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Linear modelling with the objective to predict a future response is ubiquitous in statistical
analysis. Methods such as cross-validation and the bootstrap are well known for estimating the
predictive performance of amodel fitted to i.i.d. data. However, many large-scale surveysmake
use of a complex sampling design where the data are no longer i.i.d. and sampling weights are
assigned to each observation to account for this. This paper shows how the cross-validation
and bootstrap methods need to be adapted to evaluate the predictive performance of the survey-
weighted least squares model. The investigation of the performance of the different prediction
error estimationmethods is evaluated through a simulation study. The Income and Expenditure
Survey 2005/2006 of Statistics South Africa will form the basis of the analysis. The simulation
study will also investigate whether the model’s predictive performance is improved through the
truncation of outlier sampling weights. For this purpose, two new thresholds, viz. the 1.5IQR
and Hill, are introduced. It was found that the bootstrap estimator of prediction error achieved
lower mean squared error while the K-fold cross-validation estimator achieved lower bias.
Further improvement was observed using the 1.5IQR and Hill truncated sampling weights.

Keywords: Bootstrap, Calibration and integratedweighting, Cross-validation, Prediction error,
Survey-weighted least squares, Trimming.

1. Introduction
One of the objectives when statistically modelling data is to develop an accurate model that can be
used to predict the response, based on this relationship, at a given set of covariate values. As a
measure of performance of the linear model in modelling the data, the prediction error (PE) is often
used, i.e. how well, on average over a set of data, does the model predict the response. Naturally
using the same sample data to develop and assess the model will give a distorted impression of the
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model’s predictive capability. However, future observations are unknown and as such not available
for assessment of the linear model (James et al., 2013).
Cross-validation (CV) is a well-known approach, under independent and identically distributed

(i.i.d.) data, for the construction of out-of-sample data sets by splitting the sample data into training
and test sets. The model is developed using the training sets after which it is used to predict the
responses in the test sets. The data in the test sets do not form part of the data used for the development
of the statistical models and thus the test sets are the out-of-sample data sets. At a minimum the
split is done once, viz. validation set (VS) cross-validation, or K times, viz. K-fold cross-validation.
When K = n, viz. the test set contains one observation unit at a time, then it is called leave-one-out
cross-validation (LOOCV) (James et al., 2013).
Consider a finite population of size N with an N-vector of responses, y

U
, and p predictor variables,

x1, . . . , xp , and let xi j represent the value of the ith population element of the jth predictor variable
for i = 1, . . . ,N and j = 1, . . . , p. Due to its ubiquity in applied statistics in the modelling of a
response as a function of covariates, the model often used to define the relationship between the
response and the predictors is assumed to be a linear model,

y
U

= XU β + ε,

where XU is an N × p matrix of population predictors, β is a p-dimensional vector of unknown
regression coefficients and each element of ε has a N(0, σ2) distribution (Lohr, 2010).
This paper considers the estimation of the prediction error of the linear model applied to data

obtained through complex sampling (CS). The cross-validationmethods, i.e. VS,K-fold andLOOCV,
are not well known in complex sampling research, and introducing and evaluating them is the
contribution of this paper. One can also estimate the model’s prediction error using the bootstrap.
As such, and as an alternative to the CV methods, the bootstrap PE method is discussed and then
extended for use under CS. The performance of the bootstrap PE method as a way of evaluating a
model’s predictive capability will be compared to that of the CV methods.
Consider a sample selected through a stratified two-stage cluster design whereby a population has

