence of the penalty functions introduced in (8) and (9) and that
of the parameters 𝛼 and 𝛽 on the performance of the proposed method, and comparison with the
adaptive sparse canonical correlation analysis (ASCCA) method of An et al. (2013) and traditional
methods based on AIC, BIC, Mallows’s𝐶𝑝 , FPE criterion, prediction sum of squares (PSS) criterion
and generalised information criterion (GIC) (for a review, see Nishii, 1984). Each data set was
generated as follows: 𝑋 (𝑘 ) is generated from a multivariate normal distribution in R7 with mean 0
and covariance matrix Λ = (𝜆𝑖 𝑗 )1≤𝑖, 𝑗≤𝑝 given by 𝜆𝑖 𝑗 = 𝜌 |𝑖− 𝑗 | for any 1 ≤ 𝑖, 𝑗 ≤ 7, where 𝜌 ∈ [0, 1].
The corresponding response 𝑌 (𝑘 ) is generated according to (1) with

𝐵 =

©­­­­­­«

3 0 0 1.5 0 0 2
4 0 0 2.5 0 0 −1
5 0 0 0.5 0 0 3
6 0 0 3 0 0 1
7 0 0 6 0 0 4

ª®®®®®®
¬
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and the related error term 𝜀 (𝑘 ) is generated from a multivariate normal distribution in R7 with mean
0 and covariance matrix 𝜏2 𝐼7, where 𝐼7 denotes the 7 × 7 identity matrix. For this example, the true
set of relevant variables is 𝐼1 = {1, 4, 7}. We simulate 1000 independent replications of samples
generated as indicated above, over which four criteria are calculated in order to assess performance of
the methods: (i) the average of prediction loss (PL); (ii) the proportion of equality (PE) of the set of
selected variables to the true set of relevant variables, that is 𝐼̂1 = 𝐼1; (iii) the proportion of inclusion
(PI) of the true set of relevant variables in the set of selected variables to the true set of relevant
variables that is 𝐼1 ⊂ 𝐼̂1; (iv) the average of number of selected variables (NV). For computing PL
two independent data sets are generated for each replication: training data and test data, each with
sample size 𝑛 = 100, 200. The training data is used for selecting variables and the test data is used
for computing prediction loss (PL). This is done from the following steps:

• we simulate a training data set in a 𝑛 × 𝑝 matrix X1 whose rows follow the distribution
𝑁 (0,Λ), and a 𝑛 × 𝑞 matrix E1 whose rows follow the distribution 𝑁 (0, 𝜏2𝐼𝑞). Then we take
Y1 = X1𝐵

⊤ + E1, and we calculate 𝑑 and 𝐼̂1 := 𝐼̂ (𝑛)1 on the basis of (Y1,X1);

• we simulate a test data set in matrices X2, E2 and Y2 as above. Letting X̂ be the 𝑛 × 𝑑 matrix
obtained from X2 by considering only the columns corresponding to 𝐼̂1, the aforementioned
prediction loss is

PL =
1
𝑛
∥Y2 − X̂B̂⊤∥2,

where B̂⊤ = (X̂⊤X̂)−1X̂⊤Y2.

