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Treatment of complex diseases such as cancer, HIV, leukemia and depression usually
follows complex treatment sequences. In two-stage randomization designs, patients are
randomized to first-stage treatments, and upon response, a second randomization to the second-
stage treatments is done. The clinical goal in such trials is to achieve a response such as
complete remission of leukemia, 50% shrinkage of solid tumor or increase in CD4 count in
HIV patients. These responses are presumed to predict longer survival. The focus in two-
stage randomization designs with survival endpoints is on estimating survival distributions and
comparing different treatment policies. In this article, we propose a parametric approach for
estimating survival distributions in time-varying SMARTdesigns. To evaluate the performance
of our approach, a simulation study is conducted. The results of the simulation study reveal
that the new approach gives survival probabilities that are less biased and more precise than
the nonparametric methods. The new method is applied to a data set from a leukemia clinical
trial.

Key words: Survival distributions, Time-varying SMART designs, Treatment sequences, Two-
stage randomization designs.

1. Introduction
Treatment and management of chronic illnesses such as cancer, leukemia and HIV often require
multiple courses of treatment. The clinical goal in such trials is to achieve a response such as
complete remission of leukemia, 50% shrinkage of solid tumor or increase in CD4 count in HIV
patients. These responses are presumed to predict longer survival. Dynamic treatment regimes, also
known as dynamic treatment strategies or treatment policies, have become popular in the conduct of
cancer trials (Lokhnygina and Helterbrand, 2007). These designs use a sequence of decision rules
that link the observed patient’s history with treatment recommendations. In two-stage randomization
designs, for instance in cancer clinical trials, patients are initially randomized to an induction treatment
followed by another randomization to a maintenance regimen provided that the patient responds to
the induction therapy and consents to further study. These designs are sometimes referred to as
sequential multiple assignment randomized trials (SMART). The focus in two-stage randomization
designs with survival endpoints is on estimating survival distributions and comparing the different
treatment policies.
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We differentiate between two SMART designs. SMART designs with outcome assessments at
fixed time points are referred to as standard SMART designs (Dai and Shete, 2016). In such a
SMART design, we take the time to response to be the same for every individual in the study. This
is because the time to measure response to the first stage treatments is fixed for every individual,
for example at six months. In a time-varying SMART design, individuals are randomized to the
second stage treatments as soon as a response is observed. This means that the response times for
the individuals vary. There are, however, advantages for this type of design especially in cancer trials
where medications have some side effects. Prolonged intake of such medications in the first stage
even when a response has been observed may lead to several side effects and thereby making patients
refuse second stage treatments. Also, this type of design may lead to reduction in costs (Dai and
Shete, 2016).
Over the past two decades, several methods for estimating and comparing survival distributions for

two-stage randomization designs have been developed (Kidwell and Wahed, 2013; Guo and Tsiatis,
2005; Wahed and Tsiatis, 2004; Lunceford, Davidian and Tsiatis, 2002). Wahed (2010) developed a
parametric method for estimating and comparing survival distributions for standard SMART designs.
However, his approach does not extend to time-varying SMART designs. In this article, we propose
a parametric approach for estimating survival distributions in time-varying SMART designs.

2. Model framework
Consider a two-stage randomization design where patients are first randomized to receive treatment
A with levels A1 and A2, and individuals who respond and consent to further study are randomized
to the second treatment with levels, say, B1 and B2. For simplicity we shall henceforth use the word
“response” to indicate response to previous treatment and consent to second randomization. The
strategy AjBk, j, k = 1,2, entails treating with Aj followed by Bk if the patient responds to the first
treatment. Non-responders are not randomized to the second stage treatments as in the CALGB
19808 study (Kolitz et al., 2010) which motivated this work. Our objective is to estimate and
compare survival distributions for the different treatment policies. For this scope, we conceptualize
the problem using potential outcomes (Rubin, 1974). This does not mean that focus is on causal
inference but we use potential outcomes as a vehicle for formalizing the problem.
In reality, each individual follows only one treatment strategy, we observe only one outcome for

the specific treatment strategy. However, in theory individuals in the population can follow any
treatment policy AjBk, that is, for each individual in the population one can envision one outcome
for each possible strategy. Each individual has his/her set of potential outcomes and the entire set of
possible outcomes for each individual is referred to as his/her counterfactuals.
Here, we shall focus on data from patients who received induction therapy A1, since data from

patients who received different induction therapies are independent. Data from patients who received
A2 are analyzed in a similar manner. Interest is on estimating survival distributions for treatment
policies A1B1 and A1B2.We assume that associated with subject i is a set of random variables

{
R∗i , (1 − R∗i )T0i,R∗i T

R
i ,R

∗
i T
∗
1i,R

∗
i T
∗
2i
}
,

where R∗i is the response status if patient i was assigned to A1. R∗i = 1 if patient i responds to
treatment A1, R∗i = 0 otherwise. TR

i is the time from initial randomization to response for patient

116 VILAKATI & CORTESE



i defined only when R∗i = 1; T0i is the survival time for a patient who do not respond to first stage
treatment. T∗1i is the time from second randomization to death if patient i receives B1, and similarly
T∗2i is the time from second randomization to death if patient i receives B2 instead. If patient i is
assigned to A1Bk, his/her survival time would be

Tki = (1 − R∗i )T0i + R∗i (TR
i + T∗ki), k = 1,2.