been stratified into H strata and within stratum h there are Nh primary sampling units (PSUs) of
which nh PSUs are selected. Let the h jth selected PSU contain Nhj secondary sampling units (SSUs)
and suppose a sample of nhj SSUs is selected from this PSU, j = 1, . . . ,Nh and h = 1, . . . ,H. Each
unit in this CS is assigned a design weight, dhji, i = 1, . . . ,nhj, j = 1, . . . ,nh, h = 1, . . . ,H, calculated
as the inverse of the inclusion probability of the h jith unit. It is a number indicating the number of
population units represented by this sampled unit. The design weight is adjusted to compensate for
any non-response in the sample and finally it is benchmarked, through the methods of calibration
and integrated weighting, to the known population totals of certain auxiliary variables to ensure that
the sample is well representative of the target population (Deville and Särndal, 1992; Neethling and
Galpin, 2006; Lohr, 2010). After these weight development stages have been completed the sampling
weights, whji, i = 1, . . . ,nhj, j = 1, . . . ,nh, h = 1, . . . ,H, are obtained. The following is a summary of
the integrated weighting technique used to obtain the sampling weights of a household-based survey.
Define ak as the M-vector of M auxiliary variable values for person k in household hh. For the

person level auxiliary variables, the entries ak are the proportion of members in the household to
which person k belongs, that have the corresponding auxiliary characteristics (e.g. proportion of
males in the household, proportion of females in the household, etc.). For a household level auxiliary
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variable, e.g. dwelling type, define a new variable for each category of the household auxiliary
variable under consideration, e.g. urban and rural. Then the value for the category to which the
household belongs is simply the inverse of the household size, and 0 for all other categories of the
household variable (Neethling and Galpin, 2006).
The integrated weight associated with person k, wk , is formed by minimising a given distance

function between the design weight andwk subject to a set of constraints. Different distance functions
can be used in practice for minimising the distance between the design weight and wk . In this paper
the linear distance and the exponential distance, or raking ratio, will be used (Neethling and Galpin,
2006).
When developing unbiased estimators of general unknown parameters from CS data, the variation

in sample selection and inclusion probabilities necessitate the inclusion of these sampling weights
(Heeringa et al., 2010). Linear modelling of CS data, or survey-weighted least squares modelling
(SWLS), does exactly this, leading to

β̂
SWLS

=
(
X ′W X

)−1 X ′W y,

where X is an n × p matrix of predictors, W is the n × n diagonal sampling weight matrix, with
n = ∑H

h=1
∑nh

j=1 nhj , and y is the n-vector of responses. Note that, even though β̂
SWLS

is similar to the
estimated model coefficients obtained under weighted least squares (WLS) regression, the variance
of β̂

SWLS
is not the same as the variance under WLS. Herein lies the importance of using SWLS

when linearly modelling CS data, since standard errors, confidence intervals and hypothesis tests will
be wrong otherwise (Lohr, 2010).
The weight development process described here could result in outlier sampling weights which,

since the weights are included in the estimation of the SWLS model, could inflate the variability
within the sampling weight distribution and hence have an adverse effect on the precision of the
inference results. It has thus been proposed that the sampling weights be trimmed or smoothed to
reduce this variability. Various procedures for doing this have been proposed in literature. Recent
research by the authors have introduced two new weight trimming thresholds, namely the 1.5IQR
and Hill thresholds, that performed very well in simulation studies (Luus, 2016). These will form
part of the simulation study in Sections 4 and 5.
The purpose of this paper is to estimate the prediction error of the SWLS model using cross-

validation and the bootstrap. The next section introduces cross-validation and its application to
evaluate the predictions of the linear model with i.i.d. errors. The general CV methods are then
developed for SWLS model evaluation. The bootstrap approach to the estimation of PE is presented
in Section 3. Section 4 formulates the simulation study and introduces the data set to be used, i.e.
the 2005/2006 Income and Expenditure Survey (IES) of Statistics South Africa. In Section 5 the
results obtained from this analysis are presented and discussed and, finally, conclusions and areas for
further research are given in Section 6.

