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The Poisson distribution has a large number of applications and is often used as a model
in both a practical and a theoretical setting. As a result, various goodness-of-fit tests have
been developed for this distribution. In this paper, we compare the finite sample power
performance of ten of these tests against a wide range of alternative distributions for various
sample sizes. The alternatives considered include, seemingly for the first time, weighted
Poisson distributions. A number of additional tests are of historical importance although their
power performance is not competitive against the remaining tests. These tests are discussed,
but their powers are not included in the numerical analysis.

The Monte Carlo study presented below indicates that the test with the best overall power
performance is the test of Meintanis and Nikitin (2008), followed closely by the test of Rayner
and Best (1990) (originally studied in Fisher, 1950).
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1. Introduction
Since its initial publication nearly 200 years ago, the Poisson distribution has been widely used to
model count data in a range of different disciplines; see Poisson (1828). It is often of practical interest
to test whether or not a realised dataset is compatible with the assumption of being realised from the
Poisson distribution. This paper provides a review of the various tests for the Poisson distribution.
Special attention is paid to the finite sample power performance of several of the tests.
The most recent reviews of tests for the Poisson distribution can be found in Gürtler and Henze

(2000) and Karlis and Xekalaki (2000), both of which were published two decades ago. While
Gürtler and Henze (2000) provide an in depth review of the theoretical aspects of the tests for the
Poisson distribution, Karlis and Xekalaki (2000) include an extensive comparison between the power
performance of the various tests considered. A number of new tests have been introduced into the
statistical literature since the publication of these reviews. The current paper compares the power
performance of these tests to that of the more powerful classical tests. Additionally, there exists
a number of tests that are of historical importance which are not competitive in terms of power
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performance. These tests are discussed in this paper, but omitted from the Monte Carlo study
presented in Section 3.
The popularity of the Poisson distribution has motivated a large body of research relating to

generalisations and modifications of this distribution; see Haight (1967), Patil and Joshi (1968) and
Johnson et al. (2005) for extensive lists and discussions of these generalisations. The mentioned
generalisations provide practitioners with a number of more flexible alternatives to use in cases
where the Poisson assumption is rejected. A popular generalisation is the class of so-called weighted
Poisson distributions (described below in Section 3.1). We are unaware of any published results
relating to the power of goodness-of-fit tests against these alternatives. In the Monte Carlo study
included in this paper, the powers of the various tests are compared for a variety of alternatives,
including weighted Poisson alternatives.
The remainder of this paper is structured as follows. Section 2 describes the general hypothesis

testing framework used throughout. Additionally, this section provides an overview of the various
tests for the Poisson distribution that are available. Section 3 contains the results of a Monte Carlo
power study used to compare the powers of the various tests considered. Two numerical examples
are included in Section 4, while Section 5 presents the conclusions. Additional numerical results are
available in the appendix.

2. Tests for the Poisson distribution
Let X1,X2, ...,Xn be a sequence of independent and identically distributed (i.i.d.) realisations of
a random variable X taking on values in the non-negative integers. Let F denote the distribution
function (df) of X . Let Fλ be the Poisson distribution function with mean λ > 0;

Fλ(x) = e−λ
x∑
j=0

λ j

j!
, for x ∈ {0,1, ...},

and let fλ be the corresponding probability mass function (pmf);

fλ(x) =
e−λλx

x!
, for x ∈ {0,1, ...}.

The composite goodness-of-fit hypothesis to be tested is as follows:

H0 : F (x) = Fλ(x), for x ∈ {0,1, ...} and for some λ > 0, (1)

against general alternatives.
Below we consider various goodness-of-fit tests available in the literature for testing the hypothesis

in (1). The tests considered are based on numerous characterisations of the Poisson distribution,
including the pmf, the df, the integrated df and the probability generating function. For an overview
of the role of characterisations of distributions in the construction of goodness-if-fit tests, see, for
example, Meintanis (2016) and Nikitin (2019).
Several of the tests considered contain a tuning parameter. Typically, when proposing a new test,

authors recommend a value for the tuning parameter in question. Another possibility is to choose
the value of this parameter data-dependently; see, for example, Allison and Santana (2015). In this
paper, we opt to use the values recommended in the literature for tests containing a tuning parameter.
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2.1 Tests based on moments
A distribution is said to be equidispersed if the expected value and the variance of the distribution are
equal. It is well-known that the Poisson class of distributions possesses this property. A number of
tests have been based on the property of equidispersion. Note that this property does not characterise
the Poisson distribution; meaning that tests based on this property are not consistent. In spite of this
shortcoming, these tests remain popular.
Below, we provide an overview of tests based on equidispersion as well as other moment charac-

teristics.

2.1.1 Tests based on the Fisher index (FI)
One of the first articles concerned with the discrepancy between the mean and variance of a random
sample realised from a Poisson distribution is Fisher (1950). As a result, the ratio of the sample
variance S2 and the sample mean X is known as Fisher’s index of dispersion or the Fisher index (FI);

FI =
S2

X
, with X =

1
n

n∑
j=1

Xj, S2 =
1
n

n∑
j=1

(
Xj − X

)2
.

Note that some authors also define the FI to be

(n − 1)
S2

X
.

For an in depth discussion of the sampling distribution of the FI, see Anderson and Siddiqui (1994).
The Fisher index is typically used as a two sided test statistic for the Poisson distribution. Due to its

widespread use, the properties of the FI have been examined in a number of papers, including Selby
(1965), Anderson and Siddiqui (1994), Bartko et al. (1968), Dahiya and Gurland (1969), Potthoff
and Whittinghill (1966), Collings and Margolin (1985), Soo Kim and Park (1992), Perry and Mead
(1979) and Kharshikar (1970). Furthermore, the power of this test against a range of alternative
distributions is presented in Bateman (1950) and Darwin (1957).
A count distribution is said to be overdispersed (underdispersed) if its variance exceeds (is less

than) its mean. Historically, FI has often been used as a diagnostic tool to determine whether or
not a distribution is over or underdispersed. Large (Small) values of the sample FI have often been
presented as evidence for overdispersion (underdispersion) in the distribution from which the data
are realised. See Henze and Klar (1996) for an explanation of the erroneous conclusions that this
approach may elicit. In order to discourage the use of the FI in this manner, the authors argue for the
use of the following rescaled versions of the FI:

