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Discrete time competing risks data continue to arise in social sciences, education etc., where
time to failure is usually measured in discrete units. This data may also come with unknown
failure causes for some subjects. This occurs against a background of very limited discrete
time analysis methods that were developed to handle such data. A number of continuous
time missing failure causes models have been proposed over the years. We select one of
these continuous time models, the vertical model (Nicolaie et al., 2015), and present it as a
nonparametric model that can be applied to discrete time competing risks data with missing
failure causes. The proposed model is applied to real data and compared to the MI. It was
found that the proposed model compared favorably with the MI method.
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1. Introduction
Discrete time competing risks data arise in survival analysis experiments when subjects are exposed
to multiple risks of failure and the time to failure evolves discretely. Time to failure T̃ is measured in
discrete units if T̃ ∈ {1, . . . ,q} for some positive integer q. This occurs when T̃ is inherently discrete
or when T̃ is originally continuous but observed failure times have been grouped into intervals. The
distinguishing feature of this data is an excessive number of event/censoring ties. In education,
for example, students may exit the system either by graduating or withdrawing. There are often
a substantial number of graduation ties because students can only graduate at the end of the year
or semester. Even though students can withdraw continuously throughout the year or a semester,
and in most instances informally, the authorities are able to ascertain a withdrawal if a student
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fails to re-register. Thus students graduate or withdraw in larger numbers at the end of the year or
semester, hence the excessive number of ties. Therefore, graduation times are inherently measured
in discrete units, whereas withdrawal times can be viewed as having been grouped into semesters
or years. Discrete time competing risk data is also summarized via what has become the standard
summary quantities for competing risks data, i.e., the cause-specific-hazards and the cumulative
incidence functions. Typically, the data is modelled with cause-specific-hazards and, if the objective
of a study is to evaluate the effects of certain covariates, the cause-specific-hazards are popularly
modelled on these covariates via the multinomial model (Ambrogi et al., 2009; Tutz and Schmid,
2016). The cause-specific-hazards are estimated by applying the multinomial distribution to the data.
The cumulative incidence function estimates are thereafter derived from the cause-specific-hazard
estimates. When the assessment of covariate effects is not the primary objective of a study, the
summary quantities can be estimated nonparametrically (Davis and Lawrance, 1989). There are
instances, however, when discrete time data may come with missing failure causes. The discrete
time models that we have just described are no longer applicable in the presence of missing failure
causes. Analysis of competing risks data with missing failure causes has received minimal attention
in discrete time. This is not, however, unique to analysis of data with missing failure causes since, in
general, discrete time models, both in univariate and competing risks settings, are less developed in
comparison to continuous time models. One of the options that may be considered in discrete time is
to apply the existing discrete time models after editing the data, either by excluding the affected cases
or treating them as an additional category of failure. Both these approaches are not ideal because
they may lead to biased estimates. A model based approach, where the missing failure causes are
imputed, see for example, Bakoyannis et al. (2010) and Lee et al. (2014), may also be considered.
Analysis of data with missing failure causes is a topic that has been widely discussed in continuous

time, see for example, Dinse (1982); Dewanji (1992); Goetghebeur and Ryan (1990, 1995); Lu and
Tsiatis (2001); Lee et al. (2014); and Nicolaie et al. (2015). In response to the limited options in
discrete time for handling data that comes with this complication, we consider the vertical competing
risks model (Nicolaie et al., 2015) with a view to present it as a nonparametric discrete time model.
The vertical model was originally introduced as an ordinary competing risks model in continuous
time (Nicolaie et al., 2010). Nicolaie et al. (2015) demonstrated that the ordinary vertical model
(Nicolaie et al., 2010), as is, can serve both as an ordinary competing risks model and a missing
failure causes model. We therefore wish to extend this flexibility of the vertical model to the discrete
time domain in this article.
In the absence of missing failure causes the standard method (Davis and Lawrance, 1989) entails

