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In this paper, the potential of using a multivariate regression approach in order to obtain
interpretable output in a multi-label classification problem is investigated. We focus in our
analysis on extensions of ordinary multivariate regression which take into account informative
dependencies amongst labels. It is found that the regression approaches make a valuable
contribution insofar as the importance of input variables for given labels can be evaluated.
An empirical study facilitates comparison of the performance of the regression approaches in
multi-label classification and, in terms of several evaluation measures, shows that they are also
largely competitive with state-of-the-art multi-label classification procedures.
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1. Introduction
Multi-label classification (MLC) is an extension of binary and multi-class classification to scenarios
where several labels are associated simultaneously with each data instance. The training data
are {(xi,yi), i = 1,2, ...,N}, where xi is a p-component vector of observations of input variables
X1,X2, ...,Xp , and where yi is a K-component vector of observations of binary label variables
Y1,Y2, ...,YK . It is convenient to summarise the training data in an N × (p + K) matrix [X Y], where
typically it is assumed that each row in Y contains at least a single 1, the remaining entries being 0.
This assumption seems reasonable since its violation implies an incomplete set of labels.
The dual objective in multi-label classification is accurate prediction of the labels corresponding

to new unseen test observations and interpretation of these predictions. For this purpose, a multi-
label classifier is fitted to the training data, and its performance typically evaluated using a test
dataset. We denote the latter dataset by the M × (p + K) matrix [X̃ Ỹ], consisting of observations
{(x̃i, ỹi), i = 1,2, ...,M}, where x̃i denotes previously unseen observations of the inputs X1,X2, ...,Xp ,
and where ỹi contains corresponding test observations ofY1,Y2, ...,YK . Again, it is assumed that each
row in Y contains at least a single 1. Examples of MLC are found in direct marketing, identifying
the musical instruments playing together in a performance, and in text and image annotation.
In the literature, methods to perform MLC are divided into three groups: problem transformation

approaches, algorithm adaptation approaches and ensemble methods. Madjarov, Kocev, Gjorgjevikj
andDžeroski (2012) provide a good overviewof these different approaches. Aproblem transformation
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approach transforms the singlemulti-label (ML) problem into several binary ormulti-class classification
problems. Examples of this approach include binary relevance, label-powerset and classifier chains.
An algorithm adaptation approach modifies a binary or multi-class classifier, such as an SVM or
k-nearest neighbours, for direct implementation in the ML context. Ensemble methods combine
the classifications obtained from a number of multi-label classifiers. The construction of each ML
classifier involves some random element, which causes the classifiers to predict differently. Examples
of ensemble methods for MLC include random k-labelsets, introduced by Tsoumakas, Katakis and
Vlahavas (2011a), random forests of predictive clustering trees (Kocev, Vens, Struyf and Džeroski,
2007), and ensembles of classifier chains in Read, Pfahringer, Holmes and Frank (2011).
Another useful distinction is between methods taking label correlations into account, and those

ignoring label correlations (cf. Dembczyński, Waegeman, Cheng and Hüllermeier, 2012). Although
it may seem that methods from the first category should be superior to those in the second category,
there are scenarios where they perform very similarly. Examples of the former approach include
label-powerset and classifier chains, while the primary example of the latter is binary relevance.
In MLC research, the focus currently falls mainly on developing new procedures that perform

well in terms of at least some of the measures commonly used to evaluate multi-label classification
approaches. Interpretation of the output from an MLC method usually receives little attention. A
facility to assess the importance of input variables for the different labels should prove to be valuable
in practical problems. Toward such a contribution, we investigate several multivariate regression
approaches to multi-label classification. These approaches are evaluated in terms of two aspects.
Firstly, an approach should be competitive in terms of its performance on the standard measures used
in MLC. Secondly, and of primary importance in this paper, interpretable output should be obtained,
especially regarding the influence of the different inputs on the label variables.
Ordinary multivariate linear regression ignores label dependencies. In order to provide for