4.1 Influence of penalty functions
In order to evaluate the impact of penalty functions introduced in (8) and (9) on the performance
of our method we took 𝑓𝑛 (𝑖) = 𝑛−1/4/ℎℓ (𝑖) and 𝑔𝑛 (𝑖) = 𝑛−1/4ℎℓ (𝑖), ℓ = 1, · · · , 13, where the ℎℓ
are functions used in Kundu and Murali (1996) for studying impact of penalty functions on model
selection in linear regression. More precisely, ℎ1 (𝑥) = 𝑥, ℎ2 (𝑥) = 𝑥0.1, ℎ3 (𝑥) = 𝑥0.5, ℎ4 (𝑥) = 𝑥0.9,
ℎ5 (𝑥) = 𝑥10, ℎ6 (𝑥) = ln(𝑥), ℎ7 (𝑥) = ln(𝑥)0.1, ℎ8 (𝑥) = ln(𝑥)0.5, ℎ9 (𝑥) = ln(𝑥)0.9, ℎ10 (𝑥) = 𝑥 ln(𝑥),
ℎ11 (𝑥) = (𝑥 ln(𝑥))0.1, ℎ12 (𝑥) = (𝑥 ln(𝑥))0.5, ℎ13 (𝑥) = (𝑥 ln(𝑥))0.9. For the variance of 𝜀, we took
𝜏 = 1, and we considered three cases for generating data: (i) 𝜌 = 0.0, (ii) 𝜌 = 0.5 and (iii) 𝜌 = 0.95,
and we took 𝑛 = 100, 𝛼 = 0.45, 𝛽 = 0.6. The results are given in Table 1. These results clearly
indicate the importance of choosing an appropriate penalty function since it has an impact on the
performance of the method. Indeed, the worst results are obtained with ℎ5. On the other hand, ℎ1,
ℎ4, ℎ10, ℎ12 and ℎ13 give worse results than ℎ2, ℎ3, ℎ6, ℎ7, ℎ8 and ℎ11 whereas these latter functions
behave very similarly. Comparing the effects of correlation of the 𝑋𝑖 , it is observed that, for most
functions, when the correlation changes from 𝜌 = 0.0 to 𝜌 = 0.5 the effect is not significant but
when the correlation is increased to 𝜌 = 0.95 the performance drops and the worst affected are ℎ1,
ℎ3, ℎ4, ℎ6, ℎ12 and ℎ13. Finally, choosing the proper penalty functions appears as one of the most
important problems in practice, and its seems that more work is needed in this direction. Although
no theoretical justifications can be given, we recommend using ℎ2, ℎ7, ℎ8, ℎ9 or ℎ11 since these
functions gave the best results in our simulations.
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Table 1. Average of prediction loss (PL) over 1000 replications with different penalty functions
𝑓𝑛 = 𝑛−𝛼/ℎℓ and 𝑔𝑛 = 𝑛−𝛽ℎℓ , ℓ = 1, · · · , 13 with 𝛼 = 0.45 and 𝛽 = 0.6, 𝑛 = 100.

PL

Function 𝜌 = 0.0 𝜌 = 0.5 𝜌 = 0.95

ℎ1 0.02657 0.19909 2.68593
ℎ2 0.00068 0.00095 0.00298
ℎ3 0.00035 0.00075 0.00940
ℎ4 0.00533 0.01949 2.65396
ℎ5 114.908 117.487 54.8840
ℎ6 0.00094 0.00070 0.00524
ℎ7 0.00059 0.00107 0.00413
ℎ8 0.00061 0.00066 0.00396
ℎ9 0.00055 0.00115 0.00458
ℎ10 2.58811 5.63562 2.71928
ℎ11 0.00072 0.00059 0.00451
ℎ12 0.00058 0.00205 1.68564
ℎ13 1.95441 2.38247 2.71770

4.2 Influence of parameters 𝛼 and 𝛽
Since tuning parameters may have impact on the performance of a statistical procedure, it is important
to study their influence. That is why numerical experiments were made in order to appreciate the
influence of 𝛼 and 𝛽 on the performance of our method. For doing that, we made simulations by
taking

𝑓𝑛 (𝑖) = 𝑛−𝛼/ℎ7 (𝑖) and 𝑔𝑛 (𝑖) = 𝑛−𝛽ℎ7 (𝑖), (11)

with 𝛼 = 0.1, 0.2, 0.3, 0.4, 0.45, and 𝛽 varying in [0, 1[. The choice of ℎ7 in these penalty functions
is motivated by the fact that it was one of the functions that gave the best results for PL in the previous
study. The results are reported in Fig. 1 (a)–(b) and suggest that the parameters 𝛼 and 𝛽 have an
impact on the performance of the method. Indeed, the curves obtained for PL vary as 𝛼 varies.
Further, for a fixed 𝛼, PL decreases as 𝛽 increases in [0, 0.4[. Finally, choosing the proper values
for 𝛼 and 𝛽 is also an important issue to address in practice. So, choosing optimal values for these
parameters by using the procedure indicated in Section 3.2 is crucial for ensuring a good performance
of our method.

4.3 Comparison with existing methods
In this section, we compare our method (OM) to the ASCCA method of An et al. (2013) and the
methods based on AIC, BIC, 𝐶𝑝 , FPE and GIC criteria (see Nishii, 1984). These latter methods
select the variables that minimise these criteria among all subsets of variables. The average of
prediction loss (PL), the proportion of good selection (PE), the proportion of inclusion (PI) and the
average of number of selected variables (NV), over 1000 replications, are then used as a measures of
the performances of all the methods. For computing PL, the following approach is used: for each of
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Figure 1. Average of PL over 1000 replications versus 𝛽 for different values of 𝛼. (a) 𝑛 = 100 and
(b) 𝑛 = 300.

the 1000 independent replications, the sample is partitioned into a training sample and a test sample,
and:

(i) the training sample is used for selecting variables from all the methods; our method is used with
penalty functions given in (11) with optimal (𝛼, 𝛽) obtained by using 𝐾-fold cross-validation,
with 𝐾 = 5, as indicated in Section 3.3;

(ii) the test sample is then used for computing PL for all the methods.

