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Process capability indices have been widely used in the manufacturing industry. They
measure the ability of amanufacturing process to produce items thatmeet certain specifications.
A capability index relates the voice of the customer (specification limits) to the voice of the
process. There is a need to understand and interpret process capability indices. Most of
the existing work in this area has been devoted to classical frequentist large sample theory.
An alternative approach to the problem of making inference about capability indices is the
Bayesian approach. In this paper a Bayesian version of Tukey’s method is used for constructing
simultaneous credibility intervals for all pairwise differences. A Bayesian procedure for testing
all possible contrasts is also given. The problem of selecting the best supplier(s) has received
considerable attention in the literature, but mainly from a classical frequentist point of view. A
Bayesian simulation procedure is also illustrated to find the best supplier or group of suppliers.
This method seems much easier to perform than the Monte Carlo integration method given in
Wu, Shiau, Pearn and Hung (2016). In section 10, a sensitivity analysis regarding the prior
choice is considered and in the last section, t-distributed data are analysed.

Key words: All possible contrasts, Bayesian procedure, Best supplier, Capability indices,
t-distribution.

1. Introduction
Process capability indices have been widely used in the manufacturing industry. They measure the
ability of a manufacturing process to produce items that meet certain specifications. A capability
index relates the voice of the customer (specification limits) to the voice of the process. A large value
of the index indicates that the current process is capable of producing items (parts, tablets) that will
meet or exceed the customer’s requirements. Capability indices are convenient because they reduce
complex information about the process to a single number and measure relative variability similar to
the coefficient of variation.
Application examples include the manufacturing of semiconductor products (Hoskins, Stuart

and Taylor, 1988), jet-turbine engine components (Hubele, Shahriari and Cheng, 1991), wood
products (Lyth and Rabiej, 1995), audio speaker drivers (Chen and Pearn, 1997), wavelength division
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multiplexes (Wu and Pearn, 2005), measuring EEPROM process capability (Wu and Pearn, 2006)
and many others.
There is a need to understand and interpret process capability indices. In the literature on statistical

quality control there have been some attempts to study the inferential aspects of these indices. Most
of the existing work in this area has been devoted to classical frequentist large sample theory.
As mentioned by Wu and Pearn (2005) a point estimate of the index is not very useful in making

reliable decisions. An interval estimation approach is in fact more appropriate and widely accepted
but the frequency distributions of these estimators are often very complicated which means that the
calculation of exact confidence intervals will be difficult.
An alternative approach to the problem ofmaking inference about capability indices is the Bayesian

approach. As it is well known in the Bayesian approach the information contained in the prior is
combined with the likelihood to obtain the posterior distribution of the parameters. Inferences about
the unknown parameters are based on the posterior distributions.

2. Definitions and notation
Four of the commonly used capability indices are

Cp =
u − l
6σ

, Cpu =
u − µ
3σ

, Cpl =
µ − l
3σ

and Cpk = min
(
Cpu,Cpl

)
.

Cpk is the normalized distance between the process mean and its closest specification limit. It can
easily be verified that Cpk = Cp (1 − w), where w = (2 |m − µ|)/(u − l) and m = (u + l)/2 is the
midpoint of the specification limits (u and l). Thus, Cpk modifies Cp by a standardized measure w
of non-centrality of the process and Cpk = Cp if and only if the process is centered at m.
The larger the value of Cpk , the more capable is the process. In general, if the value of a process

capability index is greater than 1, the process is said to be capable. According to Niverthi and Dey
(2000), the thrust these days in the manufacturing industry is to achieve a Cpk value of at least 1.33.
The definition of Cpk includes as special case those processes for which only one limit exists, by
letting either l → −∞ or u→∞, in which case it reduces to the appropriate standardized measure.
Let y1, y2, . . . , yn be an independent sample from a manufacturing process. In this paper it will

be assumed that the yi (i = 1,2, . . . ,n) are independent, identically normally distributed random
variables with mean µ and variance σ2. Since both µ and σ2 are unknown and no prior information
is available, the conventional non-informative, Jeffreys’ prior

p(µ,σ2) ∝ σ−2 (1)

will be specified for µ and σ2 in this section. Using (1), it is well known (see for example Zellner,
1971) that the conditional posterior density function of µ is normal:

µ|σ2, y ∼ N
(
ȳ,
σ2

n

)
, (2)

and in the case of the variance component σ2, the posterior density function is given by

p(σ2 |y) = K(σ2)− 1
2 (n+1) exp

{
−1

2
(n − 1) s2

σ2

}
, σ2 > 0, (3)
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an inverted-gamma density function, where y = [y1, y2, · · · , yn]′, ȳ = 1
n

∑n
i=1 yi is the sample mean,

s2 = 1
n−1

∑n
i=1 (yi − ȳ)2 is the sample variance, and

K =
{ (n − 1) s2

2

} 1
2 (n−1) 1

Γ ((n − 1)/2) (4)

is the normalizing constant. From (3) it follows that

k =
(n − 1) s2

σ2 ∼ χ2
n−1 = χ2

v (5)

for a given s2.
As mentioned, these indices are used in process evaluation. From a Bayesian point of view the

posterior distributions are of importance. One of the aims of this paper is therefore to derive the
exact and in some cases the conditional posterior distributions of the indices. The method proposed
by Ganesh (2009) for multiple testing will be applied using a Bayesian procedure for Cpl , Cpu and
Cpk to determine whether significant differences between four suppliers exist. This method is a
Bayesian version of Tukey’s multiple comparisons procedure. A Bayesian method for testing all
possible contrasts is also given. In section 9, a Bayesian simulation procedure is illustrated to find
the best supplier or group of suppliers. In section 10, a sensitivity analysis regarding the prior choice
is considered and in the last section, t-distributed data are analysed.
An estimated index will be denoted by “hat” (^). For example Ĉp = (u − l)/(6s), Ĉpl = (ȳ−l)/(3s),

Ĉpu = (u − ȳ)/(3s) and Ĉpk = min(Ĉpu, Ĉpl).

3. The posterior distribution of theLowerProcessCapability IndexCpl = (µ − l)/(3σ)
Theorem 1. The posterior distribution of t = Cpl is given by

p (t |t̃) =
3
√

n exp
{
− 9nt2

2

}
Γ

(
v
2
) √

2π

∞∑
j=0

(
9ntt̃√
v

) j 1
j!