scenarios where label dependencies are informative, one of several extensions of multivariate linear
regression may be used. These extensions were proposed with the aim of exploiting the information
provided by the dependence structure amongst the labels. In this regard the extensions proposed
by Izenman (1975), Van der Merwe and Zidek (1980), and Breiman and Friedman (1997) will be
investigated. Our main objectives are to compare the performance of MLC procedures based on
these extensions with that of state-of-the-art MLC methods, and to illustrate the useful information
provided by a regression approach to multi-label classification.
In connection to our work, it should be noted that Breiman and Friedman (1997) contains a

comparison of the three multivariate regression extensions, but not in an MLC context. Also, the
‘curds-and-whey’idea has previously been used inWu, Han, Tian andZhuang (2010) in order to obtain
a boosted multi-label image annotation method. Zhang and Schneider (2011) exploit the relationship
between canonical correlation analysis and MLC in order to investigate an encoding approach to the
latter. Finally, Borchani, Varando, Bielza and Larrañaga (2015) provide a comprehensive review of
multi-output regression without, however, considering multi-label classification.
The remainder of the paper is organised as follows. In Section 2 the different regression approaches

to be compared are described. Section 3 is devoted to a discussion of several thresholding options.
Empirical results are reported in Section 4, followed bymain findings and avenues for further research
in Section 5.
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2. Regression approaches to ML classification
Multivariate regression concerns itself with fitting a linear model to {(xi,yi), i = 1,2, . . . ,N}, where
xi contains values of p input variables and yi contains values of K response variables. In matrix
notation the model to be fitted is

Y = XB + E, (1)

where Y : N × K contains the response observations, and X : N × p contains the inputs, while
B : p × K has to be estimated. The matrix E : N × K provides for error terms. Note that in all our
analyses the data are standardised and we therefore do not provide for an intercept. Least squares, a
very common way of fitting the model in (1), yields

B̂OLS = (XTX)−1XTY,

where xT
i and yT

i are the ith rows in X and Y respectively. It is easy to see that least squares fitting
partitions the problem into K separate multiple linear regression problems, treating the K responses
completely separately.
It is clear that the above approach suffers from a disadvantage: in each separate regression,

the information possibly contained in the other responses is not utilised. Toward alleviating this
disadvantage, the three regression approaches mentioned above, are based on the following basic
underlying idea. The data are transformed to canonical coordinates, shrinkage is applied to the
(unimportant) coordinates corresponding to small canonical correlations, and the results are then
transformed back to the original coordinates. The only difference between the regression approaches
is the manner in which shrinkage is accomplished. We proceed with a brief description of each
regression method. More detailed information may be found in the respective papers.
Transforming the data to canonical coordinates entails the following. The first pair of canonical

coordinates is the linear combinations
∑K

k=1 akYk and
∑p

j=1 bjXj , maximising the correlation between
any two such linear combinations. Further coordinates, up to amaximumof q = min(p,K) are defined
similarly, subject to orthogonality restrictions. Let A be the q × q matrix with columns defining the
response canonical coordinates. All three multivariate shrinkage procedures estimate B by a matrix
of the form

B̂OLS = ADA−1.

The three methods differ only with respect to the diagonal matrix D. In Izenman (1975) the diagonal
entries in D are given by

di =

{
1 if i ≤ m,

0 otherwise,

where m is a tuning parameter of the procedure which should be determined in a data-dependent
manner. This procedure is called reduced rank (RR) multivariate regression. In Van der Merwe and
Zidek (1980), the diagonal entries are given by

di =

{
c2
i − (p − K − 1)/N

c2
i (1 − (p − K − 1)/N) ,

where c2
1 ≥ c2

2 ≥ ... ≥ c2
q denote the squared canonical correlations. This procedure is called

FICYREG (filtered canonical Y -variate regression). Finally, Breiman and Friedman (1997) propose
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the use of

di =
(1 − r)(c2

i − r)
(1 − r)2c2

i + r2(1 − c2
i )
,

where r = p/N . This procedure is called curds-and-whey (CW) multivariate regression.