S∗ =
n2X (FI − 1)2∑n

j=1

{(
Xj − X

)2
− Xj

} ,
and

U2 =
n
2
(FI − 1)2 , (2)

respectively, with U2 initially proposed in Rayner and McIntyre (1985). In both cases, the null
hypothesis of the Poisson distribution is rejected for large values of the test statistic. Note that U2 is
closely related to the Neyman smooth test for Poissonity; see Rayner and Best (1990).
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Other test statistics based on the Fisher index have also been proposed; see Böhning et al. (1994),
Potthoff and Whittinghill (1966) as well as Zelterman and Chen (1988). Additionally, a test based on
the difference between the sample mean and variance is proposed in De Oliveira (1963). A correction
to the limit null distribution derived in De Oliveira (1963) can be found in Böhning et al. (1994).

2.1.2 Tests based on other moments
Pettigrew andMohler (1967) propose a test based on the moments of the Poisson distribution. Unlike
the tests mentioned above, this test can be implemented using the higher ordermoments of the Poisson
distribution. However, Pettigrew and Mohler (1967) recommend the use of lower order moments as
this is found to reduce the variability of the statistic. The proposed statistics are

Zp =
kp−X√

var(kp |X)
, p = 2,3,4, (3)

where kp is the pth sample cumulant and var
(
kp |X

)
is the variance of the pth cumulant given the

sample mean. For p = 2, this statistic reduces to

Z2 = S2−X√
2nX(nX−1)

n
√

n − 1 . (4)

Another test which depends on higher order moments was proposed in Gupta et al. (1994):

T =
1
2

√
n

1 + 24X + 6X
2

m2
(
m4 − 3m2

2
)
− m3

X
2 , (5)

where mj denotes the j th sample moment. The test statistics in (3), (4) and (5) are asymptotically
standard normal and are rejected for both large and small values of the test statistics.
Finally, we mention the test proposed in Kyriakoussis et al. (1998). This test is based on the second

product moment of a distribution.

2.2 Chi square tests
Below, we provide a discussion of the well-known chi-square test and its variations as these pertain to
the Poisson distribution. Although this test is of historical importance, it does not provide particularly
high powers against the majority of alternatives to the Poisson distribution. As a result, the powers
associated with this test are not included in the power study presented below.
The chi-square test easily lends itself to testing for the discrete distributions. This test requires that

the data be split into k "bins" or groups before the test statistic can be computed. The test statistic is
given by

χ2 =

k∑
j=0

(
O j − Ej

)2

Ej
,

where Ej denotes the expected number of observations in the j th category under the null hypothesis
and O j denotes the observed number of observations in this category. A natural first choice for the
bins is to consider each non-negative integer as a bin. However, for the test to be asymptotically
valid, the expected number of observations in each bin must not be too small. This requires that
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several integers, especially in the tails of the distribution, be grouped together when these bins are
constructed. It is well known that the power of the test is a function of the choice of the bins used.
In order to overcome the problems associated with the choice of the bins, Nass (1959) proposed

an alternative test statistic. Let n denote the sample size and let m denote the sample maximum. The
proposed test statistic is

N =
∑m

j=0 E
−1
j O2

j−n−m+1√
m−1
m

(
2m− (m−1)2+2m

n +
∑m

j=0 E
−1
j

) .

This statistics eliminates the subjectivity associated with the choice of the bins used. The asymptotic
null distribution of this test statistic is standard normal and the null hypothesis is rejected in the case
of small and large values of N .
A range of similar tests exist in the literature, see Neyman and Pearson (1933), Freeman and Tukey

(1950) and the likelihood ratio test in Horn (1977). Read and Cressie (1988) propose a general test
which includes all of these tests as special cases. Their test statistic is given by

I(a) =
1

a (a + 1)

m∑
j=0

Ej

((
O j

Ej

)a+1
− 1

)
,

where a ∈ R is a tuning parameter. In the numerical results reported in Section 3, we use a = 5, in
accordance with the recommendations made in Read and Cressie (1988).

2.3 Tests based on the empirical distribution function
We now turn our attention to several classical goodness-of-fit tests based on the empirical df.
Specifically, we consider the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling tests.
Each of these tests are based on a specific distance measure between the fitted Poisson distribution
function and its empirical counterpart. The fitted df is given by Fλ̂, which denotes the df of the
Poisson with estimated parameter λ̂ = X (note that we use this notation for the estimated value of λ
throughout). The empirical df is

Fn (x) =
1
n

n∑
j=1

I(Xj ≤ x),

where I(·) denotes the indicator function.

2.3.1 The Kolmogorov-Smirnov test
The celebrated Kolmogorov-Smirnov test statistic is

KS = sup
��Fλ̂ (

X(j)
)
− Fn

(
X(j)

) �� , (6)

see Kolmogorov (1933). The assumption of Poissonity is rejected for large values of KS.
The Kolmogorov-Smirnov test was originally proposed for continuous distributions, but was later

extended to discrete distributions, see Conover (1972). Campbell and Oprian (1979) develop an
approximation to the Kolmogorov-Smirnov test specifically in the case of the Poisson distribution.
The authors also provide a series of tables which could be used in order to perform the test for various
values of the parameter estimate of the Poisson distribution. Henze (1996) overcame the need for the
use of these tables using critical values based on a bootstrap procedure.
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2.3.2 The Cramér-von Mises test (CM)
Cramér (1928) and Von Mises (1928) proposed a non parametric goodness-of-fit test for continuous
distributions. Choulakian et al. (1994), extended this test to discrete distributions. Modified versions
of the test statistic, specifically for use in testing the hypothesis of Poissonity, are provided in Spinelli
and Stephens (1997) as well as Henze (1996). The Cramér-von Mises test statistic is given by

CM =
1
n

∞∑
j=0
(Fλ̂( j) − Fn( j))2 fλ̂( j). (7)

The critical values of CM are typically estimated using simulation; see Spinelli and Stephens (1997).
A commonly used reweighted version of the of the Cramér-von Mises test statistic, known as the

Anderson-Darling statistic, is given by

AD =
1
n

∞∑
j=0

[Fλ̂( j) − Fn( j)]2 fλ̂( j)
F ( j) (1 − F ( j))

. (8)

The Anderson-Darling test is more sensitive to deviations from the Poisson in the tails of the
distribution than is the case for the Cramér-von Mises. Both of these tests reject the hypothesis that
an observed dataset is realised from a Poisson distribution for large values of the test statistics.
Note that computing the test statistics in (7) and (8) require the calculation of an infinite sum.