Γ
(
v+j

2

)
2 1

2 j

(
1 + 9n

v t̃2
) v+ j

2
, −∞ < t < ∞, (6)

where
t̃ =

ȳ − l
3s
= Ĉpl and v = n − 1.

Proof. The proof is given in the Mathematical Appendix to this paper. �

Note. Chou and Owen (1989) derived the distribution of t̃, which is given by

f (t̃ |t) =
3
√

n exp
{
− 9nt2

2

}
√
v
√

2πΓ
(
v
2
) ∞∑

j=0

(
9nt̃t√
v

) j 1
j!

Γ
(
v+j+1

2

)
2 1

2 j

(
1 + 9n

v t̃2
) v+ j+1

2

. (7)

The density in (7) is that of a non-central t distribution with v degrees of freedom and non-centrality
parameter δ, where δ2 = 9nt2.
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Table 1. Ĉpl , Ĉpu , and Ĉpk values for the four suppliers.

Supplier (i) 1 2 3 4
Sample size (ni) 50 75 70 75
Estimated mean (ȳi) 2.7048 2.7019 2.6979 2.6972
Estimated standard deviation (si) 0.0034 0.0055 0.0046 0.0038
Ĉ(i)
pl
= (ȳi − l)/(3si) 2.4804 1.3576 1.3333 1.5526

Ĉ(i)pu = (u − ȳi)/(3si) 1.5392 1.1273 1.6377 2.0439
Ĉ(i)
pk
= min(Ĉ(i)

pl
, Ĉ(i)pu) 1.5392 1.1273 1.3333 1.5526

4. The posterior distribution of Cpk = min(Cpl,Cpu)
When both specification limits are given, the Cp and Cpk indices can be used where

Cpk = min
(
Cpl,Cpu

)
.

Unlike Cp , Cpk depends on both µ and σ. The Cpk index has been used in Japan and in the U.S.
automotive companies (see Kane, 1986; Chou and Owen, 1989).
In Theorem 2 the posterior distribution of c = Cpk will be derived.

Theorem 2. The posterior distribution of c = Cpk is given by

p
(
c |y

)
=

3
√

n√
2π

∫ ∞

c2v/b̃2

{
exp ©­«
−9n

2

[
c − t∗

√
k
v

]2ª®¬
+ exp ©­«

−9n
2

[
c − t̃

√
k
v

]2ª®¬
}

1
2 v

2 Γ
(
v
2
) k

v
2 −1 exp

(
− k

2

)
dk, (8)

where v = n − 1,

t∗ = Ĉpu =
u − ȳ

3s
, t̃ = Ĉpl =

ȳ − l
3s

and b̃ = Ĉp =
u − l

6s
.

Proof. The proof is given in the Mathematical Appendix to this paper. �

5. Example: piston rings for automotive engines (Polansky, 2006)
Consider a company with N = 4 contracted suppliers representing the four processes that produce
piston rings for automobile engines studied by Chou (1994). The edge width of a piston ring after the
preliminary disk grind is a very important quality characteristic in automobile engine manufacturing.
The lower and upper specification limits of the quality characteristic are l = 2.6795mm and u =
2.7205mm respectively. Four potential suppliers (Supplier 1 to Supplier 4) for such rings are under
consideration by one quality control manager. Samples of size n1 = 50, n2 = 75, n3 = 70 and
n4 = 75 are taken from the manufacturing processes of the suppliers. A summary of the results from
the samples, Ĉpl , Ĉpu , Ĉpk values and other statistics are given in Table 1.
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Figure 1. Posterior distributions of Cpk .

Table 2. Posterior means and variances.

Supplier 1 Supplier 2 Supplier 3 Supplier 4
Posterior mean 1.5314 1.1234 1.3285 1.5474
Posterior variance 0.0263 0.0100 0.0144 0.0177

Looking at Table 1, it is clear that Suppliers 4 and 1 give the two largest values for Ĉpl , Ĉpu and
Ĉpk , suggesting that they are the most capable. This may be because they seem to have the smallest
variation within the specified range. They therefore represent the best two choices of suppliers.
Suppliers 3 and 2 are not as capable as the former because of their greater variability. Because the
estimated Ĉpk index for Supplier 1 is close to that of Supplier 4 we might feel that that the difference
in capability of the processes between these suppliers is not significant. The same statement may hold
true of Suppliers 2 and 3. Statistical methods for the comparison of the suppliers’ process capability
indices are required for the quality control manager to draw intelligent conclusions from this data.
A Bayesian simulation procedure will be considered to determine which processes are significantly
different from one another. The potential performance of the proposed method will be compared
with the permutation approach by Polansky (2006).
The posterior distributions of the capability indices are displayed in Figure 1. From Table 2 it can

be seen that the posterior means are for all practical purposes the same as the Ĉpk values given in
Table 1. Further inspection of Figure 1 and Table 2 shows that Suppliers 1 and 4 have the largest
posterior means, suggesting they are the most capable. In the next section a simple Bayesian solution
to the problem of constructing simultaneous credibility intervals for the capability indices will be
discussed.
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6. Simultaneous credibility intervals
The method proposed by Ganesh (2009) can be compared to multiple testing, also referred to as
the multiple comparison problem. In multiple testing, the objective is to control the family wise
error rate. Similarly in his paper, Ganesh controls the simultaneous coverage rate. If the interest is
in constructing simultaneous credibility intervals for all pairwise differences, a Bayesian version of
Tukey’s simultaneous confidence intervals can be used. Define

T (2) = max
i

{
C(i)
pk(l) − E(C(i)

pk
|yi)

�� yi} −min
j

{
C(j)
pk(l) − E(C(j)

pk(l) |y j)
�� y j} ,

for
l = 1,2, . . . , l̃; i = 1,2, . . . ,4; j = 1,2, . . . ,4; i , j,

where T (2)α is the upper α percentage point of the distribution of T (2). Simultaneous 100 (1 − α)%
credibility intervals for all pairwise differences are given by

E(C(i)
pk
|y) − E(C(j)

pk
|y) ± T (2)α i = 1,2, . . . ,4; j = 1,2, . . . ,4; i , j .

100,000 Monte Carlo simulations were used to calculate E(C(i)
pk
|y), E(C(j)

pk
|y) and T (2)α .