3. Thresholding the regression output
Several approaches for fitting a multivariate regression model to multi-label data were discussed in
Section 2. In each case, an estimate B̂ of the parameter matrix B in (1) is obtained. An important
objective of the analysis is to predict the label vector y(x) corresponding to an input vector x . This
may be achieved by thresholding the values in f̂ (x) = B̂Tx, which will be real numbers not restricted
to {0,1}. Consider therefore the problem of determining y(x), a vector consisting of zeros and ones,
from f̂ (x). Different approaches for this purpose were investigated. Let t1, t2, ..., tK denote values
such that

ŷk(x) = I
[

f̂k(x) > tk
]
,

k = 1,2, . . . ,K , where I(.) denotes the indicator function. A naïve fixed threshold approach may
take tk = 0.5 for k = 1,2, . . . ,K . This would be based upon the interpretation of f̂k(x) as an
approximation of the posterior probability P(Yk = 1|X = x). However, two questions arise: should
the same threshold be used for all labels, and how appropriate is the value 0.5, given that f̂k(x) is not
restricted to the interval [0,1]?
Given these reservations regarding the use of a fixed threshold, as well as empirical evidence

when using tk = 0.5, it is clear that other approaches should be investigated. We considered three
approaches for data-dependent specification of label-specific thresholds. A description of these
approaches requires further notation. We write F̂ = XB̂ for the N × K matrix of values which
we have to threshold to label the training data cases. Recall that the matrix containing the inputs
corresponding to the test data cases, unseen during the training phase, is denoted by X̃, an M × p
matrix. In turn, the M × K matrix Ĝ = X̃B̂ contains the values which we have to threshold to label
the test cases.
The first approach for determining label-specific thresholds, called the quantile approach, is based

on the assumption that the training and test data are generated by the same mechanism. It would
then seem sensible to threshold in such a way that the proportions of test cases for which Ŷk = 1,
k = 1,2, ...,K , are as close as possible to these proportions in the training data. Recall that Y = [yik]
is the matrix of training data labels. For k = 1,2, ...,K , let pk = N−1 ∑N

i=1 yik denote the proportion
of training data cases having Yk = 1, and write ĝ(1)k < ĝ(2)k < ... < ĝ(M)k for the ordered values in
the kth column of Ĝ. Then the quantile approach specifies t̂k = ĝ(rk ),k , where rk = [M(1 − pk)],
k = 1,2, ...,K .
A second approach for determining label-specific thresholds is to determine t1, t2, ..., tK such that

an estimate of some performance measure on the training data is optimised. Consider for example
label k and the Hamming Loss performance measure (see Section 4.2 for definitions of performance
measures). Denote by {tk j, j = 1,2, ...h}, a set of h candidate threshold values, fixed beforehand, and
distributed evenly between the smallest and largest values in the kth column of F̂. The thresholds
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based on Hamming Loss optimisation are the values

t̂k = arg min
{t=tk j , j=1,2,...,h}

(
1

NK

N∑
i=1

K∑
k=1

I(yik , ŷik)
)
,

k = 1,2, ...,K . Here ŷik(t) = I( f̂ik > t) , where f̂ik denotes the ith element in f̂k(x) . Note also that
in our empirical work, the value of h was set to

h =

{
N − 1 if NK < 1500,
150 otherwise.

In addition to Hamming Loss, two other performance measures were also used to determine label-
specific thresholds in this way, viz. the F-score and accuracy.
To motivate a third data-dependent method for determining thresholds, we argue that the former

approach will break down in cases where there is a large difference between the range of the f̂ -
values (computed on the training data) and the range of the ĝ-values (computed on the test data).
In such cases it seems sensible to find the quantile corresponding to t̂k (determined by optimising
a performance measure on the training data), and to set as threshold the same quantile on the test
data. In more detail, let qk denote the proportion of training data cases having f̂ik-values less than
t̂k , i.e. qk = N−1 ∑N

i=1 I( f̂ik < t̂k). We use as thresholds the values t̂k = ĝ(sk )k , where sk = [Mqk],
k = 1,2, ...K .
It should be noted that using any of the above thresholdingmethods may lead to predicting all of the

labels of some test case i′ to be zero. This occurs when none of the K thresholds are exceeded by the
values in row i′ of the Ĝ-matrix. In such a case, note that we entered a 1 in position k̂ = arg maxk ĝi′k
in the label vector. This is in line with our assumption of at least one label being present in both the
training and test datasets.
Each of the three methods of thresholding introduced above may be combined with any one of

the regression approaches discussed in Section 2. We will use the following notation to denote
the resulting procedures: CWj will represent the curds-and-whey procedure using the jth threshold
method, j = 1,2,3, with similar interpretations for FICY, OLS and RR.

