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In this paper, we modify the continuous time mixture competing risks model (Larson
and Dinse, 1985) to handle discrete competing risks data. The main result of the model is
an alternate regression expression for the cumulative incidence function. The structure of
the regression expression for the cumulative incidence function under this model, and the
proportional hazards assumption for the conditional hazard rates with piece-wise constant
baseline conditional hazards, combine to allow for another means to assess the covariate
effects on the cumulative incidence function. This benefit comes at some computational costs
because the parameters are estimated via an EM algorithm. The proposed model is applied to
real data and it is found that it improves the exercise of evaluating the covariate effects on the
cumulative incidence function compared to other discrete competing risks models.
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1. Introduction
Competing risks data arises in survival analysis experiments when subjects are at risk of failing from
more than one cause of failure. The most popular approach has been to summarize the observed
data on the pair (T ; D) via cause-specific hazards (Prentice et al., 1978). With J failure types, a
typical format of the observed data is: yi = (ti,xTi ,Di)T , i = 1, . . . ,n, where ti is a failure time when
Di ∈ {1,2, . . . , J} or a censoring time when Di = 0, and xi is a p-dimensional vector of covariates.
With covariates, the cause-specific hazards are inmost instancesmodelled via the Cox type regression
(Cox, 1972), and the regression expression for the cumulative incidence function is then derived from
the cause-specific hazards. These quantities, namely the cause-specific hazards and the cumulative
incidence functions, have been the most quoted summary quantities for competing risks data, and
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the assessment of covariate effects on the competing risks process is conducted via these quantities.
It is well documented in the literature, however, that the regression expression for the cumulative
incidence function constructed with cause-specific hazards complicates the assessment of covariate
effects. This has given impetus to the development of other regression models for the cumulative
incidence function, such as the transformation models (Gray, 1988; Fine and Gray, 1999; Scheike,
Zhang and Gerds, 2008; Klein and Andersen, 2005), where the cumulative incidence function is
directly modelled on covariates.
Themixture competing risks model is one of the models under which an alternate regressionmodel

for the cumulative incidence function arises. This model, the subject of this article, was introduced
in the continuous time domain, but we intend to modify it and present it as a discrete time competing
risks model. The multinomial model (Ambrogi, Biganzoli and Boracchi, 2009; Tutz, 1995; Tutz and
Schmid, 2016) is the most popular discrete time competing risks model. Here, the cause-specific
hazards are estimated simultaneously by applying the multinomial distribution to the data in period-
person format. An alternate approach to the multinomial model is to estimate the cause-specific
hazards individually by fitting J − 1 binomial distributions; see, for example Lee, Feuer and Fine
(2018) where, as in continuous time (Prentice et al., 1978), the cause-specific failure times are treated
as events and the competing failure times are regarded as censoring times. The regression model
for the cumulative incidence function under the mixture model, together with certain distributional
assumptions for time to failure, combine to allow for an alternate means to assess the covariate effects
on the cumulative incidence function. When the multinomial model or its alternative is assumed,
the regression model for the cumulative incidence function is also derived from the cause-specific
hazards, and therefore suffers similar shortcomings in relation to the assessment of covariate effects.
The mixture model was introduced to survival analysis in the context of competing risks models by

Larson and Dinse (1985), and the more popularmixture curemodel (see, for example, Kuk and Chen,
1992; Sy and Taylor, 2000; Peng and Dear, 2000; Peng, 2003) is an adaptation of this model. The
mixture competing risk model assumes that the bivariate distribution of (T ; D) factorizes into two
distributions, one for time to failure conditional on failure type and a marginal distribution for failure
type, i.e. P(T ; D) = P(T |D)P(D). The conditional failure time distributions arise according to the
failure types, and a given conditional distribution is summarized via what we term the conditional
hazard function. The conditional hazard functions and the failure type probabilities replace the
causes-specific-hazards as the summary quantities for observed competing risks data under the
mixture model, in fact, the regression model for the cumulative incidence function is constructed
from the regression models for these quantities in the place of the regression model for the cause-
specific hazards. Towards the regression model for the conditional hazards, Larson and Dinse (1985)
assumed proportional hazards with piece-wise constant conditional baseline hazards, i.e.,