We note that we can only observe T1i or T2i , hence Tki are potential outcomes. If R∗i = 0 then
T1i = T2i = T0i .

Let Tk denote the survival time for the population if all participants were assigned to the treatment
strategy A1Bk . Inference on features of these distributions address directly the intent-to-treat question
of interest. Using data from the two-stage design we estimate the distribution of Tk .
Without right censoring, the observed data can be represented as a set of independent and identically

distributed (iid) random vectors (R∗i ,R∗i TR
i ,R

∗
i Zi,Ti), for i = 1, . . . ,n, where Zi is an indicator for

the B treatment defined only if R∗i = 1. We have Zi = 1 if patient i is assigned to B1 and Zi = 0 if
assigned to B2. The observed survival time, Ti, is related to the potential outcomes as follows:

Ti = (1 − R∗i )T0i + R∗i
{
TR
i + ZiT∗1i + (1 − Zi)T∗2i

}
. (1)

To incorporate right censoring, letCi be the time to censoring for the ith patient. The observed data
can then be represented as independent and identically distributed vectors (Ri,RiZi,RiTR

i ,Ui,∆i),
where ∆i = I(Ti < Ci) is the failure indicator, Ui = min(Ti,Ci) is the observed time to either death or
censoring. Ri = 0 if patient i is censored without having had a response to treatment A1, otherwise
Ri = R∗i .
We assume that the second stage randomization is made independently of the other potential

outcomes, that is

πz = P(Zi = 1|Ri = 1,TR
i ,T1i,T2i,Ci) = P(Zi = 1|Ri = 1).

We note that πz , defined only if Ri = 1, is the probability of being randomized to the B treatment
and it is typically fixed by design.

3. Nonparametric methods
Several nonparametric estimators have been proposed. The most popular ones are the weighted risk
set estimator (WRSE) of Guo and Tsiatis (2005), and the inversely weighted estimators proposed by
Lunceford et al. (2002) which we shall refer to as the LDT estimator.

3.1 LDT estimator
The LDT estimator (Lunceford et al., 2002) is derived using the inverse weighting technique (Robins,
Rotnitzky and Zhao, 1994). Consider the estimation of the survival distributions for the treatment
policy A1Bk , that is, S1k(t) = 1 − P(T1k ≤ t) = 1 − F1k , for k = 1,2. For simplicity, consider
A1B1. In two-stage designs, difficulties arise from subjects who are not consistent with the treatment
policy of interest. In this case we treat them as missing. If all the patients are assigned to A1B1 and
there is no censoring, meaning Ui = Ti = T1i , the natural estimator for F11(t) is n−1 ∑n

i=1 I(Ui ≤ t).
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With censoring and second stage randomization upon response, only a subset of patients would have
their observed survival time and actual treatment received being consistent with A1B1 since some
patients are randomized to A1B2. Lunceford et al. (2002) proposed an estimator based on inverse
probability weighting (Robins et al., 1994) to weight observations in this subset in such a way that
the distribution of the weighted observations mimic that in an ideal case. Let W1i = 1− Ri + RiZi/πz
be the weight function. When the ith patient is consistent with treatment policy A1B1, W1i acts as a
weight. Non-responders consistent with A1B1 represent themselves and they get a weight of 1, that
is,W1i = 1. Each responder consistent with A1B1 represents 1/πz remitting or consenting individuals
who could have been potentially assigned to B1 and gets a weight of 1/πz . Responders not consistent
with the policy A1B1 get a weight of 0.
This weighting scheme motivates the estimator

F̂1
1k(t) = n−1

n∑
i=1

∆iWki

K̂(Ui)
I(Ui ≤ t), k = 1,2, (2)

where K̂(Ui) is theKaplan–Meier estimator for the censoring distribution given by K̂(Ui) =
∏

u≤t {1−
dNc(u)/Y (u)}, with Nc =

∑n
i=1 I(Ui ≤ u,∆i = 0) and Y (u) = ∑n

i=1 I(Ui ≥ u).
Instead of dividing by n in (2), a second estimator can be obtained by dividing by a probabilistically

adjusted sample size:

F̂∗1k(t) =
{

n∑
i=1

∆iWki

K̂(Ui)

}−1 n∑
i=1

∆iWki

K̂(Ui)
I(Ui ≤ t), k = 1,2. (3)