Our method was performed by using the penalty functions given in (11). Table 2 reports the results
for average of PL. It can be seen that our method gives results that are very close to those given by the
ASCCA, 𝐶𝑝 , FPE and PSS methods. They outperform the remaining methods that also give results
that are very close to each other. Concerning PE, Table 3 shows that our method gives better results
than all the others. ASCCA method is closest to ours, followed by FPE and PSS methods. The
remaining methods give very bad results. The results for PI are reported in Table 4; it indicates that
all methods except AIC, BIC and GIC based methods get the relevant variables among the variables
that are selected. The results for NV, reported in Table 5, are better for our method since the obtained
values are closer to the true value of number of relevant variables.

5. Proofs
In this section, we give the proof of Lemma 1 and Theorem 1 which are the main results of the paper.
For proving Theorem 1 a preliminary lemma, that is given and proved, is required.

5.1 Proof of Lemma 1
It is easy to check that, putting

𝑉
( 𝑗 )
12 = E((𝑌 𝑗 − 𝜈 𝑗 ) (𝑋 − 𝜇)), 𝜉 ( 𝑗 )𝐽 = ∥𝑉 ( 𝑗 )12 −𝑉1Π𝐽𝑉

( 𝑗 )
12 ∥R𝑝 and 𝐼

( 𝑗 )
1 = {𝑖 ∈ 𝐼 / 𝑏 𝑗𝑖 ≠ 0},
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Table 2. Average of PL for our method (OM) with 𝐾 = 5, and ASCCA, AIC, BIC, CP, FPE, PSS
and GIC methods over 1000 replications with 𝑛 = 100, 𝜌 = 0.5.

𝜏 OM ASCCA AIC BIC 𝐶𝑝 FPE PSS GIC

0.1 0.00011 0.00011 0.00766 0.00766 0.00011 0.00011 0.00011 0.00766
0.2 0.00021 0.00021 0.00732 0.00732 0.00021 0.00021 0.00022 0.00732
0.3 0.00036 0.00035 0.00648 0.00648 0.00035 0.00035 0.00035 0.00648
0.4 0.00042 0.00041 0.00780 0.00780 0.00041 0.00041 0.00041 0.00818
0.5 0.00052 0.00052 0.00860 0.00053 0.00053 0.00053 0.00053 0.00860

Table 3. PE for our method (OM) with 𝐾 = 5, and ASCCA, AIC, BIC, CP, FPE, PSS and GIC
methods over 1000 replications.

𝑛 = 100, 𝜌 = 0.5

𝜏 OM ASCCA AIC BIC 𝐶𝑝 FPE PSS GIC

0.1 0.92 0.62 0.00 0.00 0.03 0.60 0.67 0.00
0.2 1.00 0.73 0.00 0.00 0.10 0.59 0.68 0.00
0.3 0.93 0.62 0.00 0.00 0.09 0.66 0.73 0.00
0.4 1.00 0.64 0.00 0.00 0.11 0.61 0.74 0.00
0.5 0.90 0.69 0.00 0.00 0.19 0.67 0.72 0.00

𝑛 = 200, 𝜏 = 0.1

𝜌 OM ASCCA AIC BIC 𝐶𝑝 FPE PSS GIC

0.1 0.97 0.79 0.00 0.00 0.03 0.68 0.69 0.00
0.2 1.00 0.86 0.00 0.00 0.01 0.74 0.82 0.00
0.3 0.98 0.77 0.00 0.00 0.03 0.67 0.77 0.00
0.4 1.00 0.78 0.00 0.00 0.02 0.60 0.68 0.00
0.5 0.98 0.78 0.00 0.00 0.02 0.67 0.70 0.00

one has 𝜉2
𝐽 =

∑𝑞
𝑗=1 (𝜉

( 𝑗 )
𝐽 )2 and 𝐼1 =

⋃𝑞
𝑗=1 𝐼

( 𝑗 )
1 . Then, 𝜉𝐽 equals 0 if, and only if, for all 𝑗 ∈ {1, · · · , 𝑞},

one has 𝜉 ( 𝑗 )𝐽 = 0. From Lemma 1 in Nkiet (2001), this latter property is equivalent to having 𝐼 ( 𝑗 )1 ⊂ 𝐽
for any 𝑗 ∈ {1, · · · , 𝑞}, which is equivalent to 𝐼1 ⊂ 𝐽.