2. Prediction error estimation using cross-validation
Consider a simple random sample (SRS) of n observations where each observation is associated with
a p-vector of measured covariates, x, and a continuous response, y, with an unknown distribution,
P. One of the aims of statistical modelling is the construction of a rule by which to predict a future
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unobserved outcome, say y0, at its associated covariate value x0. In this paper the linear model is
assumed due to it most often being used in applied statistics to model the response as a function of
the covariates. Thus, if ŷ denotes the predicted outcome, x the associated vector of covariates and β̂
the vector of estimated model coefficients, then, under the linear model,

ŷ = x ′ β̂.

To evaluate the performance of a prediction rule one can make use of loss functions and most
commonly the squared error loss, given by

L (y) =
(
y − x ′ β̂

)2
,

is used. For the purpose of prediction rule evaluation, define the expected loss

E (L (y)) = E
(
y − x ′ β̂

)2
.

In this paper the aim with the evaluation of the prediction rule is to determine how well the linear
model predicts an out-of-sample response. Hence, one is interested in estimating the generalisation
error or prediction error (PE) (Molinaro et al., 2005; Hastie et al., 2009).
In an ideal world an independent dataset will be available for the purpose of model selection and

to estimate the PE, but in reality the observed data are all one has available. Estimating the PE using
the observed data gives the apparent error, P̂E

Apparent
,

P̂E
Apparent

= Ê (L (y)) =
1
n

n∑
i=1

(
yi − x ′i β̂

)2
.

When a dataset is used to construct a prediction rule, the fitting method used to construct the rule
adapts to the data to which it is fitted. Hence, using the same data to construct the rule and evaluate
its performance, i.e. using the apparent error to estimate the test error, will lead to an estimated PE
that is too optimistic (Molinaro et al., 2005; Hastie et al., 2009).
To address the problem of a biased PE estimate, CV methods have been utilized to construct

artificial extra-samples to be used as “new” observations to be predicted by the constructed prediction
rule. Although well-known for the SRS case, cross-validation as PE estimation method is not as
well-known in the CS case and as such the CV methods will firstly be described for the SRS case in
Section 2.1 and then developed for the CS case in Section 2.2.

2.1 Cross-validation under simple random sampling
Considered to be the simplest and most widely used method for estimating PE, CV splits the data into
a set on which the model is fitted and a set on which the fitted model is tested. At a minimum the data
are split once into two parts. This is called the validation set (VS) approach. This method, however,
does not necessarily capture the data structure adequately resulting in highly variable PE estimates
when the method is carried out repeatedly. Also, the validation set approach tends to overestimate
the true PE (James et al., 2013).
As remedy for the drawbacks of the validation set approach the leave-one-out cross-validation

(LOOCV) method was proposed where the data are split into n parts, one part for each observation.
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Let the part containing the ith observation be the test sample and let the remaining n−1 parts be used
to fit the linear model. Let the predicted value of the ith observation be ŷi(i). The error in predicting
the ith observation is calculated as

P̂E
(i)

=
(
yi − ŷi(i)

)2
.

This results in n estimates of PE, {P̂E
(i)
} for i = 1, . . . ,n, and finally the LOOCV estimated PE is

calculated as (James et al., 2013)

P̂E
LOOCV

=
1
n

∑
i

P̂E
(i)
.

The LOOCV estimate of PE is less biased and less variable than the validation set estimated PE.
Also, it tends not to overestimate the true PE. However, if the data set is quite large or if a complex
statistical model is being evaluated, then the LOOCV method can be computationally expensive
(James et al., 2013).
To improve on the computation time while retaining the advantages of the LOOCV the K-fold

cross-validation (KCV) method was developed. Here the data are split into K parts of approximately
equal size. K − 1 parts are used to fit the model while the remaining part is used for testing the fitted
model. Suppose the kth part is retained as the test sample and the remaining K − 1 parts are used as
a training sample on which the linear model is fitted. Suppose the kth part contains approximately
nk = n

K observations. Let the predicted value of the ith observation in the kth test set be defined
as ŷi(k) where the subscript (k) is used to emphasise that the kth part is used as the test set. The
estimated PE in this case is calculated as

P̂E
(k)

=
1
nk

nk∑
i=1

(
yi(k) − ŷi(k)

)2
,

where P̂E
(k)

denotes the estimated PE of the kth test sample. This procedure is repeated for all K

parts resulting in K estimates of PE, viz. P̂E
(1)
, . . . , P̂E

(K)
. The final K-fold CV estimated PE is

obtained as the average of the K estimated PEs (James et al., 2013),

P̂E
KCV

=
1
K

∑
k

P̂E
(k)
.

