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Chemical analyses of raw materials are often repeated in duplicate or triplicate. The assay
values obtained are then combined using a predetermined formula to obtain an estimate of the
true value of the material of interest. When duplicate observations are obtained, their average
typically serves as an estimate of the true value. On the other hand, the “best of three” method
involves taking three measurements and using the average of the two closest ones as estimate
of the true value.

In this paper, we consider another method which potentially involves three measurements.
Initially two measurements are obtained and if their difference is sufficiently small, their
average is taken as estimate of the true value. However, if the difference is too large then a third
independent measurement is obtained. The estimator is then defined as the average between
the third observation and the one among the first two which is closest to it.

Our focus in the paper is the conditional distribution of the estimate in cases where the
initial difference is too large. We find that the conditional distributions are markedly different
under the assumption of a normal distribution and a Laplace distribution.

Key words: Conditional density, Normal distribution, Laplace distribution, Closest two out of
three.

1. Introduction
Chemical analyses of raw materials are often repeated in duplicate or triplicate. The assay values
obtained are then combined using a predetermined formula to obtain an estimate of the true value,
µ, of the material of interest. When duplicate observations X1 and X2 are obtained, their average
typically serves as an estimate of the true value. On the other hand, the “best of three” method
involves taking three measurements X1, X2, and X3 and using the average of the two closest of these
values as estimate of the true value. The statistical properties of this estimator were worked out by
Seth (1950) and Lieblein (1952).
In this paper, we consider another method which potentially involves three measurements. Initially

two measurements, X1 and X2, are obtained. If the difference between X1 and X2 is sufficiently small,
their average is taken as the estimate. If the difference is too large, then a third independent
measurement, X3, is obtained. Then the estimator, henceforth denoted by µ̂, is the average between
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X3 and the one among X1 and X2 which is closest to X3. The rationale underlying the method is that
whichever one of X1 and X2 is closest to X3 is the least likely to contain a large measurement error.
The usual assumption made in laboratory analysis protocols is that the measurement error is

normally distributed. However, Wilson (1923) draws attention to the fact that in some instances there
are strong grounds for assuming that the errors follow a Laplace distribution. In the context of a series
of observations that estimate the true value of a given parameter, Keynes (1911) asks the following
question: “If the most probable value (maximum likelihood estimate in modern terminology) of the
quantity is equal to the arithmetic mean of the measurements, what law of error does this imply?”
Under the additional assumption that the resulting law of error is symmetric, Keynes shows that it is
necessarily normal. Interestingly, he also shows that when the question is restated to enquire about
the median instead of the mean, then the resulting law of error is the Laplace distribution which, in
standardised form, has density function

f (x) = 1√
2

exp
(
−
√

2 |x − µ|
)
.

These facts provide motivation for studying the behaviour of the estimator µ̂ under both the normal
and Laplace distribution assumptions.
Even if both X1 and X2 are unbiased estimators of µ, the measurement errors attached to each will

result in a fixed proportion α ∈ (0,1) of unacceptably large differences. In this paper, we investigate
the conditional distribution of µ̂ given that an unacceptably large difference was observed. On a
purely intuitive level, one would expect this conditional distribution to be symmetric around µ. This
is indeed the case. However, the form of the symmetry is quite surprising. For realistic values of
α we have the following. It turns out that for the normal distribution µ̂ has a bimodal conditional
distribution with modes to the left and the right of µ. For the Laplace distribution the surprise is that
µ̂ has a unimodal distribution with mode µ.
The remainder of the paper is structured as follows. In Section 2, we define the estimator and

derive its conditional density function in the general case where X1, X2 and X3 are independent
and identically distribution (i.i.d.) observations from a symmetric distribution. The conditional
density function of the estimator is then computed specifically in the normal and Laplace cases and
the surprising difference between the two is illustrated and its possible consequences discussed. In
Section 3, we consider a data set and demonstrate that the Laplace rather than the normal distribution
provides an acceptable fit to the observed data.