In order to practically implement these tests, the test statistics are approximated by calculating the
sum for a finite number of terms. Let M denote the upper summation limit of this finite sum. In
Karlis and Xekalaki (2000), the value of M is chosen such that the probability of observing a sample
observation exceeding M is no more than 10−4. The powers reported in Section 3 are obtained by
setting M = 100, which corresponds to the inclusion of a substantially greater number of terms than
that which is recommended in Karlis and Xekalaki (2000).

2.3.3 The test of Klar (1999)
Klar (1999) proposes the use of the sum of the absolute differences between the theoretical and
empirical distribution functions as a test statistic. This test statistic can be expressed as

L =
√

n
n∑
j=1

���F (
X(j)

)
− F̂

(
X(j)

) ��� . (9)

The null hypothesis is rejected for large values of L. Klar (1999) estimates the critical value of L
using simulation.

2.4 A test based on the integrated distribution function
In addition to the test based on the df, Klar (1999) also proposes a test statistic which is similar in form
to the Kolmogorov-Smirnov test. However, this test statistic is based on the supremum difference
between the integrated df and its empirical counterpart. Let

Ψ (t) =
∫ ∞

t

(1 − F (x)) dx,
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be the integrated df and let

Ψn (t) =
1
n

n∑
j=1

(
Xj − t

)
I(Xj>t),

denote the empirical integrated df. The proposed statistic is given by

ID = supt≥0
√

n |Ψ (t) − Ψn (t)| , (10)

which rejects the null hypothesis for large values. Klar (1999) estimate the critical value of ID
using simulation. Gürtler and Henze (2000) show that this test is powerful and outperforms the
Kolmogorov-Smirnov and Cramér-von Mises type tests against the majority of alternative distribu-
tions considered.

2.5 Tests based on the probability generating function (pgf)
Let

g (t) = E
(
tX

)
, t ∈ [−1,1],

denote the pgf of a general count distribution. The pgf of a Poisson(λ) distribution is given by

gλ (t) = exp(λ(t − 1)), t ∈ [−1,1].

The empirical counterpart of the pgf is

gn (t) =
1
n

n∑
j=1

tXj , t ∈ [−1,1].

Below, we consider several goodness-of-fit tests based on these quantities.

2.5.1 The test of Rueda et al. (1991)
Based on ideas originally proposed in Kocherlakota and Kocherlakota (1986), Rueda et al. (1991)
use the squared differences between the fitted pgf and the empirical pgf, integrated over the range of
the support of these functions;

R =

∫ 1

0

(√
n
(
gn (t) − gλ̂ (t)

) )2
dt

=
1
n

n∑
i=1

n∑
j=1

1
Xi + Xj + 1

− 2e−λ̂
n∑
i=1

T
(
Xi, λ̂

)
+ n

1 − e−2λ̂

2λ̂
, (11)

where T (x, λ) =
∫ 1

0 txeλtdt. The statistic in (11) rejects the hypothesis of Poissonity for large values.

2.5.2 The test of Baringhaus et al. (2000)
Baringhaus et al. (2000) further generalise the statistic in (11) via the inclusion of a weight function
in the integral. The resulting statistic is given by

Ra = n
∫ 1

0

(
gn (t) − gλ̂ (t)

)2 tadt.
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A convenient computational form for Ra, provided in Gürtler and Henze (2000), is

Ra = n
∞∑
j=0

∞∑
k=0

( (
fn ( j) − fλ̂ ( j)

) (
fn (k) − fλ̂ (k)

)
j + k + a + 1

)
, (12)

where fn(x) = n−1 ∑n
j=1 I(Xj = x). The null hypothesis is rejected for large values of Ra. The

asymptotic critical values of Ra are used in order to obtain powers in Baringhaus et al. (2000). In
the numerical results presented below, we use a = 5, which is the recommended value of the tuning
parameter.

2.5.3 The test of Baringhaus and Henze (1992)
Baringhaus and Henze (1992) also propose a goodness-of-fit test based on a property of the pgf of the
Poisson distribution. The Poisson distribution is characterised by the following partial differential
equation:

∂

∂t
gλ (t) = λgλ (t) . (13)

Consequently, Baringhaus and Henze (1992) base a goodness-of-fit test on the integrated squared
difference between the empirical versions of the left and right hand sides of (13). The proposed test
statistic is

T = n
∫ 1

0

(
λ̂gn (t) − g′n (t)

)2
dt

=
1
n

n∑
i=1

n∑
j=1

(
λ̂2

Xi + Xj + 1
+

XiXj

Xi + Xj − 1

)
− λ̂

(
n − fλ̂(0)

)
. (14)

This test rejects the null hypothesis for large values of the test statistic.

2.5.4 The test of Treutler (1995)
Treutler (1995) proposes a generalisation of test statistic in (14) via the inclusion of a weight function
incorporated into the integral. The resulting test statistic is

Ta = n
∫ 1

0

(
λ̂gn (t) − g′n (t)

)2
tadt

=
1
n

n∑
i=1

n∑
j=1

(
λ̂2

Xi + Xj + a + 1
−
λ̂

(
Xi + Xj

)
Xi + Xj + a

+
XiXj

Xi + Xj + a − 1

)
, (15)

which rejects the Poisson assumption for large values of the test statistic.

2.5.5 The test of Nakamura and Pérez-Abreu (1993)
Nakamura and Pérez-Abreu (1993) base a test on the following characterisation of the Poisson
distribution;

∂2

∂t2 log (gλ (t)) = 0.
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Based on the squared coefficients of the polynomial g2
n(t)

∂2

∂t2 log(gn(t)), the authors propose the
following test statistic:

V =
1
n3

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

(
Xi

(
Xi − Xj − 1

)
Xk (Xk − Xl − 1) I(Xi+Xj=Xk+Xl)

)
. (16)

Let M = max{X1,X2, ...,Xn} and let #{·} denote the cardinality of a set. Setting

ak =
k+2∑
l=0

l(2l − k − 3)#{i : Xi = l}#{ j : Xj = k + 2 − l},

the test statistic in (16) can be expressed in the following computationally efficient form:

V = n−3
2M−2∑
k=0

a2
k .