4. Data experiments
We evaluated the use of CW, FICY, OLS and RR regression for multi-label classification by applying
these techniques to seven datasets from the Mulan MLC library (Tsoumakas, Spyromitros-Xioufis,
Vilcek and Vlahavas, 2011b). These datasets have become well known in the multi-label learning
literature, serving as benchmark datasets in most empirical work, and were also analysed byMadjarov
et al. (2012) in an extensive empirical investigation of MLC procedures. A few characteristics of
the datasets render them suitable for comparative studies: they originate from a broad spectrum
of application fields, have wide-ranging sizes, differing not only with respect to types of input
variables, but also regarding both the number of labels and the average number of labels per data
case (cardinality).
We compare the regression approaches to three of the approaches investigated by Madjarov et al.

(2012), viz. binary relevance (BR), hierarchy of multi-label classifiers (HR), and random forests for
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Table 1. Benchmark datasets and their attributes.

Name Domain N + M Nominal Numeric K Card Dens
Bibtex Text 7395 1836 0 159 2.402 0.015
Corel5k Images 5000 499 0 374 3.522 0.009
Emotions Music 593 0 72 6 1.869 0.311
Enron Text 1702 1001 0 53 3.378 0.064
Mediamill Video 43 907 0 120 101 4.376 0.043
Scene Images 2407 0 294 6 1.074 0.179
Yeast Biology 2417 0 103 14 4.237 0.303

predictive clustering trees (RF). Note that we include BR since it is one of the most widely used
ML classification approaches, while HR and RF are included since in their study, the above authors
consider these procedures to be the overall best.

4.1 Benchmark datasets
Properties of the benchmark datasets are summarised in Table 1. Some remarks on the entries in
the table are in order. Two of the datasets are from the field of text annotation, two from image
annotation, and one each from the fields of music, video annotation and biology. Regarding the
input variables, for three of the seven datasets these are all nominal (binary), while in the other four
cases, all are numeric. The number of labels, K , is also given in Table 1 for each dataset, as are the
cardinality, and the density (cardinality divided by K).

4.2 Performance measures
Severalmeasures have been proposed in the literature to evaluate the performance ofML classification
procedures (for a detailed exposition, see Tsoumakas, Katakis and Vlahavas, 2010). This complicates
comparison of differentmethods, since often an approach that outperforms others in terms of a specific
measure may perform worse in terms of another measure. In this paper we restrict attention to the
Hamming Loss (HL), F-score (F) and accuracy (A) measures. For a definition of each measure,
consider the following notation. As before, suppose ỹ1, ỹ2, . . . , ỹM are the true labels of a test data
set. Also, let ŷ1, ŷ2, . . . , ŷM be the set of corresponding predicted label vectors obtained from an
ML classification procedure. Then the Hamming Loss for these predicted label vectors is defined by

HL =
1

MK

M∑
i=1

K∑
k=1

I(ỹik , ŷik),

i.e. the average proportion of misclassifications, computed over test cases and labels. The precision
is defined by

precision =
1
M

M∑
i=1

{∑K
k=1 ỹik ŷik∑K
k=1 ŷik

}
,
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i.e. the average proportion of predicted labels which are correct. Similarly,

recall =
1
M

M∑
i=1

{∑K
k=1 ỹik ŷik∑K
k=1 ỹik

}
,

which is the average proportion of true labels predicted as such. Precision and recall are conflicting
measures in the sense that modifying a procedure to improve precision leads to a deterioration in
recall, and vice versa. A quantity that accounts for both precision and recall is the F-score, defined
by

F =
2 × precision × recall

precision + recall
,

which is simply the harmonic mean of precision and recall. Finally with regard to the measures in
this paper, accuracy is defined by

A =
1
M

M∑
i=1

{ ∑K
k=1 ỹik ŷik

K −∑K
k=1(1 − ỹik)(1 − ŷik)

}
.