From (3), the survival distributions for A1Bk are estimated using

Ŝ1k(t) = 1 − F̂∗1k(t),
and the variance is estimated by

V̂ar(Ŝ1k(t)) = 1
n

{
1
n

n∑
i=1

∆iWki

K̂(Ui)
{I(Ui ≤ t) − F̂∗1k}2 +

∫ L

0

dNc(u)
K̂(u)Y (u) Ê{L

∗
1ki(t,u)}2

}
,

where L is the restricted lifetime which is smaller than the maximum follow-up of the study,

E{L∗1ki(t,u)}2 =
1
n

n∑
i=1

∆i

K̂(Ui)
[
Wki{I(Ui ≤ t) − F̂∗1k(t)} − Ĝ∗1k(t,u)

]2
I(Ui ≥ u),

and

Ĝ∗1k(t,u) = {nŜ(u)}−1
n∑
i=1

∆iWki

K̂(Ui)
{{I(Ui ≤ t) − F̂∗1k(t)}

}
I(Ui ≥ u).

More details on the variance derivation can be found in the appendix of Lunceford et al. (2002).

3.2 Weighted risk set estimator
The derivation of theWRSE estimator relies heavily on the counting processes. For a one-stage study
with survival endpoints, the cumulative hazard rate can be estimated by the Aalen-Nelson estimator

Λ̂(t) =
∫ t

0

dN(u)
Y (u) ,
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where N(u) = ∑n
i=1 I(Ui ≤ u,∆i = 1) denotes the number of deaths up to and including time u, and

Y (u) = ∑n
i=1 I(Ui ≥ u) is the number of patients at risk at time u. TheWRSE is here showed for A1B1,

as the development of the estimator for A1B2 follows similarly. Consider the case when all individuals
are assigned to A1B1 in which case the observed death or censoring time is U1i = min(T1i,Ci). Let
N1i(u) = I(U1i ≤ u,∆i = 1) and Y1i(u) = I(U1i ≥ u), then the cumulative hazard estimator becomes

Λ̂11(t) =
∫ t

0

∑n
i=1 dN1i(u)∑n
i=1 Y1i(u) .

In reality, some of the patients who could have received B1 received instead B2 after randomization
to the second stage. N1i(u) and Y1i(u) cannot be observed directly and the WRSE propose to
incorporate inverse weighting where the weight function depending on u is defined as Wi(u) =
1− Ri(u)+ Ri(u)Zi/πz , where Ri(u) is the response status at time u. Ri(u) = 0 if at time u a response
has not been achieved for patient i but patient i is still consistent with A1B1 and gets a weight of 1.
For a patient i with Ri(u) = 1 and Zi = 0, a weight of 0 is assigned since this patient is no longer
consistent with the treatment strategy A1B1. For a responder assigned to B1, this patient is consistent
with A1B1 and gets a weight of 1/πz at time u. This patient represents 1/πz individuals who could
have been potentially assigned to B1. The weight functionW∗i (u) = 1−Ri(u)+Ri(u)(1− Zi)/(1− πz)
is used for A1B2 and a similar argument is made.
The difference between the LDT and the WRSE is that the WRSE uses time dependent weights.

A patient who is a responder and is randomized to B2 gets a weight of 0 under the LDT at any time
u including the time before the second randomization. This leads to a loss in efficiency. On the
contrary, the WRSE includes this subset of patients and assigns a weight Wi = 1 at any time u before
the second randomization; thereafter the weight changes to Wi = 0.
The cumulative hazard estimator for A1B1 using the above weight function is

Λ̂11(t) =
∫ t

0

∑n
i=1 Wi(u)dNi(u)∑n
i=1 Wi(u)Yi(u) ,

where Ni(u) = I(Ui ≤ u,∆i = 1) and Yi(u) = I(Ui ≥ u). The survival estimator is

Ŝ1(t) = exp
{
−

∫ t

0

∑n
i=1 Wi(u)dNi(u)∑n
i=1 Wi(u)Yi(u)

}
.

The variance is given by
V̂ar(SA1B1 (t)) = n−1{SA1B1 (t)}2σ̂2,

where

σ̂2 = n−1
n∑
i=1

©«
∫ t

0

Wi(u)
[
dNi(u) − Yi(u)

∑n
i=1 Wi (u)dNi (u)∑n
i=1 Wi (u)Yi (u)

]
n−1 ∑n

i=1 Wi(u)Yi(u)
ª®®¬

2

.

