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Kurtosis is seen as a measure of the discrepancy between the observed data and a Gaussian
distribution and is defined when the fourth moment is finite. In this work an empirical study
is conducted to investigate the behaviour of the sample estimate of kurtosis with respect to
sample size and the tail index when applied to heavy-tailed data where the fourth moment does
not exist. The study will focus on samples from the symmetric stable distributions. It was
found that the expected value of excess kurtosis divided by the sample size is finite for any
value of the tail index and the sample estimate of excess kurtosis increases as a linear function
of sample size and it is approximately equal to n(1 − α/2).
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1. Introduction
The theoretical kurtosis is defined and finite when the fourth moment is finite. For regularly varying
heavy-tailed distributions (Mikosch, 1999), in terms of the tail index (α), theoretical kurtosis is
defined where α > 4. In practice, data is observed with an unknown distribution and kurtosis is
used to measure how leptokurtic the sample is. In financial data, especially when looking at the
distribution of log-returns to estimate volatility, it is often observed that α < 2 (Bielinskyi et al.,
2019) and the estimated kurtosis is used to get an indication of how leptokurtic the data is. Estimates
of kurtosis in asset returns range from 4 to 50 (Engle and Patton, 2001). Heavy-tailed distributions
with α < 4 are fitted to log-returns, see for example Xu et al. (2011). This work will largely focus
on examples relating to financial data. McCulloch (1996) explain that the accumulation of a large
number of i.i.d. random asset returns (possibly based on separate pieces of information) has a limiting
distribution in the stable distribution family.
In this work an empirical study is conducted to check the behaviour and usefulness of sample

kurtosis for the symmetric stable distribution with α < 2, and specifically where α ≥ 1 which is
mostly found when applied to real data.
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The main result found was that the expected value of the sample kurtosis increases as a linear
function of the sample size and it was found that for symmetric samples from stable distributions,
the approximate sample estimate of excess kurtosis for a sample size n and tail index α is n(1−α/2).
More than one method has been suggested to estimate kurtosis, but in this work the Pearson

kurtosis as discussed by Fiori and Zenga (2009) is used, as is common in finance and risk analysis.
Kurtosis is defined as

β2(x) =
E(X − µ)4

[E(X − µ)2]2
=
µ4

σ4 ,

with µ4 the fourth central moment and σ2 the variance of X . β2(x) is location-scale invariant and
all data simulated will be for a location parameter µ = 0 and scale parameter σ = 1. For a regular
distribution, µ4 ≥ µ

2
2 (Ord and Stuart, 1994, p. 109). The excess kurtosis is

γ2 = β2 − 3,

which is also equal to γ2 = κ4/κ
2
2 when expressed in terms of cumulants. For the normal distribution,

the excess kurtosis is zero.
The sample kurtosis is denoted by b2 and the excess kurtosis by g2 = b2−3. Algebraic inequalities

which do not depend on distributional properties exist for the sample kurtosis, including that the
sample estimate of kurtosis is less than the sample size (Johnson and Lowe, 1979; Cox, 2010), thus

b2 =

1
n

∑n
j=1

(
xj − x̄

)4[
1
n

∑n
j=1

(
xj − x̄

)2
]2 =

n
∑n

j=1
(
xj − x̄

)4[∑n
j=1

(
xj − x̄

)2
]2 = nc(x1, . . . , xn) ≤ n.

This inequality shows that the function c(x1, . . . , xn) ≤ 1 and E[c(x1, . . . , xn)] = E[b2/n] ≤ 1 would
be finite for all distributions, which means that divergence of the sample kurtosis arises because of
an increase in the sample size. The behaviour of the sample kurtosis will be like that of a ratio, and
hence we should not consider the numerator and denominator separately as is done in the theoretical
definition. Using simulation studies it was checked if c(x1, . . . , xn) can be approximated as a function
of α. It can also be seen and was confirmed using simulation that the variance of the sample kurtosis
is of the form n2var[c(x1, . . . , xn)].
This work will focus on symmetrical stable distributed data. Properties and applications of it can

for example be found in the work of Čížek et al. (2011) and Chernobai et al. (2007). We use their
notation below.
The characteristic function of the family of stable distributions is denoted by φ(t) where

log(φ(t)) =

{
−σα |t |α [1 − iβsign(t) tan(πα/2)] + iµt, α , 1,
−σ |t | [1 + iβsign(t)(2/π) log(|t |)] + iµt, α = 1.

The parameters are the tail index, α ∈ (0,2], a scale parameter σ > 0, coefficient of skewness
β ∈ [−1,1] and location parameter µ.
In Figure 1, 500 random samples were simulated. α’s were randomly chosen on the interval [1,2]

with random sample sizes between n = 200 and n = 1500. The plots show the estimated excess
kurtosis. The focus of this study is applications in finance and these sample sizes cover 1 to 6 years
when working with daily data.
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Figure 1. A scatterplot of 500 sample estimates of the excess kurtosis for random α ∈ [1,2] and the
sample size n between 200 and 1 500. Samples are from a stable distribution.