Numerical evidence suggests that the limit null distribution of

V∗ =

(
Vn

X
1.45

)
(17)

is approximately independent of λ. As a result, Nakamura and Pérez-Abreu (1993) recommend the
use of this form of the test statistic. V as well as V∗ reject the hypothesis of Poissonity for large
values. Nakamura and Pérez-Abreu (1993) use asymptotic critical values in order to obtain power
estimates for V∗.

2.5.6 The test of Meintanis and Nikitin (2008)
A new class of count distributions, based on a property of the pgf, is defined in Meintanis and Nikitin
(2008). Consider a general count distribution with mean λ and pgf g. Consider the function

D(t, λ) = g′(t) − λg(t).

Let ∆ denote the class of all distributions such that, for all t ∈ [0,1) and all λ ∈ (0,∞), we have that
D(t, λ) = 0 or D(t, λ) < 0 or D(t, λ) > 0. Note that, if the underlying distribution is Poisson with
mean λ, then D(t, λ) = 0 for all t ∈ [0,1). However, from the definition of the class of distributions
∆, it follows that D will be either positive or negative for every alternative distribution contained
within this class.
The proposed test statistic is based on an estimate of D obtained by substituting the sample mean

in the place of λ and estimating the pgf by its empirical counterpart, gn. The proposed test rejects
the hypothesis of Poissonity for small and large values of the test statistic:

MN∗a =
√

n
∫ 1

0
Dn(t,Xn)tadt, (18)

where ta plays the role of a weight function and a > 0 is a tuning parameter. A computationally
tractable expression for (18) is given by

MN∗a = n−1/2
n∑
j=1

(
Xj

Xj + a
−

X
Xj + a + 1

)
. (19)
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Asymptotically, the statistic in (19) is normal with mean 0. The asymptotic variance of MN∗a is

Va(λ) = λ
2ε̃a+2 + λ(λ + 1)ε̃a+2 + 2λ2(εa+2 − εa+1n) − λε

2
a+1,

where εa = E[(X + a)−1] and ε̃a = E[(X + a)−2], and λεa+1 = 1 − aεa and λε̃a+1 = εa − aε̃a.
Using the empirical versions of these quantities, the test statistic can be standardised in order to
ensure that the limit null distribution of the test statistic is standard normal. This is the approach
followed inMeintanis and Nikitin (2008), where critical values are obtained from the standard normal
distribution.
Let V̂a(λ̂) be the estimate of Va(λ) obtained by replacing λ by the sample mean and using the

empirical versions of ε· and ε̃·. In the numerical results presented in the current paper, we use the
test statistic

MNa =
MN∗a

Vn(a)1/2
, (20)

and we obtain critical values via simulation. MNa rejects the null hypothesis for both small and
large values. Meintanis and Nikitin (2008) show that the test described above is consistent against
all alternative distributions contained in ∆.

2.6 Exact tests
Lockhart et al. (2007) propose a general method of constructing so-called exact tests for distributions
admitting a minimally sufficient statistic. The authors propose the use of the Gibbs sampler to
generate samples from the conditional distribution of the sample, given the value of the sufficient
statistic. These samples are referred to as conditional samples.
In the case of a location, scale or location-scale family of distributions, the distribution of a

goodness-of-fit statistic is independent of the underlying parameters of the distribution. As a result,
a single critical value can be used for a given sample size. If, on the other hand, a shape parameter
is present, then the critical value is a function of the (unobserved) value of this parameter. In the
latter case, exact tests are of particular interest, since the conditional distribution of the sample given
the value of the sufficient statistic is independent of the shape parameter. Since λ is, in fact, a shape
parameter in the case of the Poisson distribution, exact tests are of interest. The sum T =

∑n
j=1 Xj is

a minimally sufficient statistic for λ in the Poisson distribution. Given the value of T , the conditional
joint distribution of (X1, ...,Xn) is multinomial(T, (n−1, ...,n−1)). As a result, we can obtain samples
from the conditional distribution of (X1, ...,Xn), given the value of T . A number of so-called exact
tests for the hypothesis of Poissonity have been proposed based on the conditional multinomial
distribution of the sample, given the value of T . These tests are considered below.
Typically, the implementation of tests of this kind are quite computationally expensive, since they

usually require either simulation or exhaustive enumeration of all possible conditional samples. For
a recent simulation study comparing the powers of various exact tests for the Poisson distribution, see
Beltrán-Beltrán and O’Reilly (2019). This paper also explains the details of simulating conditional
samples from the Poisson distribution given an observed value of T .
The finite sample power performance of the exact tests generally fall short of the other more

powerful tests available in the literature and are omitted from the Monte Carlo study presented in
Section 3. For details regarding the asymptotic distribution of the test statistics of exact tests, see
Lockhart (2012).
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2.6.1 The test of Gonzalez-Barrios et al. (2006)
Gonzalez-Barrios et al. (2006) propose the use of the conditional likelihood function as a test statistic
as follows. Given the value of T , one can calculate the conditional likelihood of a given sample
under the null hypothesis of Poissonity. Since the number of possible conditional samples is finite,
one can calculate the likelihood associated with each possible sample and arrange these samples
in decreasing order of likelihood. Fix the nominal significance level of the test, α. If we add the
likelihood function values in decreasing order until we obtain a probability as close as possible to
1 − α, then the remaining samples correspond to the rejection region for the test.
Application of this test requires enumeration of all of the possible samples for a given sample size

and value of T . As a result, this test is extremely computationally expensive.