4. Parametric mixture approach
Wahed (2010) developed a likelihood based method for estimating the survival means for adaptive
treatment strategies upon which inferences are made to compare different treatment policies. The

TIME-VARYING SMART DESIGNS 119



development of this approach is also based on counterfactuals. We now describe Wahed’s (2010)
approach in a design where we consider first stage treatments Aj , j = 1,2, and second stage treatments
Bk , k = 1,2. Let

Tjki = (1 − Rji)Tj0i + RjiT∗∗jki, j, k = 1,2,

and the observed survival time is

Ti =
n∑
i=1

Xji

{
(1 − Rji)Tj0i + RjiZkiT∗∗jki

}
, j, k = 1,2,

where Xji is the first treatment indicator and T∗∗
jki

is the overall survival time for the ith patient
assigned to treatment policy AjBk . Note that this survival time is different from T∗

jk
defined in the

previous section. T∗∗
jki

is the total survival time from first randomization to an event while T∗
jk

is the
time from second randomization to an event. Define X2 = 1 − X1 and Z2 = 1 − Z1. It is further
assumed that, by design, the randomization probabilities are independent of the observed data.
To construct the likelihood for the observed data, probabilitymodels are assumed for the counterfactual

times. Let E[h(T∗∗
jki
)] ≡ γjk , j = 1,2, k = 0,1,2, where h(·) is some function based on the data.

Noting that the survival time for the treatment policy AjBk is a mixture of two survival counterfactual
variables, the expected value for the treatment policy AjBk can be written as

µjk = (1 − πr j)γj0 + πr jγjk, j = 1,2; k = 1,2, (4)

where πr j is the proportion of responders in arm Aj , j = 1,2. Let Xji ∼ Bernoulli(πx j), Rji |Xji ∼
Bernoulli(πr j), Zki |Ri ∼ Bernoulli(πzk), T∗∗

jk
∼ f (·; θ jk), j, k = 1,2, and Tj0 ∼ f (·; θ j0), j = 1,2. πx j

is the proportion of subjects assigned to Aj , j = 1,2, and πzk is the proportion of subjects assigned
to Bk , k = 1,2. We define πz2 = 1 − πz1 and πx2 = 1 − πx1. Let ri be a realization of Ri and δ be
a realization of ∆. With right censoring, the observed data are Di = (X1i,RiZ1i,Ui,∆i) and the full
likelihood is

L(θ, π; {Di}ni=1) = L1 (
π; {x1i,ri,riz1i}ni=1

)
L2 (

θ; {x1i,ri,riz1i,ui, δi}ni=1
)
,

with π = (πr1, πr2, πx1, πz1), θ = (θ jk j = 1,2; k = 0,1,2),

L1(π; {x1i,ri,riz1i}ni=1) =
n∏
i=1

b(x1i; πx1)
2∏
j=1
{b(ri; πr j)b(z1i; πz1)}x j i ,

where b(·; p) is the probability mass function for a Bernoulli random variable with success probability
p, and

L2(θ; {x1i,ri,riz1i,ui, δi}ni=1) =
n∏
i=1

2∏
j=1

([ 2∏
k=1
{ fjk(ui; θ jk)δi Sjk(ui; θ jk)1−δi }zki

]ri

× { fjk(ui; θ j0)δi Sj0(ui; θ j0)1−δi }1−ri
)x j i

.
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The likelihood factorizes into two components: the likelihood contribution for π and the likelihood
contribution for θ. To estimate survival distributions for the treatment strategies one replaces the
means in (4) with survival functions to get

Sjk(u) = (1 − πr j)Sj0(u) + πr jSjk(u), j, k = 1,2.

This is a well known result from the theory of mixture distributions (McLachlan andMcGiffin, 1993).

5. Parametric approach for time-varying SMART designs
The approach for estimating survival distributions developed by Wahed (2010) is not suitable for
time-varying SMART designs. Consider the treatment A1 (the results are similar for treatment A2).
Wahed (2010) defined using counterfactuals the survival time for patient i, if assigned to A1Bk , as

Tki = (1 − Ri)T0i + RiT∗∗ki , k = 1,2.

This way of definition is not appropriate for two-stage time-varying SMART designs. In addition to
T∗∗
ki
, we need to consider another variable for responders, TR

i , which is the time to response for the
ith patient in the first stage. Since time to the first-stage response varies among the responders, it
must be accounted for in the likelihood. In a time-varying SMART design the survival time should
be defined as

Tki = (1 − Ri)T0i + Ri(TR
i + T∗ki), k = 1,2.

The observed survival time in this case is the sum of two random variables for the responders. One
cannot put a single distribution on a sum as that could be theoretically incorrect. The density function
of a sum of two random variables is given by the convolution of their density functions. To solve
this problem, we propose a parametric approach for the estimation of survival functions of treatment
policies AjBk in the presence of a time-varying SMART design. This work follows the lines of
Wahed (2010), extending some of the theory therein to a more general setting.

5.1 Density of Tk

Let T̃ki = TR
i +T∗

ki
, then Tki = (1− Ri)T0i + RiT̃ki , for k = 1,2. Let r be a realization of R, r ∈ (0,1).