2. Conditional distribution of the estimator
In the application sketched in the Introduction, the difference between X1 and X2 is regarded as
unacceptably large if

|X1 − X2 | > r(α),
where r(α) satisfies

P [|X1 − X2 | > r(α)] = α
for an a priori given small positive α. In the following, the argument α in r (α) is suppressed in cases
where this is unlikely to lead to confusion. Thus, in the absence of any change in the population
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mean or standard deviation, the rate at which unacceptably large differences occur will be α. There
are two possibilities, namely

(i) |X1 − X2 | ≤ r , in which case the estimate is µ̂ = (X1 + X2)/2;

(ii) |X1 − X2 | > r , in which case a third observation X3 is obtained and

µ̂ =




X1 + X3
2

if |X1 − X3 | < |X2 − X3 |,
X2 + X3

2
if |X2 − X3 | < |X1 − X3 |.

Since µ and the standard deviation of the error distribution, σ, are assumed to be fixed and known,
we may assume without loss of generality that µ = 0 and σ = 1.
Our interest centers on (ii), hence on the conditional distribution of µ̂ given that |X1 − X2 | > r .

Let
G (x, α) = P

[
X1 + X3

2
≤ x, X1 − X2 > r, X3 >

X1 + X2
2

]
,

and
g (x, α) = d

dx
G (x, α) .

We show in Appendix 1 that the conditional density function of µ̂, given |X1 − X2 | > r , is

h (x, α) = 2
α
[g (x, α) + g (−x, α)] . (1)

The density h is symmetric around x = 0, which is what one would expect a priori. However, from
a practitioner’s point of view, it is the shape of this density that turns out to be the most interesting
and important aspect of the conditional distribution. Given a density function f of the Xi , g (x, α) is
given by the expression

g (x, α) =
∫ ∞

−∞

∫ ∞

−∞
2 f (2x − x1)J (x, x1, x2) f (x1) f (x2) dx1dx2, (2)

where
J (x, x1, x2) = I

(
x >

3x1 + x2
4

, x1 − x2 > r
)
, (3)

with I (·) the indicator function. Substitution of the normal or Laplace density functions into (2) does
not lead to any substantial algebraic simplification of the expression for h (x). Therefore, we obtain
g(x, α) by numerical integration over a fine grid of x values using the MATLAB (Release 2018b)
function integral2.m— see Appendix 2.
Figure 1 shows the conditional densities (1) of µ̂ in the normal and Laplace distributions. The

density in the case of the normal distribution is bimodal, while in the case of the Laplace distribution
it is unimodal. In both cases, the estimator is centered around the population average. Nevertheless,
a process engineer is bound to be somewhat perplexed upon seeing the bimodal form in the normal
distribution. This phenomenon can, to some extent, be explained as follows. First, the Laplace
distribution differs from the normal distribution in some important respects. For instance, the

THE MEAN OF THE TWO CLOSEST AMONG A SET OF THREE OBSERVATIONS 135



-4 -3 -2 -1 0 1 2 3 4

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
o

n
d

it
io

n
a

l 
d

e
n

s
it
ie

s
 a

s
 f

u
n

c
ti
o

n
s
 o

f 
x

Figure 1. Density of µ̂ given that |X1 − X2 | > r under the normal (dashed line) and Laplace (solid
line) assumptions.

Table 1. Comparison of tail
thickness of the normal and
Laplace densities.

α normal Laplace
0.100 1.645 1.628
0.050 1.960 2.118
0.025 2.241 2.608
0.010 2.576 3.256
0.005 2.807 3.746

Laplace density has a sharp peak at its point of symmetry, hence is not differentiable there. The tails
of the Laplace density are also substantially thicker than those of the normal density. This is perhaps
not obvious from visual inspection of Figure 2, which shows plots of the density functions of the two
standardised densities.
In order to better appreciate the differences between the tails of the distributions, consider Table 1,

which shows the numbers r(α) which satisfy P (|X1 − X2 | > r(α)) = α for a range of values of
α. The indications are that the Laplace distribution has substantially heavier tails than the normal
distribution. In fact, the kurtosis of the Laplace distribution is 6, twice that of the normal distribution.
Second, we now argue that, as a consequence of the preceding remark, the resulting density is

bimodal in the case where the separation between g (x, α) and g (−x, α) per unit standard deviation
is large and unimodal when this separation is small.
Figure 3 shows plots of g (x, α) and g (−x, α) for the normal distribution while Figure 4 shows

the corresponding plots for the Laplace distribution. The figures clearly indicate that the separation

136 VISAGIE & LOMBARD



-4 -3 -2 -1 0 1 2 3 4

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
e

n
s
it
ie

s
 a

s
 f

u
n

c
ti
o

n
s
 o

f 
x

Figure 2. Standardised normal (dashed line) and Laplace (solid line) density functions.