5.2 A preliminary lemma
We denote by M𝑚,𝑟 (R) the space of 𝑚 × 𝑟 matrices with real terms; when 𝑚 = 𝑟 , we simply write
M𝑚 (R) instead of M𝑚,𝑚 (R). Each element 𝐴 of M𝑝+𝑞 (R) can be writen as

𝐴 =
©­­
«
𝐴11 𝐴12

𝐴21 𝐴22

ª®®
¬
,
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Table 4. PI for our method (OM) with 𝐾 = 5, and ASCCA, AIC, BIC, CP, FPE, PSS and GIC
methods over 1000 replications.

𝑛 = 100, 𝜌 = 0.5

𝜏 OM ASCCA AIC BIC 𝐶𝑝 FPE PSS GIC

0.1 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.2 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.3 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.4 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.5 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00

𝑛 = 200, 𝜏 = 0.1

𝜌 OM ASCCA AIC BIC 𝐶𝑝 FPE PSS GIC

0.1 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.2 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.3 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.4 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00
0.5 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00

where 𝐴11 ∈ M𝑝 (R), 𝐴12 ∈ M𝑝,𝑞 (R), 𝐴21 ∈ M𝑞,𝑝 (R) and 𝐴22 ∈ M𝑞 (R). Then we consider the
projectors

𝑃1 : 𝐴 ∈M𝑝+𝑞 (R) ↦→ 𝐴11 ∈M𝑝 (R) and 𝑃2 : 𝐴 ∈M𝑝+𝑞 (R) ↦→ 𝐴12 ∈M𝑝,𝑞 (R),
and we have:

Lemma 2. We have
√
𝑛 𝜉 (𝑛)𝐽 = ∥Ψ̂ (𝑛)𝐽 (𝐻 (𝑛) ) +

√
𝑛 𝛿𝐽 ∥, where 𝛿𝐽 = 𝑉12 − 𝑉1Π𝐽𝑉12, (Ψ̂ (𝑛)𝐽 )𝑛∈N∗ is

a sequence of random linear maps from M𝑝+𝑞 (R) to M𝑝,𝑞 (R) which converges almost surely, as
𝑛→ +∞, to the linear map Ψ𝐽 given by

Ψ𝐽 (𝐴) = 𝑃2 (𝐴) − 𝑃1 (𝐴)Π𝐽𝑉12 +𝑉1Π𝐽𝑃1 (𝐴)Π𝐽𝑉12 −𝑉1Π𝐽𝑃2 (𝐴),
and (𝐻 (𝑛) )𝑛∈N∗ is a sequence of random variables with values in M𝑝+𝑞 (R) which converges in
distribution to random variable 𝐻 having a centred normal distribution in M𝑝+𝑞 (R).
Proof. We have
√
𝑛𝜉 (𝑛)𝐽 = ∥√𝑛(𝑉 (𝑛)12 −𝑉12) −

√
𝑛(𝑉 (𝑛)1 −𝑉1)Π̂ (𝑛)𝐽 𝑉 (𝑛)12 −𝑉1

(√
𝑛(Π̂ (𝑛)𝐽 − Π𝐽 )

)
𝑉 (𝑛)12

−𝑉1Π𝐽
(√
𝑛(𝑉 (𝑛)12 −𝑉12)

)
+ √𝑛𝛿𝐽 ∥,

and since

Π̂ (𝑛)𝐽 − Π𝐽 = 𝐴⊤𝐽
(
(𝐴𝐽𝑉 (𝑛)1 𝐴⊤𝐽 )−1 − (𝐴𝐽𝑉1𝐴

⊤
𝐽 )−1

)
𝐴𝐽

= 𝐴⊤𝐽
(
−(𝐴𝐽𝑉 (𝑛)1 𝐴⊤𝐽 )−1

(
𝐴𝐽𝑉

(𝑛)
1 𝐴⊤𝐽 − 𝐴𝐽𝑉1𝐴

⊤
𝐽

)
(𝐴𝐽𝑉1𝐴

⊤
𝐽 )−1

)
𝐴𝐽

= −Π̂ (𝑛)𝐽
(
𝑉 (𝑛)1 −𝑉1

)
Π𝐽 ,
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Table 5. Average of NV for our method (OM) with 𝐾 = 5, and ASCCA, AIC, BIC, CP, FPE, PSS
and GIC methods over 1000 replications.