2.6.2 The test of Frey (2012)
Frey (2012) propose the use of a conditional Kolmogorov-Smirnov type test. The test is based on the
supremum distance between the empirical df and the expected value of this function, given the value
of T . The corresponding test statistic is

D = sup
x∈R
|Fn(x) − E[Fn(x)|T]|

= max
x∈{0,...,t }

������Fn(x) −
x∑
j=0

(
t
j

) (
1
n

) j (
1 −

1
n

) t−j ������ ,
which rejects the null hypothesis for large values. This test is the first test for the Poisson distribution
which offers exact p-values without the need for exhaustive enumeration. This substantially reduces
the computational cost of the test. However, this cost remains substantial compared to other tests.
Frey (2012) includes a power study. This test does not compare favourably to existing tests for the
Poisson distribution, especially in the case where the mean of the alternative distribution is large.

2.6.3 The test of Beltrán-Beltrán and O’Reilly (2019)
Beltrán-Beltrán and O’Reilly (2019) propose two new tests for the Poisson distribution. The first is
a discrete version of an existing test for the skew normal distribution, while the second is closely
related to the test proposed in Gonzalez-Barrios et al. (2006). The latter test differs from the test
of Gonzalez-Barrios et al. (2006) in that it is based on the ratio of (and not an absolute difference
between) two conditional probabilities. The numerator of this ratio is the conditional probability of
the observed sample given T , while the denominator is the conditional probability of the observed
sample given the order statistics. Let oj denote the number of times that the value j occurs in the
observed sample. The resulting test statistic is given by

∆ = n−T
T!∏m

j=0 ( j!)
o j

n!∏m
j=0 oj!

.

The null hypothesis is rejected for small values of ∆.

2.7 Tests based on other characteristics
Below we consider tests based on other characteristics of the Poisson distribution. In addition to
the use of Charlier polynomials, we consider a test based on the average distance between a Poisson
random variable and some integer. Finally, we mention the use of graphical tests.
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2.7.1 Tests based on Charlier polynomials
Ledwina and Wyłupek (2017) explain that a discrete function on the non-negative integers can be
expressed as

fλ(x)

(
1 +

∞∑
r=1

cr
r!

Cr (x; λ)

)
,

where cr is a sequence of constants and

Cr (x; λ) =
∂r fλ(x)
∂λr

1
fλ(x)

.

Cr are referred to as Charlier or Poisson-Charlier polynomials.
Charlier polynomials have been studied in various settings and a number of goodness-of-fit tests

for the Poisson distribution have been developed in the process; see, for example, Best and Rayner
(1999), Rayner and Best (1988) and Ledwina and Wyłupek (2017).

2.7.2 The test of Székely and Rizzo (2004) (SR)
Székely and Rizzo (2004) propose a test for the Poisson distribution based on the mean distance
between a Poisson random variable and some integer value, k. The proposed test statistic is based
on the following characterisation:
Let X be a non-negative, integer valued random variable with finite mean. Denote the pmf of X

by f and the corresponding df by F. X follows a Poisson(λ) distribution if, and only if,

E[k − X] = 2(k − λ)F(k − 1) + 2λ f (k − 1) − (k − λ),

for every non-negative integer k.
Let mk = E[X − k]. The authors show that, if X ∼ Poisson(λ), then the mass function of X can

be expressed as

f (k) =
mk+1 − (k + 1 − λ)(2F(k − 1) − 1)

2(k − 1)
. (21)

The proposed test statistic is a Cramér-vonMises type distance based on an estimate of the df resulting
from (21). This estimate, denoted below by F̂, is obtained upon estimating λ by the sample mean, F
by the empirical df and mk by m̂k =

1
n

∑n
j=1 |k − Xj |. The resulting test statistic is

SR = n
∞∑
j=0
(F̂( j) − Fλ̂( j))

2 fλ̂( j). (22)

This test rejects the assumption of the Poisson distribution for large values of SR. Székely and Rizzo
(2004) use simulation in order to estimate the critical values of SR.

2.7.3 Graphical tests
Many graphical methods have also been developed to detect deviations from the Poisson distribution.
See Lindsay (1986) and Lindsay and Roeder (1992) for two examples of the implementation of these
tests. For an extensive list of graphical tests, see Karlis and Xekalaki (2000).
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3. Numerical results
In this section, we consider and compare the finite sample power performance of ten of the tests
discussed above. Some of the classical tests are included as well as several of the newer tests. Our
aim is to ascertain which of the tests above are powerful against the various alternative distributions
considered. The tests for which numerical results are presented are as follows:

1. a test based on the Fisher Index (U2), see (2),

2. the Kolmogorov-Smirnov test (KS), see (6),

3. the Cramér-von Mises test (CM), see (7),

4. the Cramér-von Mises type test of Klar (1999) (L), see (9),

5. the integrated df based test of Klar (1999) (ID), see (10),

6. the pgf based test of Baringhaus et al. (2000) (Ra), see (12),

7. the pgf based test of Treutler (1995) (Ta), see (15),

8. the pgf based test of Nakamura and Pérez-Abreu (1993) (V∗), see (17),

9. the mean distances test of Székely and Rizzo (2004) (SR), see (22),

10. the test of Meintanis and Nikitin (2008) (MNa), see (20).

Below, we discuss the alternative distributions considered before turning our attention to the
bootstrap methodology used in order to implement the tests. Finally, we include a comparison of the
various tests considered.

3.1 Alternative distributions
We compare the power of the tests considered against a variety of alternative distributions. One class
of alternatives used is the so-called weighted Poisson distributions. Early references on this class of
distributions include Fisher (1934) and Rao (1965). For a more recent discussion, see Kokonendji
et al. (2008).
Let w be some function such that w(x) ≥ 0 for x ∈ {0,1, ...} and let X̃ ∼ Poisson(λ). X is said to

be a weighted Poisson random variable, with parameter λ and weight function w, if X has pmf

f (x) =
w(x) fλ(x)
E[w(X̃)]

, x = 0,1, ...,

with

E[w(X̃)] =
∞∑
j=0

w( j) fλ(x) < ∞.

In this paper, we limit our attention to the case where the weight function is a second degree
polynomial;

w(x) = ax2 + bx + 1.
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Table 1. Alternative distributions considered.