The simulation procedure is as follows:

1. Simulate k from a χ2
n−1 distribution.

2. Calculate σ2∗
i = (n − 1) s2

i /k in (5), where the asterisk (*) indicates a simulated value (i =
1,2, . . . ,4).

3. Compute σ∗i =
√
σ2∗
i .

4. By using the fact that µi |σ2
i , ȳi ∼ N(ȳi, σ2

i /n) as in (2), simulate µ∗i .

5. From the definition of the capability index it follows that C(i)
pk

can be simulated as C(i)∗
pk
=

min((u − µ∗i )/(3σ∗i ), (µ∗i − l)/(3σ∗i )).

6. Repeat steps 1 to 5 l̃ times. As mentioned, for this example l̃ = 100,000.

In Figure 2 the posterior distribution ofT (2) is given and in Table 3 credibility intervals for differences
in Cpk are illustrated.
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Figure 2. Posterior distribution of T (2).

Table 3. Credibility intervals for differences in Cpk – Ganesh Method.

E(C(i)
pk
|y) − E(C(j)

pk
|y) 95% interval 90% interval 87.47% interval

Supplier 1 – Supplier 2 (−0.0734; 0.8915) (−0.0187; 0.8371) (0.0000; 0.8155)
Supplier 1 – Supplier 3 (−0.2779; 0.6867) (−0.2234; 0.6323) (−0.2058; 0.6097)
Supplier 1 – Supplier 4 (−0.4971; 0.4675) (−0.4427; 0.4131) (−0.4245; 0.3910)
Supplier 2 – Supplier 3 (−0.6871; 0.2775) (−0.6326; 0.2231) (−0.6136; 0.2019)
Supplier 2 – Supplier 4 (−0.9063; 0.0583) (−0.8519; 0.0039) (−0.8323; −0.0168)
Supplier 3 – Supplier 4 (−0.7016; 0.2630) (−0.6471; 0.2086) (−0.6265; 0.1890)
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For solving the supplier problemPolansky (2006) usedmultiple comparison techniques in conjunction
with permutation tests. The multiple comparisons tests used were:

1. The Bonferonni method, which adjusts the significance levels of the pairwise tests.

2. The protected multiple comparison method, which requires that an omnibus test of equality
between all of the process capability indices be rejected before pair-wise tests are performed
and does not require adjustment of the significance level of the pair-wise tests.

Polansky (2006) came to the conclusion that at the 5% significance level Suppliers 1, 3 and 4
have process capabilities that are not significantly different. Similarly, Suppliers 2 and 3 are not
significantly different from one another, but Supplier 2 is significantly different from Suppliers 1
and 4.
According to Table 3 it is only at a significance level of 12.5% that the Bayesian procedure shows a

significant difference between Supplier 2 and Suppliers 1 and 4. To see if Ganesh’s (2009) version of
Tukey’s simultaneous confidence intervals is somewhat conservative, the following simulation study
has been conducted to evaluate the coverage probability and power of the Bayesian hypothesis testing
procedure.

1. (a) Assume that y ∼ N(µ1, σ
2
1 ) where µ1 = 2.7048 and σ2

1 = (0.0034)2. The parameters µ1
and σ2

1 are obtained from the sample statistics of Supplier 1.

(b) Simulate the sufficient statistics ȳi ∼ N(µ1, σ
2
1 /n1) and (n1 − 1) s2

i ∼ σ2
1 χ

2
n1−1 to represent

a data set for the four suppliers where n1 = 50 and i = 1,2,3,4.

(c) By doing l̃ = 10000 simulations T (2)0.05 can be calculated for our first dataset as well as the
credibility intervals as described in Section 6.

(d) If any one of the six credibility intervals do not contain zero, the null hypothesis

H0 : C(1)
pk
= C(2)

pk
= C(3)

pk
= C(4)

pk

will be rejected. Rejection of H0 when it is true is called a Type I error.

(e) Steps (a) - (d) are replicated l∗ = 20,000 times with µ1 = 2.7048, σ2
1 = (0.0034)2 and

n1 = 50 and the estimated Type I error = 1008
20000 = 0.0504 which corresponds well with

α = 0.05. It means that for 1008 datasets one or more of the six credibility intervals did
not contain zero.

2. Assume now that y ∼ N(µ2, σ
2
2 ) where µ2 = 2.7019, σ2

2 = (0.0054)2 and n2 = 75. The
parameter values are that of the sample statistics of the second supplier. Repeat steps 1(a)–1(e)
and also for Suppliers 3 and 4.

In Table 4 the estimated Type I errors for the four cases are given.
The average Type I error = 0.0504which as mentioned corresponds well with α = 0.05. It therefore

does not seem that the Ganesh Bayesian version of Tukey’s simultaneous confidence interval is too
conservative.
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Table 4. Estimated type I error for different parameter combinations and sample sizes.

n µ σ Type I error
50 2.7048 0.0034 0.0504
75 2.7019 0.0054 0.0483
70 2.6979 0.0046 0.0521
75 2.6972 0.0038 0.0507

Figure 3. Posterior distributions of Cpl .

7. Posterior distributions of Cpl and Cpu

It might be of interest to also look at the posterior distributions of Cpl = (µ − l)/(3σ) and Cpu =

(u − µ)/(3σ). The posterior distribution of Cpl is given in (6) and can be used for illustration
purposes. A much easier way to obtain the posterior distribution is to simulate a large number
of conditional posterior distributions. The average of these conditional distributions is then the
unconditional posterior distribution of Cpl . This procedure is called the Rao-Blackwell method.
In Figures 3 and 4 the posterior distributions of Cpl and Cpu are displayed. In Table 5 the posterior

means of Cpl and Cpu are given for the four suppliers and in Table 6 the 95% credibility intervals for
the differences between the suppliers are given usingGaneshmethod. According to theCpl credibility

Table 5. Posterior means of Cpl and Cpu .

Supplier 1 2 3 4
Cpl 2.4920 1.3615 1.3377 1.5585
Cpu 1.5460 1.1303 1.6431 2.0521
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Figure 4. Posterior distributions of Cpu .

Table 6. 95% credibility intervals for differences between suppliers.