λj(t;x;βj) = exp
( q∑
s=1
(β0js)1s(t) + xTβ1j

)
, j = 1 . . . J,

where 1s(t) = 1 when s = t and zero otherwise. Here, follow up is partitioned into q mutually
exclusive and exhaustive intervals of the form: [a0,a1), . . . , [aq−1,aq). Let β0j and β1j represent
the duration and the regression coefficients respectively, where β0j = (β0j1, . . . , β0jq)T and β1j =

(β1j1, . . . , β1jp)T so that βj = (βT
0j,β

T
1j)T becomes a vector of the parameters that describe the j th

conditional hazard throughout follow up. Note that this characterization of follow up corresponds to
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grouped survival times in discrete time with the distinction that failure/censoring times are known
exactly in continuous time, but are unknown in discrete time. We also assume that the conditional
baseline hazards are also piece-wise constant in this article.
The authors modelled the failure type probabilities on covariates via the multinomial distribution

and the regression model is given by

πj(x;γ) = exp(γ0j + x
Tγ1j)

1 +
∑J−1

j=1 exp(γ0j + xTγ1j
, j = 1, . . . J − 1,

where πJ (x;γ) = 1−∑J−1
j=1 πj(x;γ),γ = (γT1 , . . . ,γTJ−1)T andγj = (γ0j,γ

T
1j)T . Let all the parameters

that describe the mixture model be represented by θ = (βT ,γT )T , where β = (βT
1 , . . . ,β

T
j ).

The key result that arises from the factorization assumption under the mixture model is the
regression model for the cumulative incidence function, and is given by

Fj(t |x;γ,βj) = πj(x,γ)(1 − Sj(t |x;βj)), j = 1, . . . J .

It is this form of the regression model for the cumulative incidence function, together with the
proportional hazards assumption, albeit at the interval level, that combine to allow for an alternate
means of assessing the covariate effects on the cumulative incidence function in continuous time.
Other authors have also studied the mixture competing risks model and the various forms of

the model differ in terms of how the conditional baseline hazards are specified. The parametric
formulation of the model, that is when the baseline conditional hazards are modelled with the usual
lifetime distributions, has been studied by, amongst others, Lau, Cole, Moore and Gange (2008);
Lau, Cole and Gange (2011) and the large sample properties of the model have been considered
by Maller and Zhou (2002), with Ng, McLachlan, Yau and Lee (2004) considering the parametric
model with clustering. Furthermore, Ng and McLachan (2003) and Escarela and Bowater (2008)
have studied the semi-parametric formulation of the model. The model has also been extended to
model competing risks data with immune subjects (Choi and Zhou, 2002; Zhiping, 2011).
It has been shown in univariate survival analysis models that the parameters which correspond

to the hazard function can be estimated via a certain Poisson regression model when the baseline
hazards are assumed to be piece-wise constant (Laird and Olivier, 1981; Holford, 1980). We also
show that β = (βT

1 ,β
T
2 , . . . ,β

T
j )T , the parameters for the conditional hazards, can also be estimated

via the same Poisson regresssion model as pointed by one of the referees to the same article by Larson
and Dinse (1985).
The remainder of this article is organized as follows: we begin by reviewing this equivalence

between Poisson regression and the piece-wise constant baseline hazards, particularly the extension
to the mixture model in Section 2, and discuss the adjustments to the model to enable it to handle
discrete competing risks data. This is followed by an illustration in Section 3, and we conclude with
a discussion in Section 4. The standard errors under the EM algorithm have to be adjusted to reflect
the observed data standard errors, the workings are presented in the Appendix.