Alternative distribution Mass function Notation

Discrete uniform (b − a + 1)−1 DU(a, b)

Binomial
(m
x

)
px (1 − p)x Bin(m, p)

Negative binomial
(r+x−1

x

)
pr (1 − p)x NB(r, p)

Poisson mixtures (x!)−1 {
pλx1 e

−λ1 + (1 − p) λx2 e
−λ2

}
PM(p, λ1, λ2)

Generalised Poisson (x!)−1λ1 (λ1 + xλ2)
x−1 exp(− (λ1 + xλ2)) GP(λ1, λ2)

Zero inflated Poisson
(
p x!
e−λλx I (x = 0) + 1 − p

)
e−λλx

x! ZIP(p, λ)

Weighted Poisson (y!)−1λyexp(−λ) ay2+by+1
a(λ+λ2)+bλ+1 WP(λ,a, b)

The pmf of this weighted Poisson distribution is available in closed form and is provided in Table 1.
Table 1 also contains the mass functions of each of the remaining alternative distributions used

in the Monte Carlo study presented below. Note that each of the distributions listed in Table 1 has
support {0,1, ...}, with two exceptions. Using the notation used in the table, the discrete uniform and
binomial distributions have supports {a,a + 1, ..., b} and {0,1, ...,m}, respectively.

3.2 Power calculations
The null distribution of the test statistics considered depend on the value of the unknown shape
parameter, λ. As a result, we use a parametric bootstrap procedure in order to perform power
calculations. In order to ease the computational burden associated with the parametric bootstrap, we
use the warp-speed method proposed in Giacomini et al. (2013) in order to approximate the power
of each of the tests considered against various alternative distributions. Let MC be the number of
Monte Carlo replications used. The warp-speed bootstrap is implemented as follows. (The algorithm
provided below is adapted from Allison et al. (2019).)

1. Obtain a sample X1, . . . ,Xn from a distribution, say F, and estimate λ by λ̂ = 1
n

∑n
j=1 Xj .

2. Calculate the test statistic, S = S(X1, . . . ,Xn), say.

3. Generate a bootstrap sample X∗1 , . . . ,X
∗
n by independently sampling from a Poisson(λ̂) dis-

tribution and calculate the value of the test statistic for the bootstrap values, that is, S∗ =
S(X∗

n,1, . . . ,X
∗
n,n).

4. Repeat Steps 1 to 3 MC times to obtain S1, . . . ,SMC and S∗1, . . . ,S
∗
MC , where Sm denotes the

value of the test statistic calculated from the mth sample data generated in Step 1, and S∗m
denotes the value of the bootstrap test statistic calculated from the single bootstrap sample
obtained in the mth iteration of the Monte Carlo simulation.

5. To obtain the power approximation, reject the null hypothesis for the ith sample whenever
Si > S∗

( bMC ·(1−α)c), i = 1, . . . ,MC, where S∗
(1) ≤ . . . ≤ S∗

(MC)
are the ordered values of the

statistics obtained from the bootstrap samples and b·c denotes the floor function.
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The algorithm described above is less computationally demanding than the traditional parametric
bootstrap methodology described in Gürtler and Henze (2000) in which a separate bootstrap loop is
used.
Below we consider power estimates of the ten tests against the alternative distributions in Table 1

using the warp-speed bootstrap. The reported power estimates are based on 50 000 replications in
each case. The sample sizes considered are n = 30,50,100,200. As is to be expected, the powers
of the tests generally increase with sample size. However, the comparative performances of the tests
do not seem to depend on sample size; i.e., if a test is relatively powerful against a given alternative
for a small sample, then it is also relatively powerful against that alternative for a large sample. As
a result, we discuss only the results obtained for n = 50 in the main text. The estimated powers
associated with n = 30,100,200 can be found in the Appendix. A nominal significance level of 5%
is used throughout.
The entries in the tables of power estimates show the percentage of samples for which the null

hypothesis is rejected, rounded to the nearest integer. The highest power against each alternative is
printed in bold in order to ease comparison.
The second column of each of the power tables contains the Fisher index of the distribution. The

distributions in the tables are arranged according to this index. First we consider the equidispersed
distributions, including the Poisson distribution for various values of λ. The Poisson is included in
order to compare the sizes of the tests. After considering the equidispersed distributions, we examine
the underdispersed alternatives. Finally we turn our attention to the overdispersed alternatives.
Consider the powers presented in Table 2. Note that, under the null hypothesis, each of the tests

considered keep the nominal significance level of the test closely. This phenomenon is also observed
in the additional power tables presented in the Appendix.
The majority of the tests do not provide high power against the two equidispersed distributions

considered. The tests providing the highest powers against these distributions are L, V and SR.
When turning our attention to underdispersed alternatives, we see that, generally, the MN test is most
powerful, followed by the T and SR tests. The numerical results indicate that D provides the highest
power against overdispersed alternatives, followed by KS, CM and V . Although the MN test does
not outperform all of its competitors against any of the overdispersed distributions considered, this
test provides relatively high powers against these distributions throughout. Based on the discussion
above as well as the simple asymptotic null distribution of the MN test, we recommend the use of
this test in the case where high power is desired against a wide range of alternative distributions.

4. Practical applications
Below, we use the tests considered in Section 3 to test the hypothesis that each of two observed
datasets are realised from a Poisson distribution. The first dataset exhibits underdispersion, while
the second dataset is overdispersed. For each dataset, we use the classical parametric bootstrap
procedure, detailed in Section 3 of Gürtler and Henze (2000), to estimate the p-values of the tests.
Each reported p-value in this section is based on 1 million bootstrap replications. The datasets are
discussed below and Table 4 provides the calculated test statistic and estimated p-value associated
with each test for both examples.
The first dataset, originally published in Zar (1999) and analysed again in Gürtler and Henze
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Table 2. Estimated powers for sample size n = 50.