Cpl Cpu

Supplier 1 – Supplier 2 (0.4910; 1.7700) (-0.1281; 0.9595)
Supplier 1 – Supplier 3 (0.5148; 1.7938) (-0.6408; 0.4467)
Supplier 1 – Supplier 4 (0.2940; 1.5729) (-1.0498; 0.0377)
Supplier 2 – Supplier 3 (-0.6157; 0.6633) (-1.0565; 0.0310)
Supplier 2 – Supplier 4 (-0.8365; 0.4424) (-1.4655; -0.3780)
Supplier 3 – Supplier 4 (-0.8603; 0.4187) (-0.9527; 0.1348)
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intervals Supplier 1 is significantly different from Suppliers 2, 3 and 4. The other suppliers do not
differ significantly from each other. Inspection of the Cpu intervals shows that there is a significant
difference between Suppliers 2 and 4.

8. Testing all possible contrasts
By extending the method of Ganesh (2009) a Bayesian procedure will be explained for testing all
possible contrasts. Let

T (3) = max
l

{l′(θ − E(θ |y)}2
l′Var(θ |y)l ,

where l = [l′1, l′2, l′3]′. For the supplier example (Section 5), the following are possible contrasts:

l1 =

[
1√
4
, − 1√

4
, − 1√

4
,

1√
4

] ′
, l2 =

[
1√
2
, 0, 0, − 1√

2

] ′
, l3 =

[
0,

1√
2
, − 1√

2
, 0

] ′
.

Further, let
θ =

[
C(1)
pk
, C(2)

pk
, C(3)

pk
, C(4)

pk

] ′
,

E(θ |y) =
[
E

(
C(1)
pk

)
, E

(
C(2)
pk

)
, E

(
C(3)
pk

)
, E

(
C(4)
pk

)] ′
and

Var(θ |y) = diag
[
Var

(
C(1)
pk

)
, Var

(
C(2)
pk

)
, Var

(
C(3)
pk

)
, Var

(
C(4)
pk

)] ′
.

Therefore,

T (3) = max
l

{l′(θ − E(θ |y)}2
l′ Var(θ |y)l = max

{
{l′1(θ − E(θ |y)}2
l′1 Var(θ |y)l1 ,

{l′2(θ − E(θ |y)}2
l′2 Var(θ |y)l2 ,

{l′3(θ − E(θ |y)}2
l′3 Var(θ |y)l3

}
.

The posterior distribution of T (3) is given in Figure 5. This is obtained by performing the simulation
procedure, discussed in Section 6, 500 000 times.
The 100(1 − α)% Bayesian confidence (credibility) intervals are given by

l′i E(θ |y) ∓
{
l′i Var(θ |y)liT (3)α

} 1
2
, i = 1,2,3.

For the piston rings example, the 95% credibility for l1, l2 and l3 are

[0.0057,0.6296], [−0.3613,0.3465] and [−0.4098,0.1172].

The hypothesis that the first contrast is zero is therefore rejected at the 5% level. It is therefore clear
that on average Suppliers 1 and 4 are definitely better than 2 and 3.
To get an idea of the magnitude of the Type I error of the Bayesian procedure, the sample values

of Supplier 1 were taken as parameter values for all four suppliers. By performing the simulation
procedure explained in Section 6 it was found that the proportion of rejections for the three contrasts
were 0.0161, 0.0154 and 0.0181, which means that the Type I error = 0.0161 + 0.0154 + 0.0181 =
0.0496, which is for all practical purposes 0.05.
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Figure 5. Posterior distributions of T (3).

Table 7. Part of the 1 000 000 simulated Cpk values for the four potential suppliers.

l Supplier 1 Supplier 2 Supplier 3 Supplier 4
1 1.59118 1.19072 1.19171 1.37449
2 1.32416 0.90496 1.31725 1.68731
3 1.60787 0.99262 1.23655 1.40261
4 1.31843 1.12253 1.30348 1.75133
5 1.57734 1.12316 1.32383 1.55906
6 1.63339 1.11287 1.3116 1.55693
...

...
...

...
...

1 000 000 1.38891 1.16121 1.49352 1.65897

9. Selecting the best supplier
The problem of selecting the best supplier has received considerable attention in the literature but
mainly from a classical frequentist point of view. In this section a Bayesian simulation procedure
is illustrated for finding the best supplier or group of suppliers. This method takes less than three
minutes to calculate the probabilities given in Table 9. It therefore seems that our method is much
simpler to perform and takes less time than the Monte Carlo integration method given in Wu et al.
(2016).
By using the simulation procedure as explained in Section 6 the results in Tables 7–9were obtained.

These probabilities are for all practical purposes the same as those obtained byWu et al. (2016) using
Monte Carlo integration. In (0.451088+0.506793)100% ≈ 95% of the cases Supplier 1 or Supplier
4 were selected as the best supplier.
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Table 8. Part of the 1 000 000 rankings of the simulated Cpk values.

l Supplier 1 Supplier 2 Supplier 3 Supplier 4
1 1 4 3 2
2 2 4 3 1
3 1 4 3 2
4 2 4 3 1
5 1 4 3 2
6 1 4 3 2
...

...
...

...
...

1 000 000 3 4 2 1

Table 9. Probabilities for the four potential suppliers.

Probability Supplier 1 Supplier 2 Supplier 3 Supplier 4
P(Supplieri) is 1st 0.451088 0.000384 0.041735 0.506793
P(Supplieri) is 2nd 0.405871 0.006773 0.182797 0.404559
P(Supplieri) is 3rd 0.131232 0.100010 0.683410 0.085348
P(Supplieri) is 4th 0.011809 0.892833 0.092058 0.003300

Total 1 1 1 1

10. Sensitivity analysis
10.1 Objective priors
In Sections 1–9, the prior p(µ,σ2) ∝ σ−2 (Jeffreys’ independence prior) was specified for µ and
σ2. Using this prior it follows that the conditional posterior density function of µ is normal:
µ|σ2, ȳ ∼ N(ȳ, σ2/n) and in this case of the variance component σ2, the posterior density function
is an inverted-gamma distribution (see (3)), i.e. (n − 1) s2/σ2 ∼ χ2

n−1.
One form of sensitivity analysis is to vary the power of σ2. The simulation procedure will be

similar to that for the posterior distribution (3) except that (given the choice of distribution) σ2 is
distributed from a central Chi-squared distribution with degrees of freedom as given in Table 10.
Prior 1 is the Jeffreys’ Rule (Jeffreys’ dependence) prior, which is the square root of the determinant
of the Fisher information matrix. Prior 3 is Jeffreys’ independence prior which is used as prior in
this paper and Prior 5 is a uniform prior.
In Table 11 the posterior means and variances of Cpk are given for the five priors. Prior 3 is

included in Table 11 for completeness sake. It is interesting to note that the posterior means become
slightly smaller with decreasing degrees of freedom. The variances remain quite stable. The posterior
means in the case of Prior 2 (df = n− 0.5) are exactly the same as the sample estimates of Cpk given
in Table 1.
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Table 10. Prior distributions and simulation parameters.