Then we can write, for k = 1,2,

FTk = P(Tk ≤ t) = P([(1 − r)T0 + rT̃k] ≤ t)
=

∑
r ∈(0,1)

P([(1 − r)T0 + rT̃k] ≤ t |R = r)P(R = r)

= P(T0 ≤ t)P(R = 0) + P(T̃k ≤ t)P(R = 1)
= (1 − πr )P(T0 ≤ t) + πrP(T̃k ≤ t),

where P(R = 1) = πr . This leads to

fTk (t) = (1 − πr ) f0(t) + πr fk(t), k = 1,2,

where f0(t) and fk(t) are the density functions of T0 and T̃k , respectively.
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We note that fT̃k (t) is obtained from a convolution of TR and T∗
k
. Using the relationship between

a mixture density and the survival function (McLachlan and McGiffin, 1993), the survival function
for treatment policy A1Bk is given as

STk (t) = (1 − πr )S0(t) + πSk(t),

where S0(t) and Sk(t) are the survival functions of T0 and T̃k , respectively.

Example: Exponential Model
Suppose that

TR ∼ λRexp(−λRt), λR > 0,
T∗k ∼ λkexp(−λk t), λk > 0, k = 1,2.

We are interested in the density of T̃k :

fT̃k (z̃) =
∫ z̃

0
λRλke−λR te−λk (z̃−t)dt

=

∫ z̃

0
λRλke−λR te−λk z̃+λk tdt

= λRλke−λk z̃
∫ z̃

0
e−(λR−λk )tdt

=
λRλk
λk − λR e−λR z̃ +

λRλk
λR − λk e−λk z̃, λR, λk > 0, z ≥ 0.

Likewise, we can obtain the distribution function

FT̃k (z̃) = P(T̃k ≤ z̃)

=
λRλk
λk − λR

∫ z̃

0

(
e−λR t − e−λk t

)
dt

= 1 +
λR

λk − λR e−λk z̃ − λk
λk − λR e−λR z̃ .

Consequently, the survival function for T̃k is

ST̃k (z̃) = 1 − FT̃k (z̃)

= 1 −
[
1 +

λR
λk − λR e−λk z̃ − λk

λk − λR e−λR z̃

]

=
λk

λk − λR e−λR z̃ +
λR

λR − λk e−λk z̃ .

5.2 Likelihood and survival function
Suppose that the time-to-event is subject to right censoring. We assume that everyone’s response

status is always observed. To estimate the parameters needed for the survival distribution, we
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construct the likelihood for the observed data in a two-stage design. The joint distribution of the data
can be obtained as

f (Ui = ui,∆i = δi,RiZi = rizi |Ri = ri)P(Ri = ri)
= f (Ui = ui,∆i = δi |RiZi = rizi,Ri = ri)P(RiZi = rizi |Ri = ri)P(Ri = ri)

=




f (U0i = ui,∆i = δi |RiZi = 0,Ri = 0)P(RiZi = 0|Ri = 0)P(Ri = 0), if Ri = 0
f (U1i = ui,∆i = δi |RiZi = 1,Ri = 1)P(RiZi = 1|Ri = 1)P(Ri = 1), if Ri = 1, Zi = 1
f (U2i = ui,∆i = δi |RiZi = 0,Ri = 1)P(RiZi = 0|Ri = 1)P(Ri = 1), if Ri = 1, Zi = 0

=




(1 − πr ) f0(ui)δi S0(ui)1−δi
πrπz f1(ui)δi S1(ui)1−δi
πr (1 − πz) f2(ui)δi S2(ui)1−δi ,

where P(Zi = 1|Ri = 1) = πz which is the probability of being randomized to B1 in the second stage.
Clearly, P(Zi = 0|Ri = 1) = 1 − πz is the probability to be randomized to B2.
Let Oi denote the observed data (ri,rizi,ui, δi) for patient i. Then the full likelihood is

L(θ, π; O) =
n∏
i=1
[(1 − πr ) f0(ui)δi S0(ui)1−δi ]1−ri

× {[πrπz f1(ui)δi S1(ui)1−δi ]zi · [πr (1 − πz) f2(ui)δi S2(ui)1−δi ]1−zi }ri ,

where O = (O1,O2, ...,On), π = (πr , πz) and θ = (θR, θk), k = 1,2. The likelihood factorizes into two
parts, with one part depending only on the parameters π and the other part on the parameters θ:

L1(π; O) = (1 − πr )
∑n

i=1(1−ri ) · π
∑n

i=1 ziri
r · π

∑n
i=1 ziri

z · (1 − πz)
∑n

i=1 ri (1−zi ) · π
∑n

i=1 ri (1−zi )
r

= (1 − πr )
∑n

i=1(1−ri ) · π
∑n

i=1 ziri+
∑n

i=1 ri−
∑n

i=1 ziri
r · π

∑n
i=1 ziri

z · (1 − πz)
∑n

i=1 ri (1−zi )

= (1 − πr )
∑n

i=1(1−ri ) · π
∑n

i=1 ri
r · π

∑n
i=1 ziri

z · (1 − πz)
∑n

i=1 ri (1−zi ).