This measure is also known as the (average) Jaccard similarity coefficient (cf. Gouk, Pfahringer and
Cree, 2016).

4.3 Pre-processing
In order to apply the multivariate regression approaches, a few preliminary processing steps on
the Bibtex, Corel5k, Enron and Mediamill datasets were first required. We distinguish between
pre-processing steps required to deal with problems stemming from the observed variables, and
pre-processing steps required to handle problems that occurred as a result of the observed labels. All
pre-processing steps on the training data were duplicated on the test data.
In terms of the observed variables, note that some of the pairs of nominal variables in the Bibtex

and Enron training datasets had correlations equal to 1, causing XTX to be singular. Specifically, in
the Bibtex training data, variables 274 and 1118 were perfectly correlated, as well as variables 952
and 1824. In the case of the Bibtex data, we therefore omitted variables 274 and 952. Furthermore,
in the Enron data, variables 37 and 52 were perfectly correlated, causing variable 37 to be omitted.
With regard to the observed labels, three kinds of pre-processing steps were required. The first

step involved omission of all label columns in the training data that had only 0 or 1 entries. This
seems sensible since such a label would be independent of the input variables. Hence we omitted
labels 167, 325 and 330 from the Corel5k dataset, and label 46 from the Enron data. The second
step involved omission of redundant labels in the training data that were perfectly correlated. These
were labels 262, 350 and 366 in the Corel5k dataset. In the third pre-processing step in terms of the
observed labels, we omitted rows in the training and test datasets having only 0 entries, which is in
line with the assumption stated in Section 1. This was only required in the case of theMediamill data,
where we discarded 1189 out of 30993 training observations, and 541 out of 12914 test observations.

4.4 Results
In this section we compare the following procedures in terms of Hamming Loss, the F-score and
accuracy: CW1-3, FICY1-3, OLS1-3, RR1-3, BR, HR and RF. For each of the datasets, each of
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Table 2. Hamming Loss values for each multi-label classification procedure.

Appr Bibtex Corel5k Emotions Enron Mediamill Scene Yeast Ave1 Ave2

CW1 0.0189 0.0154 0.2162 0.0904 0.0401 0.1180 0.2482 0.1067 0.1095
CW2 0.0165 0.0119 0.2137 0.2765 0.0317 0.1399 0.2045 0.1278 0.1030
CW3 0.0173 0.0126 0.2120 0.0891 0.0320 0.1392 0.2068 0.1013 0.1033
FICY1 0.0185 0.0156 0.2252 0.0890 0.0401 0.1194 0.2476 0.1079 0.1111
FICY2 0.0171 0.0122 0.2145 0.3025 0.0316 0.1385 0.2047 0.1316 0.1031
FICY3 0.0176 0.0128 0.2195 0.0887 0.0320 0.1405 0.2059 0.1024 0.1047
OLS1 0.0187 0.0157 0.2459 0.0886 0.0400 0.1217 0.2471 0.1111 0.1149
OLS2 0.0205 0.0126 0.2228 0.3365 0.0316 0.1444 0.2073 0.1394 0.1065
OLS3 0.0182 0.0131 0.2269 0.0895 0.0320 0.1434 0.2084 0.1045 0.1070
RR1 0.0191 0.0156 0.2384 0.0899 0.0401 0.1665 0.2486 0.1169 0.1214
RR2 0.0176 0.0124 0.2178 0.3025 0.0316 0.1604 0.2060 0.1355 0.1076
RR3 0.0176 0.013 0.2211 0.0900 0.0319 0.1575 0.2049 0.1051 0.1077
BR 0.012 0.017 0.257 0.045 0.032 0.079 0.190 0.0903 0.0978
HR 0.014 0.012 0.361 0.051 0.038 0.082 0.207 0.1093 0.1190
RF 0.013 0.009 0.189 0.046 0.029 0.094 0.197 0.0824 0.0885

the procedures was implemented on the training data, and thereafter applied to the test data. The
results are summarised in Tables 2–5. Performances of the methods which were found to be the
best over the seven datasets considered, are denoted in bold, whereas best performances amongst the
regression approaches are underlined. Note that two columns have been added to each table. The
penultimate column (Ave1) provides the average measure obtained over all of the datasets, whereas
the final column (Ave2) contains the averages having omitted the Enron data. We include the latter
because for this dataset, the regression procedures perform out of line relative to their performance
on the other datasets.
Consider first the performances in terms of their Hamming Loss values. These are reported in