estimating discrete time cause-specific-hazards nonparametrically from observed data. Let T̃ and D
denote the time to failure and failure type respectively, where T̃ is in discrete units and D ∈ {1, . . . , J}.
Observed discrete time data on the pair (T̃ ; D) can be represented by (ti,∆i) in the absence of missing
failure causes. Implicit in this data representation is time to censoring, C, also in discrete units, such
that∆i = I(T̃i < Ci)Di andTi = T̃i∧Ci . Consider a definition of a discrete time cause-specific-hazard
that is given by

hj(t) = P(T = t,D = j |T ≥ t),

where t ∈ {1, . . . ,q} is a set of observed discrete failure times. Let d(js) and ns denote the number
of cause j failures and the number at risk at T = s, respectively. The MLE of hj(s), the cause j
discrete time cause-specific-hazard is given by ĥj(s) = d(js)/ns for s = 1, . . . ,q and j = 1, . . . , J.
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The cumulative incidence function estimates are then derived from

F̂j(t) =
∑
s:s≤t

ĥj(s)Ŝ(s − 1), (1)

where Ŝ(t) =
∏t

s=1(1 − ĥ(s)) and h(t) =
∑J

j=1 hj(t).
Nicolaie et al. (2010) presented an alternate method for estimating both the cause-specific-hazards

and the cumulative incidence functions. The model proposes modelling observed competing risks
data with total hazards and conditional failure type probabilities (relative hazards). This development
follows from the vertical model assumption which posits that a given joint distribution of failure time
and failure type can also be expressed in terms of a distribution for failure type conditional on failure
time and a marginal distribution for time to failure, that is

P(T̃ ; D) = P(T̃)P(D |T̃). (2)

The immediate consequence of (2) is the following re-expression of a given cause-specific-hazard
hj(t) in terms of a total hazard λ(t), a measure that summarizes the marginal failure time distribution,
and a relative hazard πj(t):

hj(t) = λ(t)πj(t).

For the purposes of modelling discrete time competing risks data nonparametrically, it is most
logical to summarize the marginal failure time distribution with discrete total hazards, that is,
λ(t) = P(T = t |T ≥ t) for (t = 1, . . . ,q).
The definition of relative hazards is given by πj(t) = P(D = j |T = t) for t = 1, . . . ,q and

j = 1, . . . , J. The term “relative hazards” originates from

πj(t) =
P(T = t,D = j)

P(T = t)
=

P(T = t,D = j |T ≥ t)P(T ≥ t)∑J
j=1 P(T = t,D = j |T ≥ t)P(T ≥ t)

=
hj(t)
h(t)

.

Note that h(t) is the conditional probability of failure by any of the known failure causes at time t,
whereas the total hazard λ(t) quantifies the conditional probability of failure at time t by any cause
(known or unknown). The relative hazards πj(t) expresses the probability that a failure is due to
cause j given that a failure has occurred. The conditional probability of failure by cause j at time t,
that is, the cause-specific-hazard hj(t) is now determined as the conditional probability of failure at
time t by any cause, and this failure is apportioned to cause j with probability πj(t), the proportion
of cause j failures at time t. Note that λ(t) , h(t) unless the missing failure causes are absent. In
fact, in the presence of missing failure causes, λ(t) − h(t) is the hazard function of the subjects with
missing failure causes at time t.
When the vertical model is assumed, the full likelihood function splits according to (2) into a

time to failure likelihood function with total hazards as parameters and a likelihood function for
relative hazards. The total hazards and the relative hazards are, therefore, estimated separately. The
cause-specific-hazards can no longer be estimated directly from observed data when some of the
subjects have missing failure causes, but they can be indirectly estimated from λ̂j(t) = λ̂(t)π̂j(t)
for t = 1, . . . ,q and j = 1, . . . , J. Likewise, the cumulative incidence function estimates are now
obtained from

F̂j(t) =
∑
s:s≤t

Ŝ(s − 1)λ̂(s)π̂j(s).
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The standard errors for F̂j(t) are derived in the Appendix.
Up to this point, we have re-formulated the continuous time vertical model as a nonparametric

discrete time model by proposing discrete time total hazards as the summary quantities for the failure
time distribution. Collect the parameters that define the discrete time verticalmodel inθ = (λT ,πT )T ,
where λ = (λ(1), . . . , λ(q))T , π = (πT

1 , . . . ,π
T
J−1), and πj = (πj(1), . . . , πj(q)T . In the next section,

Section 2, we consider the estimation of θ in the presence of missing failure causes, which in essence,
is the proposed nonparametric vertical model. This is followed by an application of the proposed
model to real discrete time competing risks data in Section 3, together with the MI method. We
conclude with a discussion in Section 4. We derive the standard errors for the cumulative incidence
function estimates in the Appendix.