In K-fold CV both the proportion of observations in the test set and the number of estimates to
average can affect the error estimate. When increasing K the proportion of observations in the test
set decreases while the proportion in the training set increases. This will cause a decrease in bias.
Furthermore, a large number of estimates to average may also decrease the bias (Molinaro et al.,
2005). However, increasing K significantly could also bring about an increase in the variability of
the estimated PE. Careful consideration of this bias-variance trade-off determined that using K = 5
or 10 yields estimated PEs that are neither highly biased nor highly variable (James et al., 2013).

2.2 Cross-validation under complex sampling
Now consider the application of these PE estimation methods to the stratified two-stage cluster
design described before. In CS the cross-validation will be carried out in each stratum since strata are
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considered to be independent non-overlapping subgroups into which the population has been divided
for sampling purposes. Furthermore, the units within each stratum that are to be divided into training
sets and a test set will be the PSUs, the first level sampling units within each stratum. The reason for
this is to ensure that the structure within the PSUs remains preserved.
General K-fold cross-validation sees the data set divided into K approximately equal parts. The

training set receivesK−1 parts while the test set receives the remaining part. Under complex sampling
K-fold cross-validation will be applied to each stratum by dividing the PSUs into K approximately
equal parts. Consider the hth stratum with nh PSUs. Then, ñh = nh

K PSUs are retained as a test set
while the remaining nh − ñh PSUs become the training set. The sampling weights associated with
the units within the training set have to be adjusted to compensate for the deleted PSUs such that the
sum of the sampling weights still equals the correct population total.
In Rao et al. (1992) a sampling weight adjustment is proposed for the delete-1 jackknife method

applied to CS data whereby the sampling weights of the remaining units, after some PSU has been
deleted, are adjusted upwards by a factor nh

nh−1 . Here nh is the original number of PSUs in stratum h
and nh −1 is the remaining number of PSUs after a single repetition of the delete-1 jackknife method.
Following this reasoning, the proposed sampling weight adjustment of the units in the training set,
under KCV, is as follows:

nh
nh − ñh

=
nh

nh −
nh
K

=
nh

nh
(
1 − 1

K

) =
K

K − 1
,

where K is the number of folds used for the cross-validation. Let whji denote the original sampling
weight associated with the ith unit in the jth PSU in stratum h. The factor K

K−1 is used to adjust
whji upwards, i.e. whji ·

K
K−1 , i = 1, . . . ,nhj, j = 1, . . . , (nh − ñh), to compensate for the units in the

PSUs removed from the test set. These new weights are now used when fitting an SWLS model to
the training set after which the fitted model is used to predict the test set responses.
Consider the kth part as the test set and let the ith response of the jth PSU in the test set of stratum

h be denoted by y
(k)
hji

while the predicted response is denoted by ŷ
(k)
hji

. Consider the sampling weights
of the units in the test set of which the sum will no longer equal the intended population total and
as such need to be adjusted. In this paper it is argued that, since the training set weights have been
adjusted upwards to compensate for the deletion of the test set units, the data in the test set are simply
new out-of-sample covariates for which a response must be predicted using the fitted model. Hence,
the PE for the kth test set of stratum h will be calculated as

P̂E
(k)

h =
1
ñh

ñh∑
j=1

1
nhj

nh j∑
i=1

(
y
(k)
hji
− ŷ
(k)
hji

)2
,

where nhj is the number of SSUs in each PSU in the kth test set.
This process is repeated for each of the K parts into which the PSUs in stratum h have been divided

resulting in K estimated PEs, P̂E
(1)
h , . . . , P̂E

(K)

h , in each stratum. The estimated PE of stratum h is
thus calculated as the average of the K estimated PEs,