Table 2. In terms of the average Hamming Loss values for the regression procedures, it is clear
that for every threshold method, CW performs best, followed by FICY, OLS and RR. In terms of
performances on the individual datasets, CW is best in five of the seven cases. The relatively poor
performance of RR may in part be attributable to the fact that we did not attempt to optimise the
performance of this approach with respect to its tuning parameter m. The picture is more complex
regarding the relative merits of the three thresholding methods. This is because of the exceptionally
bad performance of the second thresholding method on the Enron data. For all four of the regression
procedures, if the Enron data is included in a comparison, the third threshold method is best, followed
by the first and second methods. If Enron is omitted, the second method performs best in all cases.
Clearly the Enron dataset is an example of what we had in mind in Section 3 when introducing
the third threshold method. Overall we recommend the third method since it does not exhibit this
undesirable behaviour. We next consider all the procedures, including BR, HR and RF. In this case
RF is best, followed by BR and CW3.
We proceed by considering the F-scores in Table 3. With three exceptions (the Bibtex, Enron

and Yeast datasets), we see that once again CW performs best, followed by FICY, OLS and RR.
We also note that in the case of the Bibtex, Emotions and Mediamill data, one of the regression
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Table 3. F scores for each multi-label classification procedure.

Appr Bibtex Corel5k Emotions Enron Mediamill Scene Yeast Ave1 Ave2

CW1 0.4206 0.2406 0.6607 0.3472 0.6022 0.7308 0.6028 0.5150 0.5430
CW2 0.4416 0.2606 0.6859 0.2661 0.5896 0.6685 0.6395 0.5074 0.5476
CW3 0.4301 0.2487 0.6850 0.3546 0.5880 0.6645 0.6385 0.5156 0.5425
FICY1 0.4354 0.2269 0.6436 0.3633 0.6019 0.7264 0.6023 0.5143 0.5394
FICY2 0.4492 0.2421 0.6737 0.2605 0.5922 0.6667 0.6414 0.5037 0.5442
FICY3 0.4363 0.2575 0.6675 0.3642 0.5904 0.6637 0.6408 0.5172 0.5427
OLS1 0.4390 0.2212 0.6103 0.3646 0.6020 0.7155 0.5984 0.5073 0.5311
OLS2 0.4409 0.2293 0.6521 0.2485 0.5945 0.6498 0.6418 0.4938 0.5347
OLS3 0.4381 0.2523 0.6509 0.3662 0.5925 0.6456 0.6443 0.5128 0.5373
RR1 0.4166 0.2263 0.6134 0.3529 0.6018 0.6356 0.6027 0.4928 0.5161
RR2 0.4326 0.2304 0.6770 0.2553 0.5885 0.5776 0.6367 0.4854 0.5238
RR3 0.4236 0.2527 0.6658 0.3518 0.5864 0.5795 0.6390 0.4998 0.5245
BR 0.433 0.047 0.469 0.582 0.557 0.714 0.650 0.4931 0.4783
HR 0.426 0.280 0.614 0.613 0.579 0.745 0.687 0.5634 0.5552
RF 0.212 0.014 0.611 0.552 0.589 0.553 0.614 0.4493 0.4322

approaches yields the best performance overall. Regarding the merits of the threshold approaches,
the conclusions are largely unchanged from those for Hamming Loss. With Enron included, the third
method is best, while the second method improves if Enron is omitted. Taking into account also BR,
HR and RF, we see that HR performs best, followed by FICY3 and CW3. It should be noted that RF
and BR, which performed well in terms of Hamming Loss, now perform quite poorly.
The accuracies of the regression approaches are presented in Table 4. The pattern is largely the