2. Estimation
We assume two failure causes in this article. The MLE of θ is determined by maximizing the
observed data likelihood function with respect to θ. When data comes with missing failure causes
for some subjects, we introduce a missingness indicator R to distinguish the subjects that failed
with known failure causes from the subjects that failed with missing failure causes. Let R assume
values 0 or 1 according to whether a subject has failed with a missing failure cause or not. In
the presence of missing failure causes, observed data now becomes (ti,∆i,Ri = 1) for subject i
that failed with a known failure cause or censored, otherwise (ti,Ri = 0) when the failure cause
is missing. We have assumed that R = 1 for a censored subject because the censoring status is
always known. We also make the usual assumption about censoring, that is, C is independent of
(T̃ ; D). Additionally, we assume that missingness does not depend on failure causes. Put formally,
P(R = 0|∆,∆ > 0,T) = P(R = 0|∆ > 0,T), a consequence of MAR (missing at random) (Rubin,
1976). With these assumptions, see, for example, Betancur (2013), it can easily be shown that the
observed data log-likelihood function can be written as

L(θ) =
n∑
i=1

2∑
j=1

di j log P(Ti = ti,Di = j) + di∗ log P(Ti = ti) + di0 log P(Ti > ti),

where di j = I(∆i = Di = j), di∗ = I(∆i > 0) and di0 = I(Di = 0). Assuming the factorization
principle that is proposed by the vertical model, the above log-likelihood function can also be written
as

L(θ) =
n∑
i=1

2∑
j=1

di j log P(Di = j |Ti = ti) +
( 2∑
j=1

di j + di∗
)
log P(Ti = ti) + di0 log P(Ti > ti)

=

n∑
i=1

2∑
j=1

di j log P(Di = j |Ti = ti) +
n∑
i=1

δi log P(Ti = ti) + (1 − δi) log P(Ti > ti)

= L(π) + L(λ),

where δi , the censoring indicator, is written as δi =
∑2

j=1 di j + di∗. The log-likelihood function
L(λ) is the standard univariate failure time log-likelihood function. We then transform the censoring
indicator δi into a duration dependent indicator variable, that is, δis =

∑2
j=1 di js + di∗s = dis + di∗s ,
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where di js = 0 when s ≤ ti − 1 and di jti = di j , as well as di∗s = 0 when s ≤ ti − 1 and di∗ti = di∗. It
easily follows that L(λ) can be re-written as

L(λ) =

q∑
i=1

δ(s) log λ(s) + (ns − δ(s)) log(1 − λ(s)),

where δ(s) is the total number of failures at time s regardless of whether the failure causes are known
or unknown, i.e., δ(s) =

∑n
i=1 di js + di∗s . This yields

λ̂(s) =
δ(s)

ns
,

for s = 1, . . . ,q as the MLE for λ(s). Thus, when some of the subjects have failed with missing
failure causes, these subjects, together with subjects with known failure causes, contribute towards
the estimation of total hazards. In the absence of missing failure causes, the missingness indicator
variable falls away so that δ(s) = d(s) =

∑n
i=1 di js , and the model serves as an ordinary nonparametric

competing risks model. The conditional failure type log-likelihood L(π) can be written as

L(π) =

q∑
i=1

d(1s) log π1(s) + d(2s) log(1 − π1(s)).