2. Estimation
The unknown parameters of the mixture model are estimated by maximizing the observed data
likelihood function. In constructing an observed data likelihood function from the observed data y =
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(yT1 ,yT2 , . . . ,yTn )T , a subject i that fails at time ti from failure type j, contributes πj(xi;γ) fj(ti |xi;βj)
to the likelihood function whilst a censored one contributes S(ti |xi;θ). The observed data log-
likelihood function is then given by

L0(θ) =
n∑
i=1

J∑
j=1

di j
(
log πj(xi;γ) + log fj(ti |xi;βj)

)
+ di0 log S(ti |xi;θ),

where di j = I(Di = j) and di0 = 1 − ∑J
j=1 di j . We pose this as a missing information problem

regarding the eventual failure status of censored subjects so as to apply the EM algorithm. We
introduce a pseudo variable vi = (vi1, . . . , viJ )T , i = 1, . . . ,n, where vi j is 1 or 0 according to whether
a censored subject i eventually fails by cause j or not. Assuming that vi is observed, the expression
for the complete data log-likelihood can then be written as

Lc(θ) =
n∑
i=1

J∑
j=1

gi j log πj(xi;γ) + di j log λj(ti |xi;βj)
)
+ gi j log Sj(ti |xi;βj),

where gi j = di j + vi jdi0. Since gi j is linear in the log-likelihood of the complete data, the E-step
entails replacing gi j with g

i j
= di j + vi jdi0, which is its expectation conditional on y and θ0, where

θ0 is MLE of θ at the previous M-Step. The conditional expectation vi j of vi j is given by

vi j = E(vi j |θ0;y) =
πj(xi;γ0)Sj(ti |xi;β0

j )∑J
l=1 πl(xi;γ0)Sl(ti |xi;β0

l
) .

Introducing the Q notation, the conditional expectation of the log-likelihood for the complete data
can be written as

Q(θ |θ0) =
n∑
i=1

J∑
j=1

g
i j

log πj(xi;γ) + di j log λj(ti |xi;βj) + g
i j

log Sj(ti |xi;βj).

Let ∆is represent the “exposure” or the time spent “alive” in the interval [as,as−1) by subject i, and
define it as ∆is = min(s,as) − as−1. Thus, a subject i that fails or is censored at time s during this
interval has ∆is = s−as−1 as its exposure, or has ∆is = as−as−1 if it survives the interval. With these
definitions, the conditional survival function can then bewritten as Sj(t |x;βj) = exp(−Λj(t |x;βj)) =
exp−(∑t

s=1 ∆isλj(s |x;βj)). Furthermore, if we define di js = 0 for s ≤ ti − 1 and di jti = di j , as well
as g

i js
= g

i j
for s = 1, . . . , ti , the Q function can be written as

Q(θ |θ0) =
n∑
i=1

J∑
j=1

g
i j

log πj(xi;γ) +
J∑
j=1

{ n∑
i=1

ti∑
s=1

di js log λj(s |xi;βj) − g
i js
∆isλj(s |xi;βj)

}

= Q0(γ |γ0) +
J∑
j=1

Q j(βj |β0
j ).

It can easily be seen that Q0(γ |γ0) is a kernel of a multinomial log-likelihood function with
(g

i1
, . . . g

iJ
) ∼ M(1, π1(xi;γ), . . . πJ (xi;γ)) for subject i. Furthermore, in likelihood, Q j(βj |β0

j ) is
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equivalent to

Q́ j(βj |β0
j ) =

n∑
i=1

ti∑
s=1

di js log(g
i js
∆is) + di js log λj(s |xi;βj) − g

i js
∆isλj(s |xi;βj),

where di js ∼ P(g
i js
∆isλj(s |xi;βj)), because the difference is di js log(g

i js
∆is), a constant term.

Therefore, the unknown parameters of a mixture model that correspond to the conditional hazards,
with piece-wise constant baseline conditional hazards, can be estimated via a Poisson regression
model: di js ∼ P(g

i js
∆isλj(s |xi;βj))with log(g

i js
∆is) as an offset. In continuous time, even though

the survival times are grouped into intervals, the exposure for each subject can be computed exactly
because failure/censored times are known, but this is not the case when survival times are grouped
into intervals in discrete time. In the absence of information regarding failure times, we assume they
occur halfway through the interval (Vermunt, 1997). It is customary to assume that censoring occurs
at the end of the interval. If the failure time for subject i is ti , meaning that at−1 ≤ ti < at , its total
exposure is

∑ti−1
s=1 (as − as−1) + 1

2 (at − at−1), otherwise, if ti is a censoring time, the total exposure is
vi j

∑ti
s=1(as − as−1). This is the required adjustment to enable the model to handle discrete data.