Distribution FI U2 KS CM L ID Ra Ta V∗ SR MNa

Poisson(0.5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(1) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(10) 1.00 5 5 5 5 5 5 5 5 5 5
DU(0,4) 1.00 1 9 9 54 33 60 18 74 53 6
WP(1,1,−1) 1.00 4 7 7 21 18 16 8 15 21 6

DU(0,2) 0.67 37 29 31 52 53 59 67 75 52 33
WP(1,2,1) 0.68 40 45 46 30 13 34 41 15 30 47
WP(1,1,1) 0.75 23 26 27 19 7 21 25 8 19 28
Bin(4,0.25) 0.75 18 22 23 18 5 18 22 5 18 25
Bin(20,0.25) 0.75 21 20 19 17 7 18 23 8 17 24
WP(1,1,0) 0.83 10 11 11 13 5 12 14 6 13 11
Bin(10,0.1) 0.90 5 7 7 7 3 6 7 2 7 7
Bin(50,0.1) 0.90 6 6 6 6 4 6 7 4 7 7

PM(0.01,1,5) 1.03 6 7 7 5 5 6 5 6 5 6
NB(9,0.9) 1.11 11 9 9 7 10 8 8 11 7 9
NB(45,0.9) 1.11 10 10 9 7 8 9 9 10 6 9
PM(0.05,1,5) 1.16 15 23 23 8 8 13 12 12 8 20
DU(0,5) 1.17 11 42 41 66 48 74 40 83 66 34
GPD(4,0.1) 1.24 23 21 20 11 14 18 19 19 11 19
PM(0.5,3,5) 1.25 24 23 22 13 16 20 21 21 13 22
ZIP(0.9,3) 1.30 31 47 47 22 38 31 30 32 21 42
NB(15,0.75) 1.33 36 32 32 17 21 28 30 29 17 30
NB(3,0.75) 1.33 35 30 30 19 30 25 27 32 19 31
DU(0,6) 1.33 37 75 74 79 64 87 66 91 79 68
NB(2,2/3) 1.50 54 48 49 35 47 42 44 50 34 48
NB(10,2/3) 1.50 57 54 54 30 35 47 50 48 30 52
ZIP(0.8,3) 1.60 75 89 89 68 90 79 78 79 67 86
PM(0.5,2,5) 1.64 77 77 76 55 61 71 74 70 55 75
NB(1,0.5) 2.00 86 81 82 74 82 77 78 82 73 83
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Table 3. Annual number of deaths due to horsekick in the Prussian army.

Count 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Frequency 1 1 2 2 1 1 2 1 3 1 0 1 2 0 1 1

Table 4. P-values of the tests under consideration.

Sparrows Horsekicks
Test Statistic p value Statistic p value

U2 1.59 0.19 7.63 0.01
KS 0.48 0.09 0.70 0.05
CM 0.24 0.03 0.14 0.10
L 1.36 0.07 5.09 0.02
I 0.68 0.05 2.48 0.01
R 0.00 0.10 0.00 0.01
T 0.02 0.09 0.21 0.01
V∗ 2.30 0.22 6.05 0.03
SR 0.24 0.03 0.14 0.10
MN 0.09 0.11 −0.13 0.02

(2000), recorded the number of sparrow nests found on 40 one hectare plots. Of these, 9 areas
showed no nests, 22 areas showed one, 6 areas showed two, 2 areas showed three, and the remaining
area contained four nests. The sample mean and variance of the data are 1.1 and 0.81, respectively,
resulting in a sample Fisher index of 0.74.
The second dataset consists of the annual number of deaths due to horsekick in the Prussian army

between 1875 and 1894. These data were analysed in Bortkiewicz (1898) as well as Gürtler and
Henze (2000). For this dataset, the samplemean and variance are 9.8 and 19.33 respectively, meaning
that the sample Fisher index is 1.97. The observed frequencies are reported in Table 3.
Consider the p-values associated with the first example in Table 4. Only the CM and SR tests

reject the assumption of Poissonity at a 5% level of significance. In contrast to the first example, the
majority of the tests considered reject the null hypothesis in the second example at the 5% level.

5. Conclusions
In this paper, we consider a large number of tests for the Poisson distribution. These tests are
based on various characteristics of this distribution, including the moments of the distribution, the
distribution function, the integrated distribution function, and the probability generating function,
the mean distance between a Poisson random variable and some integer and the joint distribution of
the sample given its sum.
We compare the finite sample performance of ten different tests, using a warp-speed bootstrap

methodology, against a wide range of alternatives. The list of alternatives considered include the
class of weighted Poisson distributions, seemingly for the first time. The alternatives considered
include several overdispersed as well as underdispersed distributions. The most powerful test against
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underdispersed alternatives is found to be the test of Meintanis and Nikitin (2008), while the test of
Rayner and Best (1990) (originally studied in Fisher, 1950) proves to be the most powerful against
overdispersed alternatives. When the aim is to achieve substantial power against a large variety of
deviations from the Poisson distribution, we recommend the use of the test of Meintanis and Nikitin
(2008).
Several additional tests which lack power but are of historical importance are discussed but not

included in the power study. Two practical applications are also included in the paper.

6. Appendix
The estimated powers for the various tests considered are provided for sample sizes n = 30,100,200
in Tables 5, 6 and 7, respectively.
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Table 5. Estimated powers for sample size n = 30.

Distribution FI U2 KS CM L ID Ra Ta V∗ SR MNa

Poisson(0.5) 1.00 5 4 4 5 5 4 4 5 5 5
Poisson(1) 1.00 5 5 5 5 5 4 5 5 5 5
Poisson(5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(10) 1.00 5 5 5 5 5 5 5 5 5 5
DU(0,4) 1.00 2 6 6 32 19 34 10 43 32 4
WP(1,1,−1) 1.00 4 6 6 13 11 10 6 10 13 5

DU(0,2) 0.67 18 18 18 28 29 33 38 29 28 19
WP(1,2,1) 0.68 22 27 27 20 8 20 26 6 19 30
WP(1,1,1) 0.75 12 16 17 13 5 12 16 4 13 18
Bin(4,0.25) 0.75 11 15 15 13 4 11 14 2 13 15
Bin(20,0.25) 0.75 12 12 11 12 6 11 15 4 11 14
WP(1,1,0) 0.83 6 8 8 10 4 8 10 3 10 9
Bin(10,0.1) 0.90 4 5 5 6 3 5 6 2 6 6
Bin(50,0.1) 0.90 5 5 5 6 4 5 6 3 6 6