between g (x, α) and g (−x, α) is substantially larger under the normal distribution than under the
Laplace distribution.
We now discuss some possible consequences of this difference between the two conditional

distributions. The quality of coal is determined, in part, by its ash content. The lower the ash content,
the greater is the release of energy when the coal is burnt. As a result, the price of coal is often
linked to its ash content. Typically, two determinations, X1 and X2, of the ash content of a batch
of coal are made and the estimate µ̂ is computed as shown above. As pointed out above, even if
both determinations are unbiased estimators of µ, unacceptably large deviations would occur in a
proportion α of batches. If µ denotes the contractual ash content, then ash contents in excess of µ
could attract penalties, i.e., a lower price than that originally agreed upon.
Figure 5 shows conditional exceedance probabilities

P (µ̂ > x | |X1 − X2 | > r )

over a range of x values for the normal and Laplace distributions.From the figure it is clear that
deviations up to 1.5 standard deviations in a normal distribution will tend to attract larger penalties
than in a Laplace distribution. This is also rather clear from Figure 1. The economic implications
of this are greater than would seem to be apparent at first glance. A batch of coal could consist of
several hundreds of tons, which means that the penalty of, for example, 1% of the contractual price
could involve hundreds of thousands of dollars.

3. Application to some data
If an enormous amount of data were available, it would be possible to assess empirically which
of the conditional densities seen in Figure 1 is the valid one. In the absence of a large amount of
data we will have to be satisfied with something less, namely a test of sorts to decide which of the
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Figure 3. g (x, α) (solid line) and g (−x, α) (dashed line) under the normal distribution.

normal or Laplace error distributions is applicable. Towards this, Figure 6 shows the differences
X1, j − X2, j , j = 1, ...,199, for 199 batches of coal. Typically, a prescribed value of σ, the common
standard deviation of X1 and X2, is attained by following a standard operating procedure. In the
present instance, the prescribed value was σ = 0.4. Thus, we standardise the observed differences
as follows:

Z j =
X1, j − X2, j

0.4
.

The resulting sample mean and standard deviation are −0.06 and 1.40 (≈
√

2) respectively.
In order to determine which of the two distributions is most appropriate we use the standardised

Kolmogorov-Smirnov statistic:

Tn = max
1≤ j≤n

�������
F

(
Z j

) − Fn

(
Z j

)
√

F
(
Z j

) (
1 − F

(
Z j

) )
������� ,

where F denotes the hypothesised cumulative distribution function and Fn denotes the usual empirical
distribution function

Fn (x) = 1
n

n∑
j=1
I
(
Z j ≤ x

)
.

The observed values of Tn in the dataset are Tn = 0.27 and Tn = 0.21 when F is based on the normal
and Laplace error distributions respectively. The corresponding p-values obtained from 100 000
Monte Carlo simulations are 0.09 and 0.21 respectively. The first of these is borderline significant
at 10% which seems to suggest more support for the Laplace assumption than for the normal in this
particular instance. However, due to the heterogeneous nature of batches of coal, it is not possible to
arrive at definitive conclusions regarding the validity of the two models from just one data set.
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Figure 4. g (x, α) (solid line) and g (−x, α) (dashed line) under the Laplace distribution.

4. Summary
We consider the distribution of the mean of the two closest among a set of three observations,
conditional on the distance between the first two observations being relatively large. The modality
of this conditional distribution depends on the distributional assumptions of the measurement error,
which is the difference between the value of an observation and the true value. We show that if the
errors are from the normal distribution, then the conditional distribution is bimodal, while when the
errors are from the Laplace distribution the conditional distribution is unimodal.
In this paper, the phrase “relatively large” refers the absolute difference between two observations.

This definition is appropriate when the standard deviation of the observations is fixed, regardless of
the mean. However, there are certain quality characteristics of coal for which the standard deviation
seems to be an increasing function of the mean. Then it would be more appropriate to work with
relative differences, that is, the absolute difference between the two observations divided by their
mean. The authors are currently investigating what effect, if any, this change produces in the results
of the analysis.

Acknowledgement. We thank the referee for some useful suggestions which led to an improved
presentation of the work.