𝑛 = 100, 𝜌 = 0.5

𝜏 OM ASCCA AIC BIC 𝐶𝑝 FPE PSS GIC

0.1 3.05 3.50 4.37 4.07 5.28 3.37 3.38 3.87
0.2 3.00 3.33 4.31 4.02 4.96 3.47 3.34 3.77
0.3 3.07 3.50 4.28 4.07 5.01 3.42 3.32 3.85
0.4 3.00 3.52 3.27 4.02 4.96 3.43 3.27 3.84
0.5 3.10 3.42 4.43 4.10 4.63 3.44 3.32 3.85

𝑛 = 200, 𝜏 = 0.1

𝜌 OM ASCCA AIC BIC 𝐶𝑝 FPE PSS GIC

0.1 3.03 3.25 3.20 2.28 5.69 3.37 3.35 1.99
0.2 3.00 3.15 4.15 3.47 5.72 3.31 3.20 2.29
0.3 3.02 3.37 4.32 3.96 5.69 3.36 3.26 3.26
0.4 3.00 3.26 4.26 4.06 5.46 3.41 3.32 3.96
0.5 3.03 3.27 4.37 4.01 5.58 3.41 3.36 3.98

it follows that

√
𝑛𝜉 (𝑛)𝐽 = ∥√𝑛(𝑉 (𝑛)12 −𝑉12) −

√
𝑛(𝑉 (𝑛)1 −𝑉1)Π̂ (𝑛)𝐽 𝑉 (𝑛)12 +𝑉1Π̂

(𝑛)
𝐽

(√
𝑛
(
𝑉 (𝑛)1 −𝑉1

))
Π𝐽𝑉

(𝑛)
12

−𝑉1Π𝐽
(√
𝑛(𝑉 (𝑛)12 −𝑉12)

)
+ √𝑛𝛿𝐽 ∥. (12)

Let us consider the R𝑝+𝑞-valued random vectors

𝑍 =

(
𝑋

𝑌

)
, 𝑍 (𝑘 ) =

(
𝑋 (𝑘 )

𝑌 (𝑘 )

)
, 𝑘 = 1, · · · , 𝑛.

The covariance matrix of 𝑍 is given by

𝑉 = E((𝑍 − 𝜂) (𝑍 − 𝜂)⊤) =
©­­«
𝑉1 𝑉12

𝑉21 𝑉2

ª®®¬
, (13)

where 𝜂 = E(𝑍), 𝑉2 = E((𝑌 − 𝜈) (𝑌 − 𝜈)⊤) and 𝑉21 = 𝑉⊤12. Further, putting

𝑍
(𝑛)

= 𝑛−1
𝑛∑︁
𝑘=1

𝑍 (𝑘 ) and 𝑉 (𝑛) = 𝑛−1
𝑛∑︁
𝑘=1
(𝑍 (𝑘 ) − 𝑍 (𝑛) ) (𝑍 (𝑘 ) − 𝑍 (𝑛) )⊤,

we can write

𝑉 (𝑛) =
©­­«
𝑉 (𝑛)1 𝑉 (𝑛)12

𝑉 (𝑛)21 𝑉 (𝑛)2

ª®®¬
, (14)
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where 𝑉 (𝑛)2 = 𝑛−1 ∑𝑛
𝑘=1 (𝑌 (𝑘 ) − 𝑌

(𝑛) ) (𝑌 (𝑘 ) − 𝑌 (𝑛) )⊤ and 𝑉 (𝑛)21 = (𝑉 (𝑛)12 )⊤. Then we deduce from
(12), (13) and (14) that

√
𝑛𝜉 (𝑛)𝐽 = ∥Ψ̂ (𝑛)𝐽 (𝐻 (𝑛) ) +

√
𝑛𝛿𝐽 ∥, where 𝐻 (𝑛) =

√
𝑛(𝑉 (𝑛) − 𝑉) and Ψ̂ (𝑛)𝐽 is

defined by

∀𝐴 ∈ L(R𝑝+𝑞), Ψ̂ (𝑛)𝐽 (𝐴) = 𝑃2 (𝐴) − 𝑃1 (𝐴)Π̂ (𝑛)𝐽 𝑉 (𝑛)12 +𝑉1Π̂
(𝑛)
𝐽 𝑃1 (𝐴)Π𝐴𝑉 (𝑛)12 −𝑉1Π𝐽𝑃2 (𝐴).