The corresponding log-likelihood is

l1(π; O) = logL1(π; O)

=

n∑
i=1
(1 − ri)log(1 − πr ) +

n∑
i=1

rilogπr +
n∑
i=1

zirilogπz +
n∑
i=1

ri(1 − zi)log(1 − πz),

and

∂l1(π; O)
∂πr

=
−∑n

i=1(1 − ri)
1 − πr +

∑n
i=1 ri
πr

,

∂l1(π; O)
∂πz

=

∑n
i=1 ziri
πz

−
∑n

i=1 ri(1 − zi)
1 − πz .

(5)

Setting the two score equations from (5) to zero we get

π̂r =

∑n
i=1 ri
n

, π̂z =

∑n
i=1 riri∑n
i=1 ri

, (6)
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which are maximum likelihood estimators (MLEs) from L1(π; O). The likelihood for θ is

L2(θ; O) =
n∏
i=1
[ f0(ui)δi S0(ui)1−δi ]1−ri {[ f1(ui)δi S1(ui)1−δi ]zi · [ f2(ui)δi S2(ui)1−δi ]1−zi }ri ,

and the log-likelihood, l2(θ; O) = logL2(θ; O), becomes

l2(θ; O) =
n∑
i=1
{(1 − ri)log f0(ui)δi S0(ui)1−δi

+ rizilog f1(ui)δi S1(ui)1−δi + ri(1 − zi)log f2(ui)δi S2(ui)1−δi }.

To estimate the survival distributions for the treatment policy A1Bk , we propose using

ŜA1Bk
(u) = (1 − π̂r )Ŝ0(u) + π̂r Ŝk(u), k = 1,2,

where Ŝ0(u) and Ŝk(u) are obtained by replacing the MLEs of θ in the parametric survival functions
of S0(u) and Sk(u). Estimating survival distributions for treatment policy A2Bk follows analogously.

Example: Exponential Model
Assuming the exponential distribution we have

f0(u) = λ0e−λ0u,

f1(u) = λRλ1
λ1 − λR e−λRu +

λRλ1
λR − λ1

e−λ1u,

f2(u) = λRλ2
λ2 − λR e−λRu +

λRλ2
λR − λ2

e−λ2u,

and the log-likelihood becomes

l(θ; Oi) =
n∑
i=1

{
(1 − ri)log[λ0e−λ0ui ]δi [e−λ0ui ]1−δi

+ rizilog
[
λRλ1
λ1 − λR e−λRui +

λRλ1
λR − λ1

e−λ1ui

]δi [
λ1

λ1 − λR e−λRui +
λR

λR − λ1
e−λ1ui

]1−δi

+ ri(1 − zi)log
[
λRλ2
λ2 − λR e−λRui +

λRλ2
λR − λ2

e−λ2ui

]δi [
λ2

λ2 − λR e−λRui +
λR

λR − λ2
e−λ2ui

]1−δi
}
.

Since the full likelihood factorizes into two parts, each part can be maximized separately. The
maximum likelihood estimates for L1(π; O) are given in (6) above. L2(θ; O) can be maximized
numerically since the estimates of the parameters from the convolution do not have closed-form
solutions. Assuming an exponential distribution for k = 1 leads to

ŜA1B1 (u) = (1 − π̂r )e−λ̂0u + π̂r

(
λ̂1

λ̂1 − λ̂R
e−λ̂Ru +

λ̂R

λ̂R − λ̂1
e−λ̂1u

)
.
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5.3 Large sample properties
Consider the case when k = 1, that is, when estimating survival curve for treatment policy A1B1

ŜA1B1 (u) = (1 − π̂r )Ŝ0(u) + π̂r Ŝ1(u), for u ∈ [0, τ].

Let φ̂ = (π̂r , θ̂) and G(u) denote the vector of partial derivatives with respect to each parameter in
φ = (πr , θ). Also define V = Var(φ̂) to be the variance-covariance matrix for the MLEs. Then, by
the delta method, we have that

ŜA1B1 (u) Û∼ N(SA1B1 (u),Σ(u)),

where Σ(u) = G(u)VG(u)T . We estimate Σ(u) by replacing φ = (πr , θ) with φ̂ = (π̂r , θ̂). This leads
to Σ̂ = ĜV̂ĜT , where V̂ is the estimated variance-covariance matrix of φ̂.