Name Specification Simulation
Prior 1 p(µ,σ2) ∝ σ−3 σ2 = (n − 1)S2/χ2

n

Prior 2 p(µ,σ2) ∝ σ−2.5 σ2 = (n − 1)S2/χ2
n−0.5

Prior 3 p(µ,σ2) ∝ σ−2 σ2 = (n − 1)S2/χ2
n−1

Prior 4 p(µ,σ2) ∝ σ−1 σ2 = (n − 1)S2/χ2
n−2

Prior 5 p(µ,σ2) ∝ constant σ2 = (n − 1)S2/χ2
n−3

Table 11. Posterior means and variances for Cpk in the case of objective priors.

Prior df. Posterior mean/var. Supplier 1 Supplier 2 Supplier 3 Supplier 4
1 n Posterior mean 1.54711 1.13119 1.33821 1.5578

Posterior variance 0.0262858 0.0100431 0.0144074 0.0176784

2 n − 0.5 Posterior mean 1.53925 1.12719 1.33327 1.55272
Posterior variance 0.0262561 0.0100398 0.0144093 0.0177456

3 n − 1 Posterior mean 1.53142 1.1234 1.32842 1.54744
Posterior variance 0.026346 0.0100141 0.0144407 0.0177302

4 n − 2 Posterior mean 1.51558 1.11567 1.3187 1.53696
Posterior variance 0.026296 0.0100278 0.0144323 0.0177292

5 n − 3 Posterior mean 1.49936 1.10807 1.30891 1.52618
Posterior variance 0.0262492 0.0100501 0.0144337 0.0176995

Table 12. Posterior means and variances for Cpk in the case of inverse-gamma priors.

Prior Posterior mean/var. Supplier 1 Supplier 2 Supplier 3 Supplier 4
A Posterior mean 1.30692 1.26928 1.38964 1.45013

Posterior variance 0.00810945 0.00637278 0.00776587 0.00806702

B Posterior mean 1.03306 1.01819 1.12544 1.21658
Posterior variance 0.0109322 0.00746595 0.00944446 0.0101157
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10.2 Proper priors
Another form of sensitivity analysis is to look at proper priors for example the normal-inverted
gamma prior. Suppose the normal prior µi ∼ N(µ0, σ

2/k0) is used for µi (i = 1,2,3,4). In this
case the parameters µ0 and k0 can be interpreted as the mean and sample size from a set of prior
observations.
It is easy to show that the conditional posterior distribution of µi (i = 1,2,3,4) is also normal with

mean E(µi |σ2, data) = (ni ȳ + µ0k0)/kni and varianceV(µi |σ2
i , data) = σ2

i /kni , where kni = ni+ k0
For the variance component σ2

i we use an inverse-gamma prior: σ2
i ∼ Inverse-Gamma(ν0

2 ,
ν0
2 σ

2
0 ),

which means that the posterior distribution of σ2
i is

σ2
i |data ∼ Inverse-Gamma

(
νni
2
,
νniσ

2
ni

2

)
, (9)

where νni = ν0 + ni − 1 and σ2
ni
= ν−1

ni
[ν0σ

2
0 + (ni − 1)s2

i + (k0ni/kni )(ȳ − µ0)2]
These formulas suggest an interpretation of ν0 as a prior sample size, from which a prior sample

variance of σ2
0 has been obtained. For further details see Hoff (2009).

From (9) it follows that

σ2
i ∼

ν0σ
2
0 + (ni − 1)s2

i +
k0ni
kni
(ȳ − µ0)2

χ2
ni

, i = 1,2,3,4.

In Table 12 the posterior means and variances of Cpk for two normal inverse-gamma priors are
given. In the case of Prior A the parameter specifications are

ν0 = 70, σ2
0 = 0.00002, µ0 = 2.7 and k0 = 10,

and for Prior B,
ν0 = 10, σ2

0 = 0.00009, µ0 = 2.7 and k0 = 10.

From Table 12 it is clear that the subjective priors can have features that have an unexpectedly
dramatic effect on the results. In the case of objective priors (see for example Table 9 and Table 11).
Suppliers 1 and 4 were selected as the best suppliers in 95% of the cases. On the other hand using
subjective priors (Table 12) it is clear that Suppliers 3 and 4 are the two best suppliers. It thus seems
to be wrong that Supplier 3 could have been considered as better than Supplier 1. The two proper
priors are therefore not recommended for further use.

10.3 Simulation study
In this section, a simulation study is considered to observe if the 95% Bayesian confidence intervals
for Cpk have the correct frequentist coverage. In doing the simulation study it is assumed that the
parameter values µ and σ2 are unknown. For the simulation study, the samples are drawn from a
normal distribution with mean µ = 2.7 and variance σ2 = (0.004)2. Also l = 2.6795 and u = 2.7205
which means that Cpk = 1.7083. The parameter values are similar to the sample statistics calculated
for the piston rings example. The sample sizes that will be considered are: (i) n = 10, (ii) n = 20, (iii)
n = 30, (iv) n = 40, (v) n = 50 and (vi) n = 70. The following priors wil be used: (a) p(µ,σ2) ∝ σ−1,
(b) p(µ,σ2) ∝ σ−2, (c) p(µ,σ2) ∝ σ−2.5, (d) p(µ,σ2) ∝ σ−3 and (e) p(µ,σ2) ∝ σ−4.
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Table 13. Coverage percentages for Cpk of ten thousand 95% confidence intervals.

Name n = 10 n = 20 n = 30 n = 40 n = 50 n = 70

p(µ,σ2) ∝ σ−1 91.48 92.44 92.49 93.56 93.69 94.11
p(µ,σ2) ∝ σ−2 93.27 93.61 93.78 94.02 94.24 94.38
p(µ,σ2) ∝ σ−2.5 93.35 93.82 93.88 94.04 94.31 94.45
p(µ,σ2) ∝ σ−3 94.09 94.17 94.26 94.31 94.58 94.61
p(µ,σ2) ∝ σ−4 94.31 94.53 94.49 94.71 94.76 94.83

(I) (i) To conduct the simulation study the sufficient statistics (n − 1)s2 ∼ σ2 χ2
n−1 and ȳ ∼

N(µ,σ2/n) will be simulated to represent a random sample of n observation from a
normal population with mean µ and variance σ2.