PM(0.01,1,5) 1.03 6 7 7 5 5 6 5 6 5 6
NB(9,0.9) 1.11 10 8 8 6 9 7 7 10 6 8
NB(45,0.9) 1.11 9 9 8 6 7 8 7 9 6 7
PM(0.05,1,5) 1.16 12 18 18 7 7 10 10 11 7 15
DU(0,5) 1.17 8 26 27 41 31 47 22 56 40 21
GPD(4,0.1) 1.24 17 16 15 8 11 13 13 16 8 13
PM(0.5,3,5) 1.25 18 17 17 9 13 15 14 17] 10 16
ZIP(0.9,3) 1.30 23 33 33 14 26 21 19 24 14 29
NB(15,0.75) 1.33 26 24 23 12 16 20 20 23 12 21
NB(3,0.75) 1.33 25 20 21 13 21 18 18 25 14 21
DU(0,6) 1.33 24 54 54 54 44 62 43 68 53 47
NB(2,2/3) 1.50 39 34 34 23 34 28 31 39 23 36
NB(10,2/3) 1.50 42 39 38 20 25 34 34 36 19 35
ZIP(0.8,3) 1.60 55 71 71 44 70 56 55 59 44 67
PM(1/2,2,5) 1.64 57 57 57 35 41 49 52 52 35 55
NB(1,1/2) 2.00 69 62 63 53 64 56 58 67 53 65
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Table 6. Estimated powers for sample size n = 100.

Distribution FI U2 KS CM L ID Ra Ta V∗ SR MNa

Poisson(0.5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(1) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(10) 1.00 5 5 5 5 5 5 5 5 5 5
DU(0,4) 1.00 1 18 16 88 68 94 45 99 88 10
WP(1,1,−1) 1.00 4 10 9 40 32 35 13 29 40 7

DU(0,2) 0.67 82 60 62 92 97 97 98 100 92 69
WP(1,2,1) 0.68 73 78 78 57 27 67 74 43 57 78
WP(1,1,1) 0.75 47 51 51 34 14 41 46 21 34 51
Bin(4,0.25) 0.75 45 46 46 35 11 36 43 17 35 49
Bin(20,0.25) 0.75 45 41 40 30 13 36 44 22 30 45
WP(1,1,0) 0.83 20 18 18 22 6 21 24 12 22 20
Bin(10,0.1) 0.90 8 10 10 8 3 8 9 3 8 10
Bin(50,0.1) 0.90 9 9 9 8 4 8 10 5 8 10

PM(0.01,1,5) 1.03 6 8 8 6 5 6 6 6 5 7
NB(9,0.9) 1.11 15 12 12 9 14 10 11 13 8 12
NB(45,0.9) 1.11 14 13 13 8 10 11 12 12 8 12
PM(0.05,1,5) 1.16 22 35 36 11 11 20 19 18 11 31
DU(0,5) 1.17 19 72 70 95 81 98 74 99 95 61
GPD(4,0.1) 1.24 36 32 32 17 22 29 31 27 18 31
PM(0.5,3,5) 1.25 40 37 37 22 26 33 36 31 22 36
ZIP(0.9,3) 1.30 51 73 72 38 68 55 54 52 39 68
NB(15,0.75) 1.33 57 53 52 30 35 47 50 45 30 52
NB(3,0.75) 1.33 54 49 50 35 47 41 46 47 34 50
DU(0,6) 1.33 63 96 95 98 93 100 94 100 98 93
NB(2,2/3) 1.50 79 74 75 60 72 68 71 71 61 75
NB(10,2/3) 1.50 83 80 80 53 58 73 77 71 54 78
ZIP(0.8,3) 1.60 95 99 99 94 100 98 98 97 94 99
PM(0.5,2,5) 1.64 96 96 96 86 88 94 95 92 86 96
NB(1,0.5) 2.00 99 98 98 96 98 96 97 97 96 98
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Table 7. Estimated powers for sample size n = 200.

Distribution FI U2 KS CM L ID Ra Ta V∗ SR MNa

Poisson(0.5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(1) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(5) 1.00 5 5 5 5 5 5 5 5 5 5
Poisson(10) 1.00 5 5 5 5 5 5 5 5 5 5
DU(0,4) 1.00 1 37 33 100 99 100 93 100 100 20
WP(1,1,−1) 1.00 4 15 14 74 59 70 28 57 74 10

DU(0,2) 0.67 100 93 94 100 100 100 100 100 100 96
WP(1,2,1) 0.68 96 97 98 88 57 94 96 84 88 98
WP(1,1,1) 0.75 79 81 82 63 29 72 78 54 63 83
Bin(4,0.25) 0.75 81 79 79 64 26 69 75 47 64 80
Bin(20,0.25) 0.75 80 73 73 55 27 68 76 53 55 76
WP(1,1,0) 0.83 40 32 33 40 12 40 44 30 40 36
Bin(10,0.1) 0.90 15 16 16 12 3 13 15 6 13 17
Bin(50,0.1) 0.90 15 15 15 11 5 13 16 8 11 16

PM(0.01,1,5) 1.03 7 9 9 6 5 6 6 6 5 8
NB(9,0.9) 1.11 21 19 19 12 19 16 17 17 12 19
NB(45,0.9) 1.11 21 19 19 11 14 16 18 15 11 17
PM(0.05,1,5) 1.16 35 56 56 18 19 33 33 29 18 53
DU(0,5) 1.17 36 95 94 100 99 100 98 100 100 89
GPD(4,0.1) 1.24 58 53 53 32 36 48 52 43 31 53
PM(0.5,3,5) 1.25 65 61 61 40 44 56 61 51 40 61
ZIP(0.9,3) 1.30 79 95 94 70 94 85 84 81 71 93
NB(15,0.75) 1.33 83 79 79 54 57 74 77 69 53 79
NB(3,0.75) 1.33 80 77 78 61 73 69 73 69 61 78
DU(0,6) 1.33 91 100 100 100 100 100 100 100 100 100
NB(2,2/3) 1.50 96 95 95 89 93 92 94 92 88 96
NB(10,2/3) 1.50 98 97 97 84 85 95 96 93 84 97
ZIP(0.8,3) 1.60 100 100 100 100 100 100 100 100 100 100
PM(0.5,2,5) 1.64 100 100 100 99 99 100 100 100 99 100
NB(1,0.5) 2.00 100 100 100 100 100 100 100 100 100 100
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