Example: Exponential Model
Using the delta method, we compute the variance of ŜA1B1 when exponential distributions are
assumed. Taking partial derivatives with respect to the parameters, we get

d1 =
∂SA1B1 (u)

∂πr
= −e−λ0u +

(
λ1

λ̂1 − λR
e−λRu +

λR
λR − λ1

e−λ1u

)
,

d2 =
∂SA1B1 (u)

∂λ0
= −u(1 − πr )e−λ0u,

d3 =
∂SA1B1 (u)
∂λR

=
λ1

(λ1 − λR)2
e−λRu − λ1u

λ1 − λR e−λRu − λ1

(λR − λ1)2
e−λ1u,

d4 =
∂SA1B1 (u)

∂λ1
=

λR

(λR − λ1)2
e−λ1u − λR

(λ1 − λR)2
e−λRu − λRu

λR − λ1
e−λ1u .

Now, given G = (d1, d2, d3, d4), we obtain

Σ = G
©«

Var(π̂r ) 0 0 0
0 Var(λ̂0) 0 0
0 0 Var(λ̂R) Cov(λ̂R, λ̂1)
0 0 Cov(λ̂1, λ̂R) Var(λ̂1)

ª®®®®¬
GT .

Weplug in φ̂ to obtain Ĝ = (d̂1, d̂2, d̂3, d̂4). V = Var(φ̂) is estimated by the observed Fisher information
matrix.

6. Simulation study
To study the performance of the proposed estimator, a simulation study was conducted and a

comparison with other estimators was made. The generation of the datasets was done following
a two-stage SMART design with two first stage treatments and two second stage treatments. We
focused on data from A1 as data from A1 and A2 are independent. All simulations were done in R.
Different simulation scenarios were considered with different response rates. Ri was taken to be

a Bernoulli distribution with P(Ri = 1) = πr , and πr ∈ (0.5,0.7) so as to achieve between 50% and
70% of individuals responding to the first stage intervention. T0i was generated from an exponential
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distribution with a mean of 3 years for those with Ri = 0. The second stage indicator was generated
from a Bernoulli distribution with P(Zi = 1) = πz, and πz was set to be 0.5 in all simulations.
We generated TR

i from an exponential distribution with a mean of 5 years for the responders to the
first stage treatment. For those with Zi = 1, T∗1i was generated from an exponential distribution
with a mean of 7 years and T∗2i was generated from an exponential distribution with a mean of 8
years. The observed survival time, Ti , was obtained using equation (1). The right censoring time,
Ci , was generated from a uniform distribution, U(0, v), such that 20% and 40% of the sample were
censored. Finally, the observed time was defined as Ui = min(Ti,Ci). The DTR package was used
for estimating the WRSE and the LDT estimator (Tang and Melguizo, 2005). For our estimator, an
ad-hoc R function was written and maximized using the optim function in R. To facilitate exposition,
we denote our parametric approach for time-varying SMART designs as TVS. We also denote the
censoring rate by c and time by t.
Tables 1 and 2 show the results of the simulation study. The results for our estimator are given

under the TVS columns. We report the standard errors (SE), absolute bias, and 95% coverage
probabilities (CP) for the three estimators for treatment policy A1B1. Relative efficiency (RE) is also
reported between our parametric estimator and the WRSE. The relative efficiency is calculated as
the sample variance of our estimator divided by the sample variance of the WRSE for estimating the
survival function. Guo and Tsiatis (2005) established that the WRSE is more efficient as compared
to the LDT estimator. For this reason, we only computed the relative efficiency of our estimator and
the WRSE. Two different censoring and response rates are considered.
The results of this simulation study show that our estimator is more precise compared to its

nonparametric counterparts. This is shown by the small standard errors across all the simulation
scenarios. The LDT estimator has the largest standard errors among the estimators. Our estimator
is more efficient than the other two estimators. This result is not surprising. Inferences based on
parametric distributions are more precise provided the parametric assumptions are valid (Collett,
2015). The coverage probabilities of our method are close to the nominal level, the same applies
to the WRSE. The coverage probabilities of the LDT estimator are highly affected by the change in
censoring rates. In cases where the censoring rate is high, that is, 40%, the coverage probabilities
are way below the desired nominal level.
In terms of biasedness, all three methods performed fairly well with the exception of the LDT

estimator in the case of 40% censoring. Increasing the censoring rate from 20% to 40% for the LDT
estimator leads to an increase in bias. There is, however, a minimal increase in bias for the other two
estimators when the censoring rate was increased. The bias vanished with increase in the sample
size, as expected. Our parametric estimator has the least bias among the three methods, and when
the sample size is 300, the bias of our method diminishes. Changing the response rates changes the
survival estimates. In general all three methods yield similar survival estimates. The differences
in the survival estimates is profound for the LDT when the censoring rate is 40%. With a lower
censoring rate, the survival estimates from the three methods are mostly similar.