The MLE of πj(s) is then given by

π̂j(s) =
d(js)
d(s)

,

for s = 1, . . . ,q and j = 1,2. The presence or absence of missing failure causes does not affect
the estimation of relative hazards, because only the subjects with known failure causes contribute
towards their estimation. Clearly, the vertical model can handle competing risks data in the presence
or absence of missing failure causes without any structural adjustment to the model. It is the only
model within the joint distribution of time to failure and failure time framework that can serve as an
ordinary competing risks model as well as a missing failure causes model.
We have demonstrated that this model can accommodate both ordinary competing risks data

without missing failure causes as well as data that comes with missing failure causes. We compare
the proposed model to the MI method (Bakoyannis et al., 2010), the subject of Section 3.

3. The Multiple Imputation Model
The MI model is also premised on the MAR assumption. In essence, the objective is to impute the
failure types for subjects with missing failure causes. This is achieved by modelling the failure type
distribution for the subjects with missing failure causes, i.e., P(∆ = 1|R = 0,∆ > 0,T), followed by
the estimation of the model so that it can be used to impute the missing failure causes. Under the
MAR assumption:

P(∆i = 1|Ri = 0,∆i > 0,Ti) = P(∆i = 1|Ri = 1,∆i > 0,Ti)
= P(∆i = 1|∆i > 0,Ti) = φ(Ti).

It means that the failure type distribution, φ(T), for the subjects with missing failure causes is
the same as the failure type distribution for subjects with complete information regarding failure
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type because the failure type distribution does not depend on whether the subject’s failure type is
known or unknown according to the (MAR) assumption. Therefore, φ(T) can be estimated from the
data for subjects with complete information. Given the nature of the response variable ∆, where
∆ = 1,2, a binomial distribution is the most natural model for φ(T). The steps of the MI model can
be summarized as follows:

1. Let logit(φ(T = t)) = β0 +
∑q

s=1 β1s1s(t), where 1s(t) = 1 when s = t or zero otherwise. Fit
this model to complete cases for whom ∆ > 0 to estimate β = (β0, β11, . . . , β1q)

T .

2. Draw β∗m = (βm0, βm11, . . . , βm1q)
T , from N(β̂, V̂(β̂)). Use

φ̂m(T = t) = 1/exp(β̂m0 + β̂m1t )

to estimate φm(T = t), then, randomly select 1 or 0 from B(1, φ̂m(T = t)), where 1/0 indicates
cause 1/2, to impute the failure types for subjects with missing failure causes. Repeat this
exercise M times to create M complete data sets.

3. For the mth complete data set, compute F̂mj(t), j = 1,2 from (1). Repeat this exercise M times
for each complete data set, and finally compute F̂ j(t), j = 1,2, where F̂ j(t) =

∑M
m=1 F̂mj(t).

The variance expression, for F̂j(t), is given in the Appendix.

4. Application
We apply the model to the Unemployment Duration Data available under the R package Ecdat
(Croissant, 2015) as “UnempDur”. The total sample consists of 3343 subjects where 1073 exit to
full-time employment, 339 exit to part-time employment, and 1255 are censored, 574 subjects failed
with missing failure causes, and 102 were excluded because of incomplete information. Thus, 3241
subjects are considered in the analysis. The time in two-week interval is t ∈ {1,2,3, . . . ,28}. For the
purposes of analysis we consider t ∈ {1,2,3, . . . ,20} by collapsing the event/censoring time t ≥ 20
into one interval because there are relatively few events beyond that time point.
We have applied the proposed model together with the MI method where M = 8. Under the MI

method, each time the missing failure causes have been imputed, an ordinary nonparametric model
(Davis and Lawrance, 1989) is applied to the complete data set to obtain the estimates for the cause-
specific-hazards. These estimates are then fed into (1) to obtain the cumulative incidence function
estimates F̂mj(t) from the mth complete data set. We have displayed the total and relative hazard
estimates from the proposed model and the cause-specific hazard estimates from the MI method.
The standard errors for the cause-specific-hazard estimates are computed from (3) – (5) when the MI
model is assumed.
Recall that the cause-specific-hazards cannot be estimated directly from observed data in the

presence ofmissing failure causes. These quantities can, however, be recovered from this relationship:

ĥj(t) = λ̂(t)π̂j(t).