same as previously. Amongst the regression approaches, CW does best, followed by FICY, OLS and
RR. With regard to the threshold methods, the first approach is best for three of the four regression
methods if the Enron dataset is included. If Enron is excluded, no clear pattern emerges, although
the second approach is now again competitive. In terms of all the procedures, HR performs the best,
followed by BR and CW1.
In summary thus far, it is evident that the CW and FICY approaches (and to a lesser extent OLS

and RR) are quite competitive. For example, CW finishes second or third overall in terms of all
three performance measures, followed closely by FICY. Although RF does very well in terms of
Hamming Loss, it performs poorly when judged by the F-score and accuracy. Similarly, HR does
well as measured by the F-score and accuracy, but not as well in terms of Hamming Loss. Regarding
a threshold method, the third approach is recommended.
We extend our comparison by reporting average values of the measures 1 − HL, F and A over the

seven datasets considered. These combined performance measures are provided in Table 5. From
this table it is once again clear that especially the CW and FICY approaches are very competitive
when compared to the best performing approaches in Madjarov et al. (2012). In fact, in terms of the
average combined performance measures, even the OLS and RR approaches compare very well with
the second and third best approaches overall. It is only HR that stands out from the rest.
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Table 4. Accuracy values for each multi-label classification procedure.

Appr Bibtex Corel5k Emotions Enron Mediamill Scene Yeast Ave1 Ave2

CW1 0.3087 0.1479 0.5499 0.2133 0.4277 0.6679 0.4589 0.3963 0.4268
CW2 0.3221 0.1631 0.5635 0.1539 0.4146 0.6003 0.4850 0.3861 0.4248
CW3 0.3128 0.1542 0.5697 0.2184 0.4130 0.5991 0.4844 0.3931 0.4222
FICY1 0.3207 0.1410 0.5334 0.2204 0.4278 0.6644 0.4606 0.3955 0.4247
FICY2 0.3321 0.1512 0.5639 0.1472 0.4176 0.5956 0.4890 0.3852 0.4249
FICY3 0.3214 0.1586 0.5540 0.2218 0.4161 0.5980 0.4874 0.3939 0.4226
OLS1 0.3213 0.1372 0.4913 0.2245 0.4277 0.6572 0.4579 0.3882 0.4154
OLS2 0.3111 0.1427 0.5305 0.1380 0.4195 0.5871 0.4931 0.3746 0.4140
OLS3 0.3194 0.1550 0.5330 0.2252 0.4178 0.5890 0.4947 0.3906 0.4182
RR1 0.3043 0.1402 0.5050 0.2210 0.4276 0.5598 0.4581 0.3737 0.3992
RR2 0.3098 0.1435 0.5638 0.1460 0.4136 0.4684 0.4813 0.3609 0.3967
RR3 0.3069 0.1565 0.5517 0.2212 0.4118 0.4608 0.4839 0.3704 0.3953
BR 0.348 0.030 0.361 0.446 0.403 0.689 0.520 0.3996 0.3918
HR 0.330 0.179 0.471 0.478 0.413 0.717 0.559 0.4496 0.4448
RF 0.166 0.009 0.519 0.416 0.441 0.541 0.478 0.3671 0.3590

4.5 Estimated regression coefficients
In the previous section it was shown that in terms of prediction accuracy there isworth in amultivariate
regression approach to ML classification. Perhaps a more important contribution of regression in
this context lies in the estimated regression coefficients which form part of the regression output.
The estimated coefficients contain information that facilitates interpretation of the correspondingML
classifier. In this section we provide illustrations of this aspect.
We consider the Emotions dataset. Since standard errors of the regression coefficient estimates

can easily be obtained for OLS, our focus in this example is interpretation of the (standardised) OLS
regression coefficients. By also obtaining standard errors of regression coefficient estimates also in
the case of CW, FICY and RR, similar interpretations are also possible in their case. We proceed
with a summary of the absolute standardised OLS coefficients in the form of a heatmap in Figure 1.
The most prominent feature in Figure 1 is the relatively small number of large values, all grouped

together at the bottom of the heatmap. It is clear that the same small set of variables is significant
for all of the labels. Table 6, showing the inputs with absolute standardised coefficients exceeding 2,
provides a summary in this regard.
Interpretation of the variables in Table 6 is interesting. Variables 4, 20 and 36 are all related to

