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It is shown that the asymmetric Laplace distribution uniquely arises as the distribution
of both a difference between independent positive random variables and of a random choice
between those random variables, one of them having been given a negative sign. Related
results on the positive half-line are also given.
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1. Introduction
Ignoring its location parameter for the theoretical purposes of this note, the asymmetric Laplace
distribution on R has density

f (x) = αβ

α + β

{
eβx for x < 0,
e−αx for x ≥ 0,

with α, β > 0. See Chapter 3 of Kotz, Kozubowski and Podgórski (2001) for a detailed treatment
in the alternative parameterisation κ =

√
α/β, σ =

√
2/αβ. Of course, the asymmetric Laplace

distribution becomes the usual Laplace distribution when α = β.
Among its many representations (Kotz et al., 2001, Table 3.4), an asymmetric Laplace random

variable X can be written as either

1. X =

{
−E/β with probability α/(α + β),
E/α with probability β/(α + β),

where E is a unit exponential random variable; or

2. X =
E1
α
− E2

β
,

where E1 and E2 are independent unit exponential random variables.

That is, an asymmetric Laplace random variable arises both as a difference between independent
exponential random variables with suitable rates and from a random choice between such exponential
random variables, one of them having been given a negative sign.
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In this short article, I address the question of how common is this kind of property, equivalence
between random signing and taking a difference. The answer is that it is uncommon: the asymmetric
Laplace distribution is characterised by this equivalence. To see this, I find it more transparent to
work in terms of Y = e−X , a random variable with the log-asymmetric-Laplace distribution on R+

(Kozubowski and Podgórski, 2003), to provide the corresponding results on that support, and then
to translate back to R via X = − logY . The arguments leading up to the log-asymmetric-Laplace
distribution are given in Section 2 and their translation back to the asymmetric Laplace distribution
in Section 3. Potential application to goodness-of-fit testing is also outlined in Section 3.

2. On ratios of independent (0,1)-support random variables
Consider first the distribution of W = U/V where U ∼ U(0,1) independently of V ∼ U(0,1), where
‘∼’ denotes ‘is distributed as’ and U(0,1) is the uniform distribution on (0,1). Note that W has the
same distribution as 1/W = V/U. It is easy to see that the density of W is

fW (w) = 1
2

{
1 for 0 < w < 1,
1/w2 for w ≥ 1.

This is equivalent to saying that

W =

{
U with probability 1/2,
1/U with probability 1/2.

Equivalently again, conditional on U < V , W = U/V has the same distribution as U and, conditional
on U ≥ V , W = U/V has the same distribution as 1/V (or 1/U).
Elsewhere, I have called this result remarkable, but how remarkable is it? Consider the distribution

of Z = R/S, where R ∼ g independently of S ∼ h, with g and h being the densities of arbitrary
distributions on (0,1). It is a little easier to work with c.d.f.s (so let G and H be their respective
c.d.f.s), in which case the c.d.f. of Z is

FZ (z) =
{∫ 1

0 G(zs)h(s)ds for 0 < z < 1,∫ 1/z
0 G(zs)h(s)ds + 1 − H (1/z) for z ≥ 1.

This says that, conditional on R < S, Z = R/S has the distribution with c.d.f.
∫ 1
0 G(zs)h(s)ds/∫ 1

0 G(s)h(s)ds on (0,1) while, conditional on R ≥ S, Z has the distribution with c.d.f.
∫ 1/z
0 G(zs)h(s)ds + 1 − H (1/z) −

∫ 1
0 G(s)h(s)ds

1 −
∫ 1
0 G(s)h(s)ds

on [1,∞). Here, note that
∫ 1
0 G(s)h(s)ds = P(R < S).

Now concentrate on the conditional distribution of Z given that R < S. When is it equal to the
distribution of R?