The M-step entails maximizing J Poisson likelihoods Q̃ j(βj |β0
j ), j = 1, . . . J, individually within

the GLM framework and a multinomial likelihood Q0(γ |γ0). Because some statistical packages
cannot handle a multinomial distribution with fractional responses, an alternative is to fit J − 1
binomial distributions of the form gi j ∼ B(1, πj(xi,γj)) with the most prevalent failure type as the
reference category to minimize the standard errors (Becg and Gray, 1984). To perform the M-step,
the failure time data is first re-arranged into a period-person format; see, for example, Allison (1982)
and Singer and Willet (1993). The discSurv R package (Welchowski and Schmid, 2019) can be
used to facilitate the conversion of data into a period-person format. Under this format, subject
i ∈ {1, . . . n} contributes di js , s = 1, . . . ti , as the response variable with the corresponding exposure
given as g

i j
∆is and an accompanying vector of covariate xi repeated ti times.

Let ỳj , j = 1, . . . , J, be failure time data according to cause j in the period-person format, let ỳ0
be the censored subjects also in the period-person format, and define ỹj = (ỳTj , ỳT0 )T . The failure
type data y is the original data in the original format y = (yT1 , . . . yTn )T . With these definitions, the
EM algorithm steps can then be summarized as follows:

1) Update the failure type data with di = g(r)
i
= (g

i1
, . . . ,g

i(J−1))
T , i = 1, . . . ,n as the response

vector and the failure time data with g(r)
i j
∆i as the exposure vector in the (r)th iteration of the

E-Step, where ∆i = (∆i1, . . . ,∆iti )T .

2) Fit J Poisson distributions to ỹj ( j = 1,2 . . . , J) seperately to determine β(r+1)
j , j = 1, . . . , J,

and a multinomial distribution to the failure type data to determine γ(r+1) in the corresponding
M-Step, then proceed to Step 1.

To initialize the algorithm:

1) In the 0th iteration of the E-Step, let di = (di1, . . . , diJ−1), i = 1, . . . ,n be the response vector
for failure type data, and ∆i = (∆i1, . . . ,∆iti )T , i = 1, . . . ,n be the exposure vector for the
failure time data. In the corresponding M-Step, fit J Poisson distributions to the failure time
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data seperately to determine β(1)j , j = 1, . . . , J, and a multinomial distribution to the failure
type data to determine γ(1), then proceed to Step 1.

3. Illustration
We apply the proposed model to the unemployment data, originally analyzed by McCall (1996),
given as ‘UnempDur’ in Ecdat (Croissant, 2015) R package. The data focusses on the length of
unemployment spell (two-week intervals) until transition to either full-time or part-time employment
for unemployed individuals that were fully employed in their lost jobs. The covariates in the data set
are Age, Unemployment Insurance, Displacement rate, Replacement rate, Wage rate and Tenure at
the lost job.
Out of a sample of 3343 subjects, 676 are excluded for lack of complete information. Eventually

out of a sample size of 2667, about 40% of the subjects exit to full-time employment, 13% to part-time
employment, and 47% are censored.
The time in two-week interval is t ∈ {1,2,3, . . . ,28}. We consider t ∈ {1,2,3, . . . ,19,20} by

collapsing the event/censoring time t ≥ 20 into one interval [20,29) because there are relatively few
events in this interval. Furthermore, some of the later intervals have no events, this should be avoided
as it brings about instability to the model. With the exception of the “unemployment benefits” (UI)
variable, all the variables are continuous. For the purposes of computing exposure, an interval length
is taken to be 1 so that a failure time and censoring time have 0.5 and 1 exposure respectively, and
this also applies to the interval [20,29).
This data was analysed by McCall (1996) to test the proposition that increasing the Disregard