For example, at time T = 9, the estimate of h1(9) is 0.825 × 0.071 = 0.0585, which compares
favorably with ĥ1(9) = 0.059 according to the MI method. The reason these methods produce almost
identical results is that the missing failure causes are imputed via the φ(T)which is identical to πj(T),
the distribution of relative hazards, as noted by Nicolaie et al. (2015).
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Table 1. Maximum likelihood estimates for the total and relative hazards
from the Vertical Model as well as the cause-specific-hazards estimates
from the MI method (with standard errors).

Model I Model II
(Nonparametric Vertical Model) (MI Method)

π̂1 λ̂ ĥ1 ĥ2

T1 0.752(0.022) 0.154(0.006) 0.116(0.007) 0.038(0.005)
T2 0.761(0.028) 0.129(0.006) 0.098(0.008) 0.031(0.005)
T3 0.763(0.034) 0.113(0.007) 0.085(0.008) 0.028(0.006)
T4 0.727(0.051) 0.057(0.005) 0.042(0.006) 0.015(0.004)
T5 0.748(0.037) 0.121(0.008) 0.091(0.009) 0.029(0.006)
T6 0.762(0.066) 0.045(0.006) 0.035(0.007) 0.011(0.004)
T7 0.779(0.039) 0.129(0.009) 0.101(0.012) 0.029(0.008)
T8 0.625(0.098) 0.039(0.006) 0.024(0.007) 0.015(0.006)
T9 0.825(0.060) 0.071(0.009) 0.059(0.010) 0.012(0.006)
T10 0.060(0.204) 0.020(0.005) 0.011(0.007) 0.009(0.006)
T11 0.838(0.066) 0.061(0.009) 0.052(0.011) 0.009(0.006)
T12 0.700(0.145) 0.029(0.007) 0.020(0.009) 0.009(0.007)
T13 0.756(0.075) 0.091(0.013) 0.068(0.014) 0.024(0.009)
T14 0.833(0.062) 0.112(0.016) 0.093(0.018) 0.019(0.010)
T15 0.864(0.073) 0.079(0.015) 0.069(0.016) 0.010(0.007)
T16 0.769(0.117) 0.093(0.018) 0.071(0.022) 0.022(0.015)
T17 0.889(0.105) 0.065(0.018) 0.058(0.019) 0.007(0.008)
T18 0.778(0.139) 0.065(0.019) 0.051(0.020 0.015(0.012)
T19 0.709(0.081) 0.297(0.038) 0.199(0.049) 0.098(0.041)
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Figure 1. The cumulative incidence function of exit to full-time and part-time employment via the
Missing Causes of Failure Vertical Model, the Complete Case Nonparametric Model, as well as the
MI method.

We have plotted the cumulative incidence function estimates that were derived via the proposed
model (Missing Causes of Failure Vertical Model), the MI method and the Complete Case Non-
parametric model in Figure 1. It can be seen that the cumulative incidence function estimates via
the proposed model and the MI method are almost identical. Therefore, the interpretation is that at
each time point, there are more unemployed subjects that exit to full-time employment than part-time
employment whether we consider the proposed model or the MI method. We also estimated the
cumulative incidence function with the complete cases vertical model and included it in the plot,
and, evidently, the complete cases model understates both the full-time and the part-time cumulative
incidence function estimates.

5. Conclusions
Wehave presented the vertical model Nicolaie et al. (2015) as a nonparametricmodel with a particular
focus on modelling discrete time competing risks data that comes with missing failure causes. This
model is premised on the MAR (missing at random) assumption. We compared the proposed model
to the MI method (Bakoyannis et al., 2010) which also assumes MAR, and found that the two models
compared favorably from the cumulative incidence function plots. One of the advantages of the
proposed model is the ease with which the model is applied in contrast to the comparable MI method,
where the estimation exercise may require some programming. The advantage of the vertical model
over other models within the joint distribution of time to failure and failure type framework, is that
the model, as is, serves both as an ordinary competing risks model as well as a model that can handle
data with missing failure causes.