Considering the usual matrices norm ∥ · ∥∞ defined in M𝑝,𝑞 (R) by ∥𝐴∥∞ =
sup𝑥∈R𝑞−{0} ∥𝐴𝑥∥R𝑝/∥𝑥∥R𝑞 and recalling that, for two matrices 𝐴 and 𝐵, one has ∥𝐴𝐵∥∞ ≤
∥𝐴∥∞∥𝐵∥∞, we obtain

∥Ψ̂ (𝑛)𝐽 (𝐴) − Ψ𝐽 (𝐴)∥∞ =



−𝑃1 (𝐴)

(
Π̂ (𝑛)𝐽 − Π𝐽

)
𝑉 (𝑛)12 − 𝑃1 (𝐴)Π𝐽

(
𝑉 (𝑛)12 −𝑉12

)
+𝑉1

(
Π̂ (𝑛)𝐽 − Π𝐽

)
𝑃1 (𝐴)Π𝐽𝑉 (𝑛)12 +𝑉1Π𝐽𝑃1 (𝐴)Π𝐽

(
𝑉 (𝑛)12 −𝑉12

)



∞

≤ ∥𝑃1 (𝐴)∥∞
[
∥Π̂ (𝑛)𝐽 − Π𝐽 ∥∞∥𝑉

(𝑛)
12 ∥∞ + ∥Π𝐽 ∥∞∥𝑉

(𝑛)
12 −𝑉12∥∞

+ ∥𝑉1∥∞∥Π𝐽 ∥∞∥Π̂ (𝑛)𝐽 − Π𝐽 ∥∞∥𝑉
(𝑛)
12 ∥∞ +∥𝑉1∥∞∥Π𝐽 ∥2∞∥𝑉 (𝑛)12 −𝑉12∥∞

]
≤

[
∥Π̂ (𝑛)𝐽 − Π𝐽 ∥∞∥𝑉

(𝑛)
12 ∥∞ + ∥Π𝐽 ∥∞∥𝑉

(𝑛)
12 −𝑉12∥∞

+ ∥𝑉1∥∞∥Π𝐽 ∥∞∥Π̂ (𝑛)𝐽 − Π𝐽 ∥∞∥𝑉
(𝑛)
12 ∥∞

+∥𝑉1∥∞∥Π𝐽 ∥2∞∥𝑉 (𝑛)12 −𝑉12∥∞
]
∥𝑃1∥∞,∞∥𝐴∥∞,

where ∥𝑇 ∥∞,∞ := sup𝐴∈M𝑝,𝑞 (R)−{0} ∥𝑇 (𝐴)∥∞/∥𝐴∥∞. Hence

∥Ψ̂ (𝑛)𝐽 − Ψ𝐽 ∥∞,∞ ≤ [∥1 + ∥𝑉1∥∞∥Π𝐽 ∥∞∥] ∥𝑉 (𝑛)12 ∥∞∥Π̂
(𝑛)
𝐽 − Π𝐽 ∥∞∥𝑃1∥∞,∞

+ [1 + ∥𝑉1∥∞∥Π𝐽 ∥∞] ∥Π𝐽 ∥∞∥𝑉 (𝑛)12 −𝑉12∥∞∥𝑃1∥∞,∞. (15)

From the strong law of large numbers it is easily seen that 𝑉 (𝑛)1 (resp. 𝑉 (𝑛)12 converges almost surely,
as 𝑛 → +∞ to 𝑉1 (resp. 𝑉12). Therefore, Π̂ (𝑛)𝐽 converges almost surely, as 𝑛 → +∞ to Π𝐽 , and
from (15) we deduce that Ψ̂ (𝑛)𝐽 converges almost surely, as 𝑛 → +∞ to Ψ𝐽 . It remains to obtain the
asymptotic distribution of 𝐻 (𝑛) . We have 𝐻 (𝑛) = 𝐻 (𝑛)1 − 𝐻 (𝑛)2 where

𝐻 (𝑛)1 =
√
𝑛

(
1
𝑛

𝑛∑︁
𝑘=1

𝑍𝑘 𝑍
⊤
𝑘 −𝑉

)
and 𝐻 (𝑛)2 =

1√
𝑛

(
(√𝑛 𝑍 (𝑛) ) (√𝑛 𝑍 (𝑛) )⊤

)
.

The central limit theorem ensures that 𝐻 (𝑛)1 (resp.
√
𝑛 𝑍
(𝑛) ) converges in distribution, as 𝑛 → +∞,

to a random variable 𝐻 (resp. 𝑈) having a centred normal distribution. Hence, 𝐻 (𝑛)2 converges
in probability, as 𝑛 → +∞, to 0 and Slutsky theorem permits to conclude that 𝐻 (𝑛) converges in
distribution, as 𝑛→ +∞, to 𝐻.