P̂Eh =
1
K

K∑
k=1

P̂E
(k)

h , h = 1, . . . ,H,
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and the overall estimated PE is calculated as

P̂E
KCV

SWLS =
∑H

h=1 Nh P̂Eh

N
,

where Nh is the population number of PSUs in stratum h and N is the total number of PSUs in the
population, i.e. N = ∑

h Nh .
The validation set approach and the leave-one-out cross-validation are special cases of the KCV.

Consider again stratum h with nh PSUs. Under the validation set approach, K = 2, while under the
leave-one-out cross-validation, K = nh . Using the sampling weight adjustment discussed before, the
sampling weights of the units in the training sets, created by these methods, are also adjusted upwards
to compensate for the PSUs that have been removed to the test set.
Remark: Alternatively, one could argue that the training and test sets could be viewed as two

independent samples from the same population and as such, the sampling weights in both sets need
to be adjusted. However, in this paper the former argument will be followed.

3. Prediction error estimation using the bootstrap
This section presents two bootstrap methods for prediction error (PE) estimation as alternatives to
the well-known cross-validation methods.

3.1 Bootstrap estimator of prediction error under simple random sampling
Consider an SRS of size n with data (yi, x ′i), i = 1, . . . ,n, to which a linear model is fitted. The model
can be evaluated by estimating the response of the sample from which the model was obtained and
calculating its PE. The PE calculated in this regard is called the apparent error rate,

P̂E
Apparent

=
1
n

n∑
i=1
(yi − ŷi)

2 ,

where yi is the observed and ŷi the estimated response of the ith observation (Efron and Tibshirani,
1998).
Efron and Tibshirani (1998) describe two approaches to bootstrap regression, namely the boot-

strapping residuals approach and the bootstrapping pairs approach. This paper considers the latter
approach while the former will be considered under further research.
The bootstrapping pairs approach proceeds by generating a with-replacement bootstrap sample of

size n,
(
y∗i , x

∗
i
′
)
, from

(
yi, x ′i

)
and then the linear model is fitted to this bootstrap sample. This fitted

model is firstly used to predict the response of the observed sample, ỹ = X β̂
∗
,where X is the matrix

of covariates of the original sample, β̂
∗

=
(
X∗′X∗

)−1 X∗′y∗ is the bootstrap estimator, X∗ is the n× p
matrix of bootstrap predictors and y∗ is the n-vector of bootstrap responses. The predicted responses
are now used to obtain an estimate of the PE,

P̂E
B1 =

1
n

n∑
i=1
(yi − ỹi)

2 ,

where the superscript B1 is used to label the above PE as the PE calculated from the responses of the
observed sample predicted by the bootstrap linear model and ỹi denotes the ith predicted response
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obtained from using the bootstrap linear model to predict the observed sample (Efron and Tibshirani,
1998).
The bootstrap model is used a second time, now to estimate the responses of the bootstrap sample,

ŷ∗ = X∗ β̂
∗
, where X∗ is the bootstrap matrix of covariates. These estimated responses are used to

obtain a second PE estimate,

P̂E
B2 =

1
n

n∑
i=1

(
y∗i − ŷ∗i

)2
,

with superscript B2 used to emphasise that the PE is calculated using the estimated bootstrap
responses. Finally, the difference between the two estimated PEs is calculated,

�Di f f = P̂E
B1
− P̂E

B2
.

The process outlined above is repeated a large number of times, say B, resulting in B differences,
{�Di f f b}, b = 1, . . . ,B, which are used to calculate an optimism,

optimism =
1
B

B∑
b=1

�Di f f b,

a number that represents the amount by which the apparent error underestimates the true PE (Efron
and Tibshirani, 1998). Finally, the bootstrap estimate of PE is obtained as the sum of the apparent
error and the optimism,

P̂E
BS

= P̂E
Apparent

+ optimism.