for the Unemployment Insurance (UI) recipients will encourage these individuals to seek part-time
employment instead of full-time employment. Disregard is defined as the maximum amount that a
UI recepient can earn from part-time employment with no reduction in benefits. One of the models
considered for analysis in McCall (1996) was the ordinary (Prentice and Gloecker, 1978) competing
risks model, where cause-specific hazards are estimated by treating the cause-specific failures as
events and the competing events as censored. The author chose to connect the cause-specific hazards
to the covariates via the complementary log link function (Prentice and Gloecker, 1978), that is,

hj(t) = 1 − exp(− exp(α0jt + x
Tα1j)),

for j = 1,2 and t = 1, . . . ,19. We refer to this model as the ordinary competing risks model.
The covariates that were considered were Unemployment Insurance (UI), Disregard Rate (DR),
Replacement Rate (RR) and the interaction terms UI × DR as well as UI × RR. The Disregard Rate
is the weekly Disregard amount divided by the weekly earnings in the lost job and the Replacement
Rate is the weekly benefit divided by weekly earnings in the lost job. We also fitted our proposed
model using the same covariate set. For convenience, the continuous covariates, that is DR and
RR, were centered at 0.107 and 0.452, their respective average values, with UI recepients set as the
reference category. We found that the interaction terms were insignificant. We then re-fitted the
models without the interaction terms and the results are displayed in Tables 1 and 2. We plotted the
cumulative incidence functions from the proposed model and the ordinary model in Figure 1.
It is evident that increasing the Disregard Rate by 50% lowers the probability of exiting the

unemployment state to full-time employment significantly when one examines both plots from the
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Table 1. Maximum likelihood estimates (with standard errors) for the mixture model (Poisson
model) and the ordinary competing risks model (* denotes P < 0.05).

Mixture Model (Poisson Model) Ordinary Model

Coefficient β̂1 Ŝ10 β̂2 Ŝ20 α̂1 α̂2

T1 −2.561 (0.074)∗ 0.926 −2.361 (0.124)∗ 0.910 −2.718 (0.072)∗ −3.946 (0.128)∗
T2 −2.771 (0.085)∗ 0.869 −2.776 (0.149)∗ 0.855 −2.996 (0.084)∗ −4.245 (0.151)∗
T3 −2.916 (0.098)∗ 0.824 −3.031 (0.176)∗ 0.815 −3.187 (0.098)∗ −4.429 (0.176)∗
T4 −3.446 (0.138)∗ 0.798 −3.425 (0.226)∗ 0.789 −3.742 (0.137)∗ −4.777 (0.226)∗
T5 −2.636 (0.103)∗ 0.743 −2.772 (0.179)∗ 0.741 −2.962 (0.103)∗ −4.122 (0.179)∗
T6 −3.591 (0.179)∗ 0.722 −3.839 (0.321)∗ 0.725 −3.930 (0.179)∗ −5.139 (0.321)∗
T7 −2.419 (0.112)∗ 0.660 −2.831 (0.212)∗ 0.684 −2.798 (0.112)∗ −4.133 (0.211)∗
T8 −3.909 (0.259)∗ 0.648 −3.623 (0.338)∗ 0.666 −4.312 (0.259)∗ −4.859 (0.338)∗
T9 −3.007 (0.176)∗ 0.617 −3.788 (0.382)∗ 0.651 −3.422 (0.177)∗ −5.021 (0.382)∗
T10 −5.261 (0.578)∗ 0.613 −4.490 (0.580)∗ 0.643 −5.677 (0.577)∗ −5.705 (0.579)∗
T11 −2.984 (0.198)∗ 0.583 −3.904 (0.451)∗ 0.631 −3.413 (0.199)∗ −5.118 (0.451)∗
T12 −4.135 (0.379)∗ 0.574 −4.269 (0.580)∗ 0.622 −4.571 (0.379)∗ −5.459 (0.580)∗
T13 −2.742 (0.202)∗ 0.538 −3.197 (0.358)∗ 0.597 −3.198 (0.203)∗ −4.397 (0.358)∗
T14 2.306 (0.184)∗ 0.487 −3.315 (0.412)∗ 0.576 −2.802 (0.186)∗ −4.483 (0.412)∗
T15 −2.427 (0.231)∗ 0.446 −3.823 (0.581)∗ 0.563 −3.001 (0.233)∗ −4.906 (0.579)∗
T16 −2.828 (0.317)∗ 0.420 −3.650 (0.581)∗ 0.549 −3.437 (0.318)∗ −4.693 (0.580)∗
T17 −2.799 (0.354)∗ 0.395 −4.556 (1.002)∗ 0.543 −3.431 (0.354)∗ −5.584 (1.002)∗
T18 −2.660 (0.378)∗ 0.369 −3.750 (0.709)∗ 0.530 −3.401 (0.379)∗ −4.722 (0.711)∗
T19 −1.149 (0.213)∗ 0.269 −2.108 (0.339)∗ 0.469 −2.083 (0.219)∗ −3.056 (0.339)∗
UI 1.524 (0.064)∗ 0.568 (0.111)∗ 1.069 (0.063)∗ 1.153 (0.113)∗
DR −0.595 (0.494) −1.809 (0.835)∗ −1.823 (0.499)∗ −0.379 (0.793)
RR −0.071 (0.292) −0.009 (0.570) −0.759 (0.291)∗ 0.908 (0.507)