5.3 Proof of Theorem 1
We just need to prove the lemma which is given below. Then the proof of Theorem 1 is similar to
that of Theorem 3.1 in Nkiet (2012). Let 𝑟 ∈ N∗ and (𝑚1, · · · , 𝑚𝑟 ) ∈ (N∗)𝑟 such that

∑𝑟
ℓ=1 𝑚ℓ = 𝑝
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and

𝜉𝐾𝜈1 = · · · = 𝜉𝐾𝜈𝑚1
> 𝜉𝐾𝜈𝑚1+1

= · · · = 𝜉𝐾𝜈𝑚1+𝑚2
> · · · > 𝜉𝐾𝜈𝑚1+𝑚2+···+𝑚𝑟−1+1

= · · · = 𝜉𝐾𝜈𝑚1+𝑚2+···+𝑚𝑟
.

Then, putting
𝐸 = {ℓ ∈ N∗ / 1 ≤ ℓ ≤ 𝑟, 𝑚ℓ ≥ 2}

and

𝐹ℓ :=

{(
ℓ−1∑︁
𝑘=0

𝑚𝑘

)
+ 1, · · · ,

(
ℓ∑︁
𝑘=0

𝑚𝑘

)
− 1

}
,

with 𝑚0 = 0, we have:

Lemma 3. If 𝐸 ≠ ∅, then for all ℓ ∈ 𝐸 and all 𝑖 ∈ 𝐹ℓ , the sequence 𝑛𝛼 (𝜉 (𝑛)𝐾𝜈𝑖 − 𝜉
(𝑛)
𝐾𝜈𝑖+1
) converges in

probability to 0 as 𝑛→ +∞.

Proof. Let us put 𝛾ℓ = 𝜉𝐾𝜈𝑖 = 𝜉𝐾𝜈𝑖+1 ; if 𝛾ℓ = 0, then���𝑛𝛼 (
𝜉 (𝑛)𝐾𝜈𝑖
− 𝜉 (𝑛)𝐾𝜈𝑖+1

)��� = 𝑛𝛼− 1
2

���∥𝜉 (𝑛)𝐾𝜈𝑖 (𝐻 (𝑛) )∥ − ∥𝜉 (𝑛)𝐾𝜈𝑖+1 (𝐻 (𝑛) )∥
���

≤ 𝑛𝛼− 1
2 ∥

(
Ψ̂ (𝑛)𝐾𝜈𝑖

− Ψ̂ (𝑛)𝐾𝜈𝑖+1
) (
𝐻 (𝑛)

)
∥

≤ 𝑛𝛼− 1
2 ∥Ψ̂ (𝑛)𝐾𝜈𝑖 − Ψ̂

(𝑛)
𝐾𝜈𝑖+1
∥∞∥𝐻 (𝑛) ∥.

Since Ψ̂ (𝑛)𝐾𝜈𝑖
and Ψ̂ (𝑛)𝐾𝜈𝑖+1

converge almost surely, as 𝑛 → +∞, to Ψ𝐾𝜈𝑖 and Ψ𝐾𝜈𝑖+1 respectively, and

since 𝐻 (𝑛) converges in distribution, as 𝑛→ +∞, to 𝐻, it follows from the preceding inequality and
from 𝛼 < 1/2 that 𝑛𝛼 (𝜉 (𝑛)𝐾𝜈𝑖 − 𝜉

(𝑛)
𝐾𝜈𝑖+1
) converges in probability to 0 as 𝑛→ +∞. If 𝛾ℓ ≠ 0, we have

𝑛𝛼
(
𝜉 (𝑛)𝐾𝜈𝑖
− 𝜉 (𝑛)𝐾𝜈𝑖+1

)
= 𝑛𝛼−

1
2

(
∥Ψ̂ (𝑛)𝐾𝜈𝑖 (𝐻

(𝑛) ) + √𝑛𝛿𝐾𝜈𝑖 ∥ − ∥Ψ̂
(𝑛)
𝐾𝜈𝑖+1
(𝐻 (𝑛) ) + √𝑛𝛿𝐾𝜈𝑖+1 ∥

)

=
𝑛𝛼−

1
2

(
∥Ψ̂ (𝑛)𝐾𝜈𝑖 (𝐻

(𝑛) )∥2 − ∥Ψ̂ (𝑛)𝐾𝜈𝑖+1 (𝐻
(𝑛) )∥2

)
∥Ψ̂ (𝑛)𝐾𝜈𝑖 (𝐻

(𝑛) ) + √𝑛𝛿𝐾𝜈𝑖 ∥ + ∥Ψ̂
(𝑛)
𝐾𝜈𝑖+1
(𝐻 (𝑛) ) + √𝑛𝛿𝐾𝜈𝑖+1 ∥

+
2𝑛𝛼

(〈
𝛿𝐾𝜈𝑖 , Ψ̂

(𝑛)
𝐾𝜈𝑖
(𝐻 (𝑛) )