Theorem 1 For 0 < z < 1 and h any density on (0,1), Gα(z) = zα, for any α > 0, are the only c.d.f.
solutions to G(z) =

∫ 1
0 G(zs)h(s)ds/

∫ 1
0 G(s)h(s)ds.
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Proof. We need
∫ 1
0 G(zs)h(s)ds =

∫ 1
0 G(z)G(s)h(s)ds for all densities h on (0,1). This can only

happen if G(zs) = G(z)G(s) for all 0 < z, s < 1. This functional equation is satisfied only by powers,
of which only the positive powers yield valid c.d.f.’s. �

Gα is the c.d.f. of a power law distribution (the Beta(α,1) distribution) with density αzα−1 on
0 < z < 1, and is the distribution of U1/α where U ∼ U(0,1).
So when, additionally, is the conditional distribution of Z given that R > S equal to the distribution

of 1/S? This can be answered immediately by consideration of the distribution of 1/Z = S/R, leading
to the following characterisation result.

Corollary 1 Let R and S be independent random variables on (0,1). The only distributions such that,
conditional on R < S, Z = R/S has the same distribution as R and, conditional on R ≥ S, Z = R/S
has the same distribution as 1/S are the distributions of Zαβ = U1/α/V1/β where U ∼ U(0,1)
independently of V ∼ U(0,1) and α, β > 0. These have density

fαβ(z) = αβ

α + β

{
zα−1 for 0 < z < 1,
1/zβ+1 for z ≥ 1,

which is equivalent to saying that

Zαβ =

{
U1/α with probability β/(α + β),
1/V1/β with probability α/(α + β).

The density fαβ is that of the log-asymmetric-Laplace distribution (Kozubowski and Podgórski,
2003) with unit scale. Since reciprocals of powers of uniform random variables have Pareto
distributions and ratios of power law random variables are ratios of Pareto random variables with
power parameters swapped, this distribution is also called a double Pareto distribution (Reed, 2001).

3. On differences of independent positive-support random variables
The random variables P = − log R and Q = − log S have arbitrary distributions on R+. Corollary 1
can therefore be converted directly into the required result about asymmetric Laplace distributions
simply by taking logs. Note that, of course, the distribution of − log U is the unit exponential
distribution.

Corollary 2 Let P and Q be independent random variables on R+. The only distributions such that,
conditional on P > Q,Y = P−Q has the same distribution as P and, conditional on P ≤ Q,Y = P−Q
has the same distribution as −Q are the distributions of Yαβ = − 1

α log U + 1
β log V = 1

α E1 − 1
β E2

where E1 and E2 are unit exponential random variables (as in Item 2 of the Introduction). These
have the asymmetric Laplace density given at the start of the article and are equivalent to it being
the case that

Yαβ =

{
E/α with probability β/(α + β),
−E/β with probability α/(α + β),

where E is a unit exponential random variable (as in Item 1 of the Introduction).
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Corollary 2 can potentially be used to test the goodness-of-fit of the asymmetric Laplace distribution
to a set of data. First, fit the asymmetric Laplace distribution, with location parameter θ say, included,
to the data; write the estimated parameter values as θ̂, α̂ and β̂. Second, subtract θ̂ from each data
value. Third, partition the dataset, thus relocated, into two subsets, X− say, containing those values
less then 0 and X+ say, containing those values greater than 0; and take absolute values of themembers
of X−. Fourth, generate some number N of pseudo-samples, each pseudo-sample being obtained by
randomly selecting one value from within X− and multiplying it by β̂, randomly selecting one value
from within X+ and multiplying it by α̂, and calculating the distance between the two. Fifth, generate
N further, different, pseudo-samples, each pseudo-sample being obtained this time by first selecting
a value at random from the recombined sample (X−,X+), and scaling it as above according to the
subset of the data in which it lies. Sixth, use as test statistic some measure of the distance between
the distributions of the two sets of pseudo-samples generated as above. Finally, obtain the sampling
distribution of the test statistic by bootstrapping the whole procedure.
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