Table 2. Maximum likelihood estimates (with
standard errors) for the mixture model (logistic
model) (* denotes P < 0.05).

Mixture Model (Logistic Model)

Coefficient γ̂

Constant 1.094 (0.059)∗
UI −0.526 (0.087)∗
DR −2.941 (0.654)∗
RR −2.148 (0.467)∗
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Figure 1. The cumulative incidence function of exit to full time and part time employment for the
UI recipients with the effect of increasing DR via the mixture model and the ordinary model.
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Figure 2. The cumulative incidence function of exit to full time and part time employment for the
UI recipients with the effect of increasing DR via the mixture model.
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Figure 3. The cumulative incidence function of exit to full time and part time employment for the
UI recipients with the effect of increasing DR via the ordinary model.

proposed model (Figure 3) and the ordinary model (Figure 1), but there seems to be no noticeable
difference in the probability to exit to part-time before and after the increase in the Disregard Rate
if we examine Figure 3. There is an increase in the probability of exiting the unemployment state to
part-time employment, albeit marginal, if one considers Figure 1. The conclusions that are reached
by examining the plot from the proposed model agree with McCall’s (1996) own conclusions, despite
the fact that we have excluded the interaction terms, that is, increasing the Disregard Rate tends to
encourage unemployed individuals away from searching for full-time employment towards looking
for part-time employment prospects. The fact that the ordinary model suggests that increasing the
Disregard has no effect on UI recipients with regard to part-time employment, i.e., that the findings
disagree with McCall (1996), may be attributable to discrepancies in certain aspects of the data sets
used by McCall (1996) and ourselves. Putting aside the differences between our findings and McCall
(1996), the proposed model compares favourably with the ordinary discrete time competing risks
model and it should, therefore, also compare favourably with the multinomial model.
We now illustrate the ease withwhich the cumulative incidence function estimates can be computed

via the proposed model. Suppose we wished to investigate the effect of increasing DR by 50% for an
average unemployed subject, i.e., a UI recipient at average values for DR and RR in relation to exit
to full-time employment. The expression for the survival function is given by

Sj(t |x;βj) = {S0j(t)
}exp(xTβ j ), for t ∈ [at−1,at ),

where S0j(t) = exp{−∑t
s=1 ∆s exp(β0js)} is the baseline survival function for cause j at time t. Their

estimates are listed in Table 1 for convenience. For illustrative purposes, the proportion of exits to
full-time employment after 5 months (T = 10) before the increase in DR can be computed as follows:

F1(10) = 1
1 + exp (−1.094) × (1 − 0.613) = 0.289
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to

F1(10) =
(

1
1 + exp (−(1.094 + 0.054 × (−2.941)))

)
× (1 − 0.613exp(0.054×−0.595)) = 0.271

after the increase in DR. The proportion of exits to part-time employment increases from

F1(10) =
(
1 − 1

1 + exp (−1.094)

)
× (1 − 0.643)) = 0.089

to

F1(10) =
(
1 − 1

1 + exp (−(1.094 + 0.054 × (−2.94)))

)
× (1 − 0.643exp(0.054×−1.809)) = 0.093.