Appendix 1: Derivation of (1)
Let X1 and X2 denote the first two observations and let X3 denote the third sample observation. Given
x and a small δ > 0, let dx denote the interval (x − δ, x + δ). Then

P [X ∈ dx | |X1 − X2 | > r ] = P [X ∈ dx, |X1 − X2 | > r]
P [|X1 − X2 | > r] =

1
α

P [X ∈ dx, |X1 − X2 | > r] . (4)
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Figure 5. Exceedance probabilities for the normal (dashed line) and Laplace (solid line) distributions.

Furthermore, since (X1,X2,X3) has the same distribution as (X2,X1,X3),

P [X ∈ dx, |X1 − X2 | > r] = 2P [X ∈ dx,X1 − X2 > r] . (5)

Now,

P [X ∈ dx,X1 − X2 > r]

= P
[

X1 + X3
2

∈ dx, X1 − X2 > r, |X1 − X3 | < |X2 − X3 |
]

+ P
[

X2 + X3
2

∈ dx, X1 − X2 > r, |X1 − X3 | > |X2 − X3 |
]

= P
[

X1 + X3
2

∈ dx, X1 − X2 > r, X3 >
X1 + X2

2

]

+ P
[

X2 + X3
2

∈ dx, X1 − X2 > r, X3 <
X1 + X2

2

]

= G(x + δ,α) − G(x − δ,α) + P
[

X2 + X3
2

∈ dx, X1 − X2 > r, X3 <
X1 + X2

2

]
, (6)

with the next to last equality following because

X1 − X2 > r and |X1 − X3 | < |X2 − X3 |
⇐⇒ X1 > X2 + r and X3 closer to X1 than to X2

⇐⇒ X1 > X2 + r and X3 >
X1 + X2

2
,
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Figure 6. Difference in observed ash contents for 199 batches of coal.

and

X1 − X2 > r and |X1 − X3 | > |X2 − X3 |
⇐⇒ X1 > X2 + r and X3 closer to X2 than to X1

⇐⇒ X1 > X2 + r and X3 <
X1 + X2

2
.

Next, the second term in (6) is

P
[

X2 + X3
2

∈ dx, X1 − X2 > r, X3 <
X1 + X2

2

]

= P
[−X2 − X3

2
∈ d(−x), (−X2) − (−X1) > r, −X3 >

−X1 − X2
2

]

= P
[

X1 + X3
2

∈ d(−x), X1 − X2 > r, X3 >
X1 + X2

2

]

= G(−x + δ,α) − G(−x − δ,α), (7)

with the next to last equality following because (−X2,−X1,−X3) has the same distribution as
(X1,X2,X3). Putting (4), (5), (6) and (7) together, we see that

P [X ∈ dx | |X1 − X2 | > r ]
2δ

=
2
α

(
G(x + δ,α) − G(x − δ,α)

2δ
+

G(−x + δ,α) − G(−x − δ,α)
2δ

)
.

Letting δ ↓ 0 gets us to (1):

h (x, α) = lim
δ↓0

1
2δ

P [X ∈ dx | |X1 − X2 | > r ] = 2
α
(g(x, α) + g(−x, α)) .
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Appendix 2: Derivation of (2)
Let X1, X2 and X3 be independent random variables with common distribution function F and density
function f . Then, for fixed x1 and x2,

P
(

X1 + X3
2

≤ x,X1 − X2 > r,X3 >
X1 + X2

2

���� X1 = x1, X2 = x2

)

= P
(

x1 + X3
2

≤ x,X3 >
x1 + x2

2

)
I (x1 − x2 > r)

= P
( x1 + x2

2
< X3 < 2x − x1

)
I
(
2x − x1 >

x1 + x2
2

, x1 − x2 > r
)

=
(
F (2x − x1) − F

( x1 + x2
2

))
J(x, x1, x2),

where J is defined in (3). Consequently,

G (x, α) = E
[
P

(
X1 + X3

2
≤ x, X1 − X2 > r, X3 >

X1 + X2
2

���� X1,X2

)]

= E
[(

F (2x − X1) − F
(

X1 + X2
2

))
J(x,X1,X2)

]
.

Taking the derivative with respect to x, we obtain

g (x, α) = E [2 f (2x − X1) J(x,X1,X2)] =
∫ ∞

−∞

∫ ∞

−∞
2 f (2x − x1)J (x, x1, x2) f (x1) f (x2) dx1dx2.
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