(ii) After the data set has been simulated it is assumed that the values of the parameters µ
and σ2 are unknown. If the prior p(µ,σ2) ∝ σ−3 (Jeffreys’ Rule prior) is for example
used, then the posterior distributions are p(σ2 |data) ∼ (n − 1)s2/χn and p(µ|σ2, data) ∼
N(ȳ, σ2/n).

(iii) By simulating σ2 and µ from the posterior distributions, a Cpk value can be calculated.
This Cpk value is called Cpk(1).

(iv) For this data set simulate new parameter values and calculate Cpk(l) (l = 1, . . . ,10 000).
(v) Calculate themean and the 95% confidence interval for the 10 000Cpk values and observe

if the confidence interval contains the true Cpk = 1.70833 value.

(II) Repeat (I)(i) by simulating a second random sample (sufficient statistics) and do (I)(ii)–(I)(v)
for this sample.

(III) Repeat the procedure 10 000 times. In other words 10 000 samples are drawn and for each
sample 10 000 Cpk values are simulated.

(IV) Calculate the mean of the 10 000 Cpk means. These values as well as the coverage percentages
of the 95% confidence intervals are given in the following tables.

From Table 13 it is clear that except for p(µ,σ2) ∝ σ−1, the coverage percentage is at least 94%
if n ≥ 40. The best coverage percentages are given by priors p(µ,σ2) ∝ σ−3 and p(µ,σ2) ∝ σ−4.
p(µ,σ2) ∝ σ−3 is Jeffreys’ dependence prior.
In Table 14 the averages of the 10 000 sample means of Cpk are illustrated. The true parameter

value is Cpk = 1.70833. From the table it seems that the priors p(µ,σ2) ∝ σ−3 and p(µ,σ2) ∝ σ−4

give the best results.
It is well known that Jeffreys’ independence prior p(µ,σ2) ∝ σ−2 gives the correct point estimates

and confidence intervals for the parameters µ and σ2. From Tables 13 and 14 it however seems that
priors of the form p(µ,σ2) ∝ σ−a (a > 2) will give better results for the parameter Cpk than Jeffreys’
independence prior.
Other priors for µ andσ2 should be considered to improve point estimates and coverage percentages

for Cpk . The prior p(µ,σ2) ∝ σ−3{1+ µ2/(2σ2)}−0.5 is a reference as well as a probability-matching
prior for µ/σ, the standardised mean and should be considered.
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Table 14. Average of the 10 000 sample means of Cpk .

Name n = 10 n = 20 n = 30 n = 40 n = 50 n = 70

p(µ,σ2) ∝ σ−1 1.58240 1.62296 1.63963 1.6447 1.65268 1.66451
p(µ,σ2) ∝ σ−2 1.69060 1.66962 1.66824 1.6712 1.67445 1.68032
p(µ,σ2) ∝ σ−2.5 1.74702 1.68872 1.68026 1.67998 1.68199 1.68164
p(µ,σ2) ∝ σ−3 1.75201 1.71845 1.70234 1.69062 1.69128 1.68746
p(µ,σ2) ∝ σ−4 1.79177 1.76331 1.73041 1.71162 1.70888 1.68926

11. A Comparison of Bayesian and frequentist approaches on data with heavy tails
11.1 Bayesian Procedure
To accommodate the possibility of outlying measurements, the assumption of Gaussian observations
will be relaxed in the direction of the Student-t distribution family.
Consider a series of n independent observations: yi |µ,σ2, λi ∼ N(µ,σ2/λi) for i = 1,2,3, ...,n.

By placing a prior distribution on λi enables a wide variety of distributions f (yi |µ,σ2) to emerge
as scale mixtures of normal distributions (Andrews and Mallows, 1974; Carlin and Polson, 1991;
Wakefield, Smith, Racine-Poon and Gelfand, 1994):

f (yi |µ,σ2) =
∫ ∞

0
f (yi |µ,σ2, λi)p(λi)dλi .

In this section it is assumed that νλi ∼ χ2
ν so that yi |µ,σ2 ∼ tν(µ,σ2) has a Student t-distribution

with mean µ, variance σ2ν/(ν − 2) and degrees of freedom ν. Using this method, the likelihood
function can be written as

L(µ,σ2, λ, ν) =
n∏
i=1

f (yi, λi |µ,σ2, v)

=

∏n
i=1(λi)0.5

(2π)n/2(σ2)n/2 e−
1

2σ2
∑n

i=1 λi (yi−µ)2 νnν/2

2nν/2[Γ(ν2 )]n
n∏
i=1

λ
ν/2−1
i e−

1
2ν

∑n
i=1 λi ,

where λ = [ λ1 λ2 · · · λn]′.
The prior distribution that will be used is p(µ,σ2, ν) ∝ σ−2e−ξν , ν > 2. As the prior for ν (the

degrees of freedom) a truncated (ν > 2) exponential distribution with parameter ξ = 0.1 is assumed.
The truncation assures the finiteness of the mean and variance of the associated t-distribution. For
further details see Geweke (1993).
The joint posterior distribution is obtained by multiplying the likelihood function with the prior

distribution and is given by

p(µ,σ2, λ, ν |y) ∝
(

1
σ2

)
1
2 (n+2) |H | 12 exp

{
− 1

2σ2 (y − µ1)′H(y − µ1)
}

× νnν/2

2nν/2[Γ(ν2 )]n
n∏
i=1

λ
ν/2−1
i e−

1
2ν

∑n
i=1 λi e−ξν, ν > 2, (10)
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where H = diag[λ1, λ2, . . . , λn], y = [y1, y2, . . . , yn]′ and µ1 = µ[1,1, . . . ,1]′. Therefore, ∏n
i=1 λ