4. Conclusion
We have proposed a discrete mixture competing risks model by adapting its continuous time
equivalent into a discrete time model. In continuous time, the conditional hazards are assumed
to follow the proportional hazards assumption with piece-wise constant conditional baseline hazards.
This assumption allows for the conditional hazard parameters to be estimated within a GLM
framework through a certain Poisson regression model. This fact, together with the structure of
the regression model for the cumulative incidence function that emerges from the mixture model,
allows for an alternate means to assess the covariate effects on the cumulative incidence function. We
have shown that, with a slight modification, the proposed model can be applied to discrete competing
risks data and thus serve as an alternative to the regression model for the cumulative incidence
function that arises under the multinomial model.

Appendix
We rely on the multivariate delta method to determine the variance of the cumulative incidence
estimates, which is given by

V(F̂j(t |x;θ)) =
(
∂Fj(t |x;θ)

∂γ
,
∂Fj(t |x;θ)

∂βj

)T [
V(γ) 0

0 V(βj)
] (
∂Fj(t |x;θ)

∂γ
,
∂Fj(t |x;θ)

∂βj

)����
θ=θ0

.

The partial derivatives are given as

∂Fj(t |x;θ)
∂γ1kb

= −πj(x;γ)πk(x;γ)Q j(t |x;βj)xb,
∂Fj(t |x;θ)
∂γ1ja

= πj(x;γ)(1 − πj(x;γ))Q j(t |x;βj)xa,
∂Fj(t |x;θ)
∂β0js

= πj(x;γ)Sj(t |x;βj)∆sλj(t |x;βj),

∂Fj(t)
∂β1j

= πj(x;γ)Sj(t |x;βj)
t∑

s=1
∆sλj(t |x;βj),
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where Q j(t |x;βj) = 1 − Sj(t |x;βj). The covariance matrices produced by statistical packages are
based on the complete data i.e V(γ) and V(βj) are complete data covariance matrices. These must
be adjusted to reflect observed data covariances. Towards that end, the methods by Oakes (1999) and
Louis (1982) are some of the approaches to adjust the complete data covariance matrices. We apply
the Oakes (1999) approach and it is given by

Iy(θ0) = −∂
2Q(θ |θ0)
∂θ∂θT

+
∂2Q(θ |θ0)
∂θ∂θ0T

,

where θ0 is MLE of θ at the convergence of EM algorithm. The first term of the above equation is
the complete data information and second term is the missing information that we have to compute.
We begin with βj , the vector of cause j failure time parameters, and assume that the subjects have
been re-indexed so that the first k subjects are uncensored and the remaining n− k are censored. For
convenience, let Si j = Sj(s |x;βj), πi j = πj(xi,γ), and λi js = λj(s |x;βj). The complete data Q
score functions can be written as

∂Q́(βj |β0
j )

∂β0
0js

=

k∑
i=1

di js − ∆isλ0
i js +

n∑
i=k+1

di js − vi j∆isλ0
i js,

∂Q́(βj |β0
j )

∂β0
1ja

=

k∑
i=1

ti∑
s=1
(di js − ∆isλ0

i js)xia +
n∑

i=k+1

ti∑
s=1
(di js − vi j∆isλ0

i js)xia .

Using the chain rule, the partial derivatives of the pseudo-variable vi j are given by

∂vi j

∂β0js
=
∂vi j

∂Si j

∂Si j
∂β0js

=

( ∑J
l=1 πi jSi j

)
πi j − πi jSi j(πi j)( ∑J

j=1 πi jSi j
)2 × −Si j∆isλi js = −vi j(1 − vi j)∆isλi js,

∂vi j

∂β1ja
=
∂vi j

∂Si j

∂Si j
∂βi ja

= −
( ∑J

l=1 πilSil
)
πi j − πi jSi jπi j

(∑J
l=1 πilSil)2

Si j xia
ti∑
s=1
∆isλi js

= −vi j(1 − vi j)xia
ti∑
s=1
∆isλi js .