To get an idea of the relationship involved, regression showed that

g2 ≈ n(1 − α/2).

There is little variation in the regression coefficients when repeating the simulation and this relation-
ship will be investigated further using simulation studies. Assuming that g2(n, α) = n(1 − α/2), and
by noting that

∂g2(n, α)
∂n

= 1 − α/2 and
∂g2(n, α)
∂α

= −n/2,

it can be seen that the sample kurtosis is an increasing function of the sample size, and sensitive to
changes in α.
The behaviour of sample skewness was checked using the simulated samples and it was found that

the expected value of the sample skewness is zero for symmetric data but the variance is an increasing
linear function of the sample size and increases for smaller α. This is not the focus of the work, but
a skewness estimate in a large sample might not be a significant indication of skewness if the large
variance is taken into account.
A measure to order different symmetric distributions according to the term ‘heavy-tailness’ was

derived by van Zwet (1964) and Groeneveld and Meeden (1984). It was proven that if a distribution
is more heavy-tailed than another according to this measure, then kurtosis will also be larger for the
heavier-tailed distribution.
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2. Simulation study
Say a sample of size n is available and n = k1 + · · · + kr . The sample kurtosis will be calculated at
increasing sample sizes, say k1, k1 + k2, k1 + k2 + k3, . . . ,n, and for different values of α.
In Figure 2 we see the increase in the expected value of the estimated excess kurtosis. The average

at each sample size was calculated using m = 25 000 samples. The slope for α = 1 is b = 0.5013,
for α = 1.5 it is b = 0.2474, and approximately zero for α = 2. The proposed relationship (Figure 1)
can be considered as an approximation.
The excess kurtosis for simulated data from a t-distribution with v = 3,4,5 degrees of freedom is

shown in Figure 3. It can be seen that for small degrees of freedom the relationship between kurtosis
and sample size is not linear. The linear trend increase in kurtosis with respect to sample size for
samples from a stable distribution can thus be a useful property for model selection. It may not be
unique to the stable distribution, but if observed in a practical problem it suggests that a possible
candidate to fit might be a stable distribution.
For a given value of α, consider regression between g2/n and α. If it is assumed that the excess

kurtosis is zero for α = 2, regression through the origin can be performed. For n = 250 and for each
α = 1,1.1, . . . ,2, perform 5 000 regressions. For a specific α calculate the average of the slopes.
In Figure 4 the slopes are plotted against 2 − α, and the slope of this line with respect to 2 − α is
approximately 0.5, leading to g2 ≈ 0.5n(2 − α). The figure also includes 90% intervals for the slope
of a single sample.
The expected value of the sample excess kurtosis increases as a linear function of the number of

observations used to calculate the sample kurtosis and the approximate expected excess kurtosis in
large samples is thus

E(g2) ≈ n(1 − α/2).

In the above simulations a fixed sample size was used. To confirm the results it will be checked
by using random sample sizes. The consistency of the ordering of kurtosis with tail index will
also be considered. As an example 5 000 samples with random sample sizes between n = 200
and n = 1 500 were generated from a stable distribution with index α = 1.25, estimated excess
kurtosis divided by the sample size and the sample mean was 0.1236 compared to 1−α/2 = 0.1250.
Similarly 5 000 samples with random sample sizes and α = 1.75 were generated. The sample mean
for α = 1.75 is 0.3668 compared to 1 − α/2 = 0.3750. This confirms the approximate relationship
E(g2) ≈ n(1 − α/2).
Comparisons were made in pairs between the sample kurtosis of the two samples. This resulted in

approximately 82% correct larger values of the excess kurtosis when the data is more heavy-tailed.
If sample kurtosis was divided by the sample size the percentage increases by about 2%. A few such
examples were simulated and when comparing between a normal samples α = 2 and samples where
α < 2, the percentage correct ordering of the tail index with respect to kurtosis is very high and often
as high as 100%. The conclusion can be made that for symmetric stable distributions, kurtosis is
an effective measure to compare the tail-heaviness of samples from two distributions with different
parameters.
Table 1 shows the ability of the sample kurtosis (standardised by sample size) to correctly choose

the heavier tail in the case of stable distributions, for various combinations of tail index.
The standard deviation of the sample estimate as a function of α is seen in Figure 5 and the variance
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Figure 2. Plot of average of excess sample kurtosis using simulated samples from a symmetric stable
distribution. The averages were calculated using 25 000 samples for each sample size ranging from
50 to 500 in steps of 50.
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Figure 3. Plot of average of excess sample kurtosis using simulated samples from a t-distribution.
The averages were calculated using 25 000 samples for each sample size ranging from 50 to 500 in
steps of 50.
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Figure 4. The relationship between the estimated slope of increase of excess kurtosis with respect
to sample size and 2 − α. Each point calculated as the average of 5 000 estimated values.

for at sample size n is proportional to n2 for all values of α, except when α = 2.
It is worth noting that the sample kurtosis of a sample from a stable distribution does not appear to

be affected by the skewness parameter value. Repeating the primary simulation study with varying
skewness values produced regression results simultaneously showing a very strong relationship
between sample kurtosis and α on the one hand and an insignificant relationship with skewness (as
well as the interaction of α and skewness) on the other hand.