the first mel-frequency cepstral coefficient, which is well known to play an important role in sound
digitisation. Similarly, variable 5 is related to the second cepstral coefficient, while variables 66 and
68 are related to low and high peak beats per minute. Furthermore, only variable 4 is found to be
significant for all of the labels. In contrast, the number of labels for which variables 68, 66, 5, 36
and 20 are significant, decreases from 5 labels (in the case of variable 68) to only a single label (in
the case of variable 20). Information such as this can be useful when addressing the problem in ML
scenarios of a variable being significant for some labels, but not for others.
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Table 5. Combined performance measures for each multi-label classification procedure.

Appr Bibtex Corel5k Emotions Enron Mediamill Scene Yeast Ave1 Ave2

CW1 0.5701 0.4577 0.6648 0.4900 0.6633 0.7602 0.6045 0.6015 0.6201
CW2 0.5824 0.4706 0.6786 0.3812 0.6575 0.7096 0.6400 0.5886 0.6231
CW3 0.5752 0.4634 0.6809 0.4946 0.6563 0.7081 0.6387 0.6025 0.6205
FICY1 0.5792 0.4508 0.6506 0.4982 0.6632 0.7571 0.6051 0.6006 0.6177
FICY2 0.5881 0.4604 0.6744 0.3684 0.6594 0.7079 0.6419 0.5858 0.6220
FICY3 0.5800 0.4678 0.6673 0.4991 0.6582 0.7071 0.6408 0.6029 0.6202
OLS1 0.5805 0.4476 0.6186 0.5002 0.6632 0.7503 0.6031 0.5948 0.6106
OLS2 0.5772 0.4531 0.6533 0.3500 0.6608 0.6975 0.6425 0.5763 0.6141
OLS3 0.5798 0.4647 0.6523 0.5006 0.6594 0.6971 0.6435 0.5996 0.6161
RR1 0.5673 0.4503 0.6267 0.4947 0.6631 0.6763 0.6041 0.5832 0.5980
RR2 0.5749 0.4538 0.6743 0.3663 0.6568 0.6285 0.6373 0.5703 0.6043
RR3 0.5710 0.4654 0.6655 0.4943 0.6554 0.6276 0.6393 0.5884 0.6040
BR 0.5897 0.3533 0.5243 0.6610 0.6427 0.7747 0.6600 0.6008 0.5908
HR 0.5807 0.4823 0.5747 0.6800 0.6513 0.7933 0.6797 0.6346 0.6270
RF 0.4550 0.3380 0.6470 0.6407 0.6670 0.6667 0.6317 0.5780 0.5676

Table 6. Significant input
variables in the Emotions
data.

Inputs Labels
4 1, 2, 3, 4, 5, 6
5 3, 4, 5, 6
20 2
36 1, 3, 4
66 1, 3, 4, 6
68 1, 2, 3, 4, 6

5. Conclusions and further research
In this paper we introduced the use of several multivariate regression approaches toML classification.
Three of the four approaches considered, exploit information pertaining to dependence amongst the
labels. In an empirical study, the regression procedures were compared with current state-of-the-art
ML classification procedures. Two of the regression approaches were found to perform competitively
in terms of three measures of ML prediction accuracy. Applying regression for classification requires
thresholding. We investigated three approaches in this regard, the last of which, a new proposal,
was found to perform particularly well. A data example highlighted the advantage of the regression
approaches in terms of interpreting the relative importance of the input variables. Overall, we deem
a multivariate regression approach to be a serious contender in ML scenarios. Several avenues for
further research may be pursued. Regarding the procedures proposed in this paper, replacing the
0-1 response values by appropriate numerical values should be investigated. Furthermore, there are
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Figure 1. Heatmap of absolute standardised OLS regression coefficients for the Emotions data.

other multivariate regression approaches incorporating different forms of shrinkage which may be
useful in ML problems. Finally, extending the interpretation of standardised regression coefficients
to formally address the problem of variable selection in MLC, should be a worthwhile enterprise.
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