It then follows that

∂2Q́(βj |β0
j )

∂β0js∂β
0
0js
=

n∑
i=k+1:s≤ti

−∆sλ0
i js

∂vi j

∂β0js
=

n∑
i=k+1:s≤ti

∆isλ
0
i jsvi j(1 − vi j)∆isλi js,

since
∂vi j
∂β0 j s

= 0 when s > ti . Therefore the missing information corresponding to β0js is

∂2Q́(βj |β0
j )

∂β0js∂β
0
0js

����
θ=θ0

=

n∑
i=k+1:s≤ti

(∆isλ0
i js)2v0

i j(1 − v0
i j), s = 1, . . . ,q.
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Regarding the regression coefficients, we have

∂2Q́(βj |β0
j )

∂β1jb∂β
0
1ja
=

n∑
i=k+1

ti∑
s=1
(−∆isλ0

i js)xia
∂vi j

∂β1jb
=

n∑
i=k+1

ti∑
s=1
(∆isλ0

i js)xiaxibvi j(1 − vi j)
ti∑
s=1
∆isλi js

=

n∑
i=k+1

vi j(1 − vi j)xiaxib
ti∑
s=1
∆isλ

0
i js

ti∑
s=1
∆isλi js,

so that the missing information component regarding Cov(β1ja; β1jb) is
∂2Q́(βj |β0

j )
∂β1jb∂β

0
1ja

����
θ=θ0

=

n∑
i=k+1

v0
i j(1 − v0

i j)xiaxib

( ti∑
s=1
∆isλ

0
i js

)2
.

We now focus on γ. We begin by establishing the following results:

∂vi j

∂γ1ja
=

( ∑J−1
l=1 πilSil + πJSiJ

)
πi j(1 − πi j)Si j xia − πi jSi j

(
πi j(1 − πi j)Si j − πi j

∑J
l,j πilSil

)
xia( ∑J−1

l=1 πilSil + πJSiJ )2

=
πi jSi j

{ ∑J
l,j πilSil(1 − πi j) + πi j

∑J
l,j πilSil

}
xia( ∑J−1

l=1 πilSil + πJSiJ
)2 =

πi jSi j ×
∑J

l,j πilSil( ∑J−1
l=1 πilSil + πJSiJ

)2 xia

= vi j(1 − vi j)xia,
∂vi j

∂γ1kb
=

( −∑J−1
l=1 πilSil + πiJSiJ )πikπi jSi j xib −

(
πik(1 − πik)Sik − πik

∑J
l,k πilSil

)
πi jSi j xib( ∑J−1

l=1 πilSil + πiJSiJ
)2

=
πi jπikSi j xib

{ −∑j
l=1 πilSil − Sik +

∑J
l=1 πilSil

}
( ∑J−1

l=1 πilSil + πiJSiJ
)2 = − πi jSi j∑J

l=1 πilSil

πikSik∑J
l=1 πilSil

xib

= −vi jvik xib .

We again re-index the subjects as before, and write the “complete” data score function as follows

∂Q(γ |γ0)
∂γ1ja

=

k∑
i=1
(di j − π0

i j)xia +
n∑

i=k+1
(vi j − π0

i j)xia .

Then,

∂2Q(γ |γ0)
∂γ1ja∂γ

0
1ja
=

n∑
i=k+1

∂vi j

∂γ1ja
xia =

n∑
i=k+1

vi j(1 − vi j)x2
ia,

∂2Q(γ |γ0)
∂γ1kb∂γ

0
1ja
=

n∑
i=k+1

∂vi j

∂γ1jb
xia = −

n∑
i=k+1

vi jvik xiaxib .

Thus, the missing information components with respect to Var(γ1ja) and Cov(γ1kb; γ1ja) are given
by

∂2Q(γ |γ0)
∂2γ1ja∂γ

0
1ja

����
θ=θ0

=

n∑
i=k+1

v0
i j(1 − v0

i j)x2
ia,

∂2Q(γ |γ0)
∂γ1kb∂γ

0
1ja

����
θ=θ0

= −
n∑

i=k+1
v0
i jv

0
ik xiaxib .
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