3. An application to log-returns
The change in kurtosis with respect to the number of observations used to calculate the sample
kurtosis was investigated when applied to log-returns of the New York Stock Exchange (NYSE).
The daily closing values of 5 years from May 2013 to May 2018 were used. These log-returns
are approximately symmetrically distributed with sample mean zero and the stable distribution is
considered as a possible distribution. Log-returns are assumed independent for the purpose of this
analysis.
The index and log returns are shown in Figure 6. There is an initial period, a major correction and

the period after the correction.
A histogram of the log returns are shown in Figure 7 to illustrate the values that are modelled from

here on.
The sample excess kurtosis of the log-returns using increasing sample sizes is plotted in Figure 8.

It can be seen that the distribution of the log-returns seems to change and then stay the same for a
period if one considers a change in slope as an indication of a change in the distribution.

260 VAN ZYL & VAN DER MERWE



1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
1

0.
2

0.
3

0.
4

α

S
ta

nd
ar

d 
de

vi
at

io
n

Average SD
90% interval

Figure 5. The standard deviation of the sample size standardised excess kurtosis estimate (g2), as a
function of α, based on 50 sets of 100 simulated samples of size 500 for each α.
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Figure 6. Index and log returns of the NY stock exchange, 5 years daily data.
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Table 1. Approximate probability of the
sample kurtosis of a sample from the sta-
ble distribution with row label tail index
exceeding the kurtosis from a sample with
column label tail index.

α 1.25 1.5 1.75 2

1 0.635 0.772 0.899 1.000
1.25 0.661 0.839 0.999
1.5 0.730 0.997
1.75 0.991

By using the relationship, E(g2) ≈ n(1 − α/2), one finds that α̂ ≈ 2(1 − g2/n). This can be used
as an approximate method to calculate an estimate of the tail index. The closer to 2, the less the
volatility. It can be seen in Figure 9 that there are periods with a changing index and constant periods
in terms of the estimated tail index.
The Kogon-Williams estimation method (Kogon andWilliams, 1998) was applied and it suggested

a tail index of roughly 1.76 for the data as a whole. When we consider two series of observations,
100-–400 and 800-–1100, we obtain estimates of roughly 1.86 and 1.72, suggesting a systemic
change. Thus, we expand on this using a rolling window approach. See Figure 8, where the systemic
change is clearly visible.
Kurtosis is very sensitive with respect to changes in the index even though the kurtosis is calculated

using log-returns and the difference in behaviour of the sample kurtosis over time before and after
the correction is very clear.
The Kogon-Williams estimation method (Kogon and Williams, 1998) was also applied to a rolling

window of size 300, and plotted in Figure 9 along with the tail index implied by the estimated
kurtosis, to see if there was a change in the tail-index as indicated by the change in sample kurtosis.
The results are consistent with the change in kurtosis, showing that the second period can be more

volatile and heavy-tailed. These are periods before and after the 2016 presidential election in the
USA.

4. Conclusion
There is a relationship between kurtosis and the tail-index for samples from the stable distributions.
For a sample of size n, the sample kurtosis can be considered as n times the ratio of two polynomials
which are both of degree 4, and the expected value of the ratio is finite, even if the expected value
of the numerator or denominator does not exist. This property makes kurtosis useful in heavy-tailed
data if the proportionality to n is taken into account. Thus for α > 0,

lim
n→∞

∑n
j=1

(
xj − x̄

)4[∑n
j=1

(
xj − x̄

)2
]2 ≈ 1 − α/2.
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Figure 7. Histogram of log returns of the NY stock exchange, 5 years daily data.
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Figure 8. Excess kurtosis of the log-returns calculated as a function of the number of points used.
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Figure 9. Estimated tail index of the log-returns.

This property can be used to compare the ‘tail-heaviness’ by using kurtosis of two samples from a
stable distribution.
The linear relationship between the increase as more points are used to calculate kurtosis can be

used as a property to exclude or include a stable distribution as a possible distribution which can be
fitted to for example log-returns.
For GARCH models the fourth moment should be finite when fitted to log-returns. By plotting

the estimated kurtosis as a function of an increasing number of observations an increase in sample
kurtosis might be an indication that the fourth moment is not finite.
Using bootstrap methods to estimate a variance, the relationship g2/n ≈ 1 − α/2 can be used in

large samples to test hypotheses concerning α and especially to test if α < 2.

Notes. The simulation study was done in the ‘R’ statistical programming language (R Core Team,
2019). Additional packages loaded include the ‘StableEstim’ package (Kharrat and Boshnakov,
2016) and the ‘stabledist’ package (Wuertz et al., 2016).
The annotated code and data are available from the corresponding author.
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