〉
−

〈
𝛿𝐾𝜈𝑖+1 , Ψ̂

(𝑛)
𝐾𝜈𝑖+1
(𝐻 (𝑛) )

〉)
∥Ψ̂ (𝑛)𝐾𝜈𝑖 (𝐻

(𝑛) ) + √𝑛𝛿𝐾𝜈𝑖 ∥ + ∥Ψ̂
(𝑛)
𝐾𝜈𝑖+1
(𝐻 (𝑛) ) + √𝑛𝛿𝐾𝜈𝑖+1 ∥

=
𝑛𝛼−1

(
∥Ψ̂ (𝑛)𝐾𝜈𝑖 (𝐻

(𝑛) )∥2 − ∥Ψ̂ (𝑛)𝐾𝜈𝑖+1 (𝐻
(𝑛) )∥2

)
∥𝑛− 1

2 Ψ̂ (𝑛)𝐾𝜈𝑖
(𝐻 (𝑛) ) + 𝛿𝐾𝜈𝑖 ∥ + ∥𝑛−

1
2 Ψ̂ (𝑛)𝐾𝜈𝑖+1

(𝐻 (𝑛) ) + 𝛿𝐾𝜈𝑖+1 ∥

+
2𝑛𝛼− 1

2

(〈
𝛿𝐾𝜈𝑖 , Ψ̂

(𝑛)
𝐾𝜈𝑖
(𝐻 (𝑛) )

〉
−

〈
𝛿𝐾𝜈𝑖+1 , Ψ̂

(𝑛)
𝐾𝜈𝑖+1
(𝐻 (𝑛) )

〉)
∥𝑛− 1

2 Ψ̂ (𝑛)𝐾𝜈𝑖
(𝐻 (𝑛) ) + 𝛿𝐾𝜈𝑖 ∥ + ∥𝑛−

1
2 Ψ̂ (𝑛)𝐾𝜈𝑖+1

(𝐻 (𝑛) ) + 𝛿𝐾𝜈𝑖+1 ∥
,

where < ·, · > is given by < 𝐴, 𝐵 >= tr(𝐴𝐵⊤). First,���𝑛𝛼−1
(
∥Ψ̂ (𝑛)𝐾𝜈𝑖 (𝐻

(𝑛) )∥2 − ∥Ψ̂ (𝑛)𝐾𝜈𝑖+1 (𝐻
(𝑛) )∥2

)��� ≤ 𝑛𝛼−1
(
∥Ψ̂ (𝑛)𝐾𝜈𝑖 ∥

2
∞ + ∥Ψ̂ (𝑛)𝐾𝜈𝑖+1 ∥

2
∞
)
∥𝐻 (𝑛) ∥2 (16)
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and, further, ���2𝑛𝛼− 1
2

(〈
𝛿𝐾𝜈𝑖 , Ψ̂

(𝑛)
𝐾𝜈𝑖
(𝐻 (𝑛) )

〉
−

〈
𝛿𝐾𝜈𝑖+1 , Ψ̂

(𝑛)
𝐾𝜈𝑖+1
(𝐻 (𝑛) )

〉)���
≤ 2𝑛𝛼−

1
2

(
∥𝛿𝐾𝜈𝑖 ∥∥Ψ̂

(𝑛)
𝐾𝜈𝑖
(𝐻 (𝑛) )∥ + ∥𝛿𝐾𝜈𝑖+1 ∥∥Ψ̂

(𝑛)
𝐾𝜈𝑖+1
(𝐻 (𝑛) )∥

)
≤ 2𝑛𝛼−

1
2 𝛾ℓ

(
∥Ψ̂ (𝑛)𝐾𝜈𝑖 ∥∞ + ∥Ψ̂

(𝑛)
𝐾𝜈𝑖+1
∥∞

)
∥𝐻 (𝑛) ∥.

(17)

Equations (16) and (17), and the above recalled convergence properties permit to conclude that the
sequence 𝑛𝛼 (𝜉 (𝑛)𝐾𝜈𝑖 − 𝜉

(𝑛)
𝐾𝜈𝑖+1
) converges in probability to 0, as 𝑛→ +∞.
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