238 NDLOVU, MELESSE & ZEWOTIR



Appendix
In this section, we apply the delta method to determine the expression of standard errors for the
cumulative incidence function estimates. This expression is given by

V(F̂j(t)) =
q∑
s=1

Var
(
S(s − 1)λ(s)πj(s)

)
+ 2

q−1∑
s=1

q∑
k=s+1

Cov
(
S(s − 1)λ(s)πj(s),S(k − 1)λ(k)πj(k)

) ����
θ=θ̂

.

Let
Qs

(
λ1, . . . , λs−1, λs, πj(s)

)
= S(s−1)λ(s)πj(s)

and
Qk

(
λ1, . . . , λs−1, λs, . . . , λk−1, λk, πj(k)

)
= S(k−1)λ(k)πj(k),

where s < k. We begin by computing the partial derivatives:

∂Qs

∂λ(l)
= −

S(s−1)λ(s)πj(s)
1 − λ(l)

l = 1, . . . , s−1,

∂Qs

∂λ(s)
= S(s−1)πj(s),

∂Qs

∂πj(s)
= S(s−1)λ(s).

Now,

V
(
Ŝ(s−1)λ̂(s)π̂j(s)

)
=

s−1∑
l=1

∂Qs

∂λ(l)
V

(
λ(l)

) ∂Qs

∂λ(l)
+

∂Qs

∂λ(s)
V

(
λ(s)

) ∂Qs

∂λ(s)
+

∂Qs

∂πj(s)
V

(
πj(s)

) ∂Qs

∂πj(s)

����
θ=θ̂

=

s−1∑
l=1

(
−

Qs

1 − λ (l)

)2
λ(l)(1 − λ(l))

nl
+

(
Qs

λ(s)

)2
λ(s)(1 − λ(s))

ns

+

(
Qs

πj(s)

)2 πj(s)(1 − πj(s))
d(s)

����
θ=θ̂

=
(
Ŝ(s − 1)λ̂(s)π̂j(s)

)2
( s−1∑
l=1

δ(l)

nl(nl − δ(l))
+
(ns − δ(s))
δ(s)ns

+
(ds − d(js))

d(js)d(s)

)
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and

Cov
(
Ŝ(s − 1)λ̂(s)π̂j(s), Ŝ(k − 1)λ̂(k)π̂j(k)

)
=

s−1∑
l=1

∂Qs

∂λl
V

(
λ(l)

) ∂Qk

∂λl
+
∂Qs

∂λs
V

(
λ(s)

) ∂Qk

∂λs

����
θ=θ̂

=

s−1∑
l=1

(
−

Qs

1 − λ (l)
−

Qk

1 − λ (l)

)2
λ(l)(1 − λ(l))

nl
+

(
−

Qs

λ(s)
Qk

1 − λ(s)

)
λ(s)(1 − λ(s))

ns

����
θ=θ̂

=
(
Ŝ(s − 1)λ̂(s)π̂j(s)Ŝ(k − 1)λ̂(k)π̂j(k)

) ( s−1∑
l=1

δ(l)

nl(nl − δ(l))
−

1
ns

)
.

We have assumed that Cov(λ(l), πj(m)) = 0, because

∂L(θ)

∂λ(l)∂πj(m)
= 0

for j = 1,2; l = 1, . . . ,q; m = 1, . . . ,q.
The variance V̂(Γ̂), where Γ̂ is estimated via the MI method i.e.,

Γ̂ =

∑M
m=1 Γ̂m

M
,

is a combination of within imputation variance WV and between imputatation variance BV , that is

V̂(Γ̂)) = WV + (1 + M−1)BV , (3)

WV =
1
M

M∑
m=1

V̂(Γ̂m), (4)

BV =

M∑
m=1

(Γ̂m − Γ̂)(Γ̂m − Γ̂)
T

M − 1
. (5)

The variance of F̂j(t) is, therefore,

V̂(F̂j(t)) =
1
m

M∑
m=1

V̂(F̂mj(t)) +
M∑
m=1

(F̂mj(t) − F̂ j(t))(F̂mj(t) − F̂ j(t))
T

M − 1
.
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