7. Application: CALGB 19808 study
We apply our methodology to the Cancer and Leukemia Group B 19808 (CALGB 19808) study
(Kolitz et al., 2010, 2014). In the CALGB 19808 study, 302 patients were randomized to receive
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Table 3. Application results.

t Policy Ŝ(t)exp
TVS

SEexp Ŝ(t)gom
TVS

SEgom Ŝ(t)WRSE SE

0.03 ADEP-rIL-2 0.9952 0.0006 0.9845 0.0026 0.9868 0.0092
ADEP-OBS 0.9952 0.0006 0.9844 0.0027 0.9868 0.0092
ADE-rIL-2 0.9953 0.0006 0.9847 0.0027 0.9801 0.0114
ADE-OBS 0.9953 0.0006 0.9847 0.0030 0.9801 0.0114

1.30 ADEP-rIL-2 0.8114 0.0186 0.6356 0.0402 0.6302 0.0407
ADEP-OBS 0.8007 0.0188 0.6249 0.0429 0.5964 0.0436
ADE-rIL-2 0.8146 0.0188 0.6427 0.0430 0.6157 0.0433
ADE-OBS 0.8034 0.0189 0.6315 0.0420 0.6210 0.0422

4.10 ADEP-rIL-2 0.5233 0.0352 0.4422 0.0438 0.4286 0.0449
ADEP-OBS 0.4890 0.0334 0.4079 0.0422 0.3815 0.0463
ADE-rIL-2 0.5337 0.0356 0.4571 0.0419 0.4144 0.0471
ADE-OBS 0.4988 0.0338 0.4221 0.0446 0.3624 0.0452

8.00 ADEP-rIL-2 0.3186 0.0389 0.3676 0.0262 0.3547 0.0445
ADEP-OBS 0.2663 0.0325 0.3153 0.0435 0.3199 0.0452
ADE-rIL-2 0.3344 0.0389 0.3888 0.0331 0.3787 0.0470
ADE-OBS 0.2796 0.0329 0.3341 0.0311 0.3407 0.0450

induction chemotherapy regimens consisting of cytosine arabinoside (Ara-C;A), daunorubicin (D),
and etoposide (E) without (ADE) or with (ADEP) PSC-833 (P). The study was done to patients under
the age of 60 with newly diagnosed acute myeloid leukemia. To be eligible, the patients should not
have been previously treated for leukemia and be under the age of 60. The study was designed to
compare the two induction chemotherapy regimens, ADE and ADEP, with both treatments given at
their highest clinically feasible doses.
For the first stage, the main objective of the trial was to determine whether use of the Pgp-

modulating agent PSC-833 in the ADEP regimen improved overall survival and disease-free survival
compared to ADE only. The randomization between ADE and ADEP was done at 1:1 ratio. The
analysis of the first stage data is reported in Kolitz et al. (2010). In both treatment arms, 75% of
the patients achieved complete remission (CR). Complete remission was defined using the National
Cancer Institute Workshop criteria (Cheson et al., 1990). The 75%who achieved complete remission
were further randomized to the second stage treatments, namely recombinant interleukin-2 (rIL-2)
and no rIL-2 (observation).
Table 3 shows the results of fitting our method to the CALGB 19808 study. This analysis is based

on the overall survival. For the first component in the survival mixture model (S0), we assumed either
the exponential or the Gompertz distributions. Under the columns Ŝ(t)exp

TVS
and Ŝ(t)gom

TVS
, we report the

survival estimates when the exponential or the Gompertz distribution is used for the non-responders.
The second component, (TR

i +T∗
ki
), is the convolution of exponential distributions. The results when

a Gompertz distribution was used provide a better fit with similar estimates to theWRSE. The fit with
an exponential distribution is poor. It tends to overestimate the survival probability in the middle of
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the curve and the discrepancy is profound.

8. Conclusion
We can differentiate between two types of SMART designs. In some SMART designs, the response
is measured at one time point. In other SMART designs, the response is measured at different time
points in the first stage. The time to response then differs from patient to patient. This makes the
observed survival times differ in these two types of designs. In the latter, the observed survival times
are a sum of two random survival times for the responders. This makes it theoretically flawed to just
assume a single survival model for the sum. The density of a sum of two random variables is always
given by a convolution. In this paper, we proposed using a convolution-based density function in
modelling the total times for responders. Maximum likelihood estimation was used and the results are
compared to the nonparametric estimates from theWRSE. The proposed approach is not restricted to
only convolutions of the exponential distribution but can be generalized to other distributions using
numerical methods based on the discrete Fourier transforms or other approximations. The distr
package provides a platform where such probability densities can be computed.
We note that the way the survival time is defined in a standard SMART design makes it easier for

the parametric analysis to be conducted as it avoids the use of convolutions. The way the survival
time is defined for responders in time-varying SMART designs poses a challenge in the analysis.
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