1
2
i =

|H | 12 and
∑n

i=1 λi(yi − µ)2 = (y − µ1)′H(y − µ1).
To implement the Gibbs sampler, the full conditional posterior distributions of the unknown

parameters are needed.
From (10) it follows that

µ|σ2,H, y ∼ N
[
(1′H1)−11′Hy; σ2 (

1′H1
)−1

]
, (11)

and the posterior distribution of σ2 is

p(σ2 |µ,H, y) ∝
(

1
σ2

) 1
2 (n+2)

exp
{
− 1

2σ2 (y − µ1)′H(y − µ1)
}
, (12)

an inverse-gamma distribution. Therefore, σ2 |µ,H, y ∼ (y − µ1)′H(y − µ1)/χ2
n. Also,

p(λi |µ,σ2, ν, yi) ∝ λ
1
2 (ν−1)
i exp

{
−1

2
λi

[ (yi − µ)2
σ2 + ν

]}
. (13)

This is a gamma distribution, which means that λi |µ,σ2, ν, yi ∼ χ2
ν+1(ν + (yi − µ)2/σ2)−1, i =

1,2, ...n. In the case of ν, the degrees of freedom, it follows that

p(ν |λ) ∝ νnν/2

2nν/2[Γ(ν2 )]n
n∏
i=1

λ
1
2 (ν−1)
i exp

{
−ν

[
1
2

n∑
i=1

λi + ξ

]}
. (14)

Example 1
Ten thousand data sets of size n = 20 were simulated from a t-distribution with ν = 3 degrees of
freedom, µ = 30 and σ2 = 4. Also for the capability index u = 40 and l = 20 which means that
Cpk = 1.6667. By using (11)–(14) and Gibbs sampling, the unconditional posterior distributions
p(µ|y), p(σ2 |y), p(λi |y), p(ν |y) and p(Cpk |y) can be obtained.
In Figure 6, the posterior distribution p(ν |y) for the first data set is illustrated. The histogram is

obtained from 10 000 simulations. The mode of 3.35 is in the vicinity of ν = 3, the true parameter
value. It also clear from the figure that the posterior distribution of ν is quite skew. The posterior
distributions of ν for most of the 10 000 data sets are of a similar form as p(ν |y1) with modes not too
far from 3.
As mentioned, 10 000 samples each of size n = 20 were drawn from a t-distribution with ν = 3

degrees of freedom, µ = 30 and σ2 = 4 and for each sample 10 000 simulations were executed to
obtain the posterior distributions of the parameters µ, σ2, λ = [λ1, λ2, . . . , λ20]′, ν and Cpk .
For each sample the mean value of the posterior distributions of the parameters were calculated

and it was observed if the 95% Bayes confidence intervals contain the true parameter value. The
mean values are illustrated in Figures 7–11.
In Figure 10, for example, the posterior means E(ν |y

1
), E(ν |y

2
),. . . , E(ν |y

10000
) for the 10000

samples are illustrated. Also Mean = 11.997 = 1
10000Σ(ν |yi) with E(ν |y

1
) = 11.9672 as shown in

Figure 6. From Figure 6 it is also clear that the coverage percentage for ν is very good (94.87%).
This means that in the case of 9487 samples, the 95% confidence intervals contain the true parameter
value ν = 3.
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Figure 6. p(ν |y1): Posterior distribution of ν for the first dataset. E(ν|y
1
) = 11.9672, mode = 3.35

and 95% interval = (2.31,31.29).

Figure 7. Mean(µ). Mean = 30.006, median = 30.009, mode = 30.002, variance = 0.2544, coverage
= 95.13%.
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Figure 8. Mean(σ2). Mean = 4.874, median = 4,397, mode = 3.49, variance = 5.9227, coverage =
94.72%.

Figure 9. Mean(λ20). Mean = 1.001, median = 1.049, mode = 1.09, variance = 0.0251, coverage =
99.54%.
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Figure 10. Mean(ν). Mean = 11.997, median = 12.705, mode = 13.74, variance = 7.5527, coverage
= 94.87%.

Figure 11. Mean(Cpk). Mean = 1.652, median = 1.608, mode = 1.52, variance = 0.1481, 95% interval
= (0.942 ;2.439), coverage = 93.79%.
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Our main interest is however Cpk . According to Figure 11, Mean = 1.6519 which is for all
practical purposes the same as Cpk = 1.6667. The coverage percentage of the 95% Bayes confidence
intervals is 93.79 which is also quite good.
One way to improve the coverage percentage for Cpk is to look at other priors for ν. In Fonseca,

Ferreira and Migon (2008) two prior distributions were defined for ν, both based on Jeffreys’ prior,
the independence Jeffreys’ prior and the Jeffreys-rule prior. Villa and Walker (2014) on the other
hand constructed an objective prior for ν when the parameter is taken to be discrete. They found an
objective criterion, based on loss functions instead of trying to define objective probabilities directly.

11.2 Frequentist Procedure
Consider again a sample of n observations y1, y2, . . . , yn from a t-distribution with parameters ν, µ
and σ2. The likelihood function is given by

L(µ,σ2, ν, y) =
[
Γ(ν+1

2 )
]n
ν

nν
2[

Γ(ν2 )
]n [
Γ( 12 )

]n
σn

n∏
i=1

{
ν +

( yi − µ
σ

)2
}− 1

2 (ν+1)
. (15)

According to Fonseca et al. (2008), maximum likelihood estimation for the Student t-distribution
model is very problematic because the likelihood function is ill-behaved for ν close to zero and
may be ill-behaved when ν → ∞. The conditional maximum likelihood estimators for µ and
σ2 however exists and is given by µ̂ν = ȳ = n−1 ∑n

i=1 yi and σ̂2
ν = ((ν − 2)/ν)Var(Y ), where

Var(Y ) = (n − 1)−1 ∑n
i=1(yi − ȳ)2. Substituting µ̂ν and σ̂2

ν in (15) it follows that the profile likelihood
function of ν is defined as

L(ν, y) =
[
Γ(ν+1

2 )
]n
νnν/2[

Γ(ν2 )
]n [
Γ( 12 )

]n [(
ν−2
ν

)
Var(y)

]n/2
n∏
i=1



ν +

(yi − ȳ)2(
ν−2
ν

)
Var(y)



− 1

2 (ν+1)

, ν > 2. (16)

Example 2
As in Example 1, ten thousand datasets are simulated and for each dataset µ̂ν and σ̂2

ν are calculated.
By using (16) the maximum likelihood estimates of ν are obtained. The percentage of maximum
likelihood estimates of ν with values less than 30 is 65.98%. In Figure 12 the distribution of these
maximum likelihood estimates are illustrated for values of ν̂ between 2 and 100. The percentage of
estimates between 2 and 100 is 68.56%.
If for a certain dataset ν̂ > 100, this dataset is considered to be drawn from a normal distribution.
The maximum likelihood estimates are then used as the parameter values for the parametric

bootstrap procedure. For each dataset with parameter values µ̃ = µ̂ν , σ̃2 = σ̂2
ν and ν̃ = ν̂, 10000

bootstrap samples are generated and are used to estimate the parameter values µ, σ2, ν and Cpk .
The mean values are calculated and it is also observed if the 95% confidence intervals contain the
true parameter values. The mean values, variance and coverage percentage for Cpk are illustrated in
Figure 13.
Although the parametric bootstrap procedure works quite well with normal data, it does not seem

to do too well in the case of t-distributed data. From Figure 13 it can be seen that the coverage
percentage of the 95% confidence intervals for Cpk is less than 85%. The mean Cpk value is 1.5259
which also does not compare well with the true parameter value of 1.6667. As shown in the Bayesian
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Figure 12. Distribution of the maximum likelihood estimates of ν (2 < ν̂ < 100). Mean = 6.3202,
median = 3.700, mode = 2.70, variance = 87.0416.

Figure 13. Mean(Cpk) – bootstrap method. Mean = 1.5259, median = 1.4747, mode = 1.37, variance
= 0.1870, coverage = 84.78%.
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case, the coverage percentage of the 95% confidence intervals for Cpk is 93.79% and the mean value
is 1.6519.
It therefore seems that the Bayesian approach is more robust to non-normality than its frequentist

alternative. The reason for this might be the ill-behaviour of the profile likelihood function of ν.

12. Conclusion
This paper developed a Bayesian method to analyse process capability indices Cpl , Cpu and Cpk .
Multiple Bayesian testing strategies have been implemented on data representing four suppliers that
produce piston rings for automobile engines studied by Chou (1994). A Bayesian version of Tukey’s
method is used for constructing simultaneous credibility intervals for all pairwise differences. A
Bayesian procedure for testing all possible contrasts is also given. It is concluded that the magnitude
of the Type I errors of the Bayesian method are correct. A Bayesian simulation procedure is also
illustrated to find the best supplier or groups of suppliers. This method gives the same results as
the Monte Carlo Integration method in Wu et al. (2016). It however seems that our method is much
easier to perform and will probably take less time. In section 10, a sensitivity analysis regarding
the prior choice is considered. It is concluded that priors of the form p(µ,σ2) ∝ σ−a (a > 2) will
give better results for Cpk than Jeffreys’ independence prior. In the last section, t-distributed data are
analysed and it seems that the Bayesian approach is more robust to non-normality than its frequentist
alternative.

Mathematical Appendix
Proof of Theorem 1
Since

µ|σ2, y ∼ N
(
ȳ,
σ2

n

)

and
k =

vS2

σ2 ∼ χ2
v,

it follows that
t |t̃, k ∼ N

(
a
√

k,
1

9n

)
,

where a = t̃/√v. Therefore,

p (t |t̃) =
∫ ∞

0
f (t |t̃, k) f (k) dk

=
3
√

n

2 v
2 Γ

(
v
2
) √

2π

∫ ∞

0
exp

[
−9n

2

(
t − a
√

k
)2

]
k

v
2 −1 exp

[
− k

2

]
dk

=
3
√

n exp
(−9nt2/2)

2 v
2
√

2πΓ
(
v
2
)

∫ ∞

0
k

v
2 −1 ©­«

∞∑
j=0

(9nta
√

k)j
j!

exp
[
− k

2

(
1 + 9na2

)]ª®¬
dk .
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Since ∫ ∞

0
k

1
2 (v+j)−1 exp

[
− k

2

(
1 + 9na2

)]
dk =

2 1
2 (v+j)Γ

(
v+j

2

)
(
1 + 9na2) 1

2 (v+j)
,

and substituting a = t̃/√v, the posterior distribution of t = (µ − l)/(3σ) = Cpl follows as

p (t |t̃) =
3
√

n exp
(
− 9nt2

2

)
Γ

(
v
2
) √

2π

∞∑
j=0

(
9ntt̃√
v

) j 1
j!

Γ
(
v+j

2

)
2 1

2 j

(
1 + 9n

v t̃2
) 1

2 (v+j)
−∞ < t < ∞.

Proof of Theorem 2
The Cpk index can also be written as

C = Cpk =
u − l − 2 |µ − M |

6σ
,

where M = (u + l)/2. Since
µ|σ2, y ∼ N

(
ȳ,
σ2

n

)
,

it follows that
µ − M ∼ N

(
ζ,
σ2

n

)
,

where ζ = ȳ − M . Let w = |µ − M |, then

p
(
w |σ2, y

)
=

√
n

σ
√

2π
exp

{
−n

2
(w − ζ)2
σ2

}
+

√
n

σ
√

2π
exp

(
−n

2
(w + ζ)2
σ2

)
;

see Kotz and Johnson (1993, p. 26). Now C = b− ãw, where ã = 1/(3σ) and b = Cp = (u − l)/(6σ).
Also w = − (C − b) 1/ã and |dw/dc | = 1/ã. From this it follows that

p
(
C |σ2, y

)
=

√
n

ãσ
√

2π

{
exp

(
− n

2ã2σ2 [C − b + ãζ]2
)
+ exp

(
− n

2ã2σ2 [C − b − ãζ]2
)}
, C < b̃

S
σ
,

where b̃ = Ĉp = (u − l)/(6s). Substituting for ã, b and ζ and making use of the fact that k =
vS2/σ2 ∼ χ2

v , it follows that

p
(
C |k, y

)
=

3
√

n√
2π




exp ©­«
−9n

2

[
C − t∗

√
k
v

]2ª®¬
+ exp ©­«

−9n
2

[
C − t̃

√
k
v

]2ª®¬


, C < b̃

√
k
v
.

Therefore,

p
(
C |y

)
=

3
√

n√
2π

∫ ∞

C2v
b̃2




exp ©­«
−9n

2

[
C − t∗

√
k
v

]2ª®¬
+ exp ©­«

−9n
2

[
C − t̃

√
k
v

]2ª®¬



k
v
2 −1e−

k
2

2 v
2 Γ

(
v
2
) dk .
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