3.2 Bootstrap estimator of prediction error under complex sampling
Consider the CS design described before, i.e. a stratified two-stage cluster design. A SWLS is fitted
to the observed CS and the model is used to estimate the response of the sample. The estimated
responses are used to calculate the apparent PE which, under CS, is given by

P̂E
Apparent

SWLS =
∑H

h=1
∑nh

j=1
∑nh j

i=1 whji

(
yhji − ŷhji

)2∑H
h=1

∑nh
j=1

∑nh j

i=1 whji

,

where yhji , ŷhji and whji are, respectively, the observed and estimated response and the sampling
weight of the ith SSU in the jth PSU of the hth stratum.
Here the sampling weights are used under SWLS regression and in the calculation of the PEs. In

the cross-validation case discussed in Section 2 the training and test sets do not overlap, the data in
the test set are simply new out-of-sample covariates for which a response must be predicted using the
fitted model. Hence, the sampling weights are not used when calculating the PE. However, the SWLS
model here is fitted to a CS sample and used to estimate the responses of this sample. Thus, the
sampling weights are incorporated in the calculation of P̂E

Apparent

SWLS to ensure unbiased estimation.
The bootstrap is applied independently per stratum. Now, within each stratum, select a with-

replacement sample of mh PSUs and let these form the bootstrap sample. Let y∗ = {y∗
h
}, h = 1, . . . ,H

denote the responses and X∗ = {X∗h}, h = 1, . . . ,H, denote the predictors corresponding to the PSUs
in the bootstrap sample.
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Due to the with-replacement sampling, the sampling weights have to be adjusted to compensate
for PSUs being over-sampled, under-sampled or not sampled at all. Define m∗

hj
as the number of

times the jth PSU is sampled. The bootstrap weights are then calculated as

w∗hji = whji

[
1 −

√
mh

nh − 1
+

(√
mh

nh − 1

) (
nh

nh − 1

)
· m∗hj

]
,

where whji is the original sampling weight and w∗
hji

is the bootstrap adjusted sampling weight,
i = 1, . . . ,nhj, j = 1, . . . ,mh, h = 1, . . . ,H (Rust and Rao, 1996). In this paper mh will be set equal to
nh − 1. As mentioned by Rust and Rao (1996), there is considerable practical benefit as well as little,
if any, loss in efficiency by doing so. This choice of mh simplifies the bootstrap sampling weight
adjustment to

w∗hji = whji

[(
nh

nh − 1

)
· m∗hj

]
.

The bootstrap weights are used in the SWLSmodel fitted to the bootstrap sample and the bootstrap
model is used in the same two ways as discussed in Section 3.1. Firstly, the bootstrap model is used
to predict the responses of the observed CS after which the predicted responses are used to calculate
the PE,

P̂E
B1
SWLS =

∑H
h=1

∑nh
j=1

∑nh j

i=1 whji

(
yhji − ỹhji

)2∑H
h=1

∑nh
j=1

∑nh j

i=1 whji

,

where ỹhji denotes the h jith predicted response obtained from using the bootstrap SWLS model
to predict the observed sample. Next the bootstrap model is used to estimate the responses of the
bootstrap sample and these are used to calculate a second estimate of PE,

P̂E
B2
SWLS =

∑H
h=1

∑nh
j=1

∑nh j

i=1 w∗
hji

(
y∗
hji
− ŷ∗

hji

)2∑H
h=1

∑nh
j=1

∑nh j

i=1 w∗
hji

,

where y∗
hji

, ŷ∗
hji

and w∗
hji

are, respectively, the observed and estimated response and the bootstrap
sampling weight of the ith SSU in the jth PSU of the hth stratum in the bootstrap sample. Similar
reasoning as before for using the sampling weights in the calculation of P̂E

B1
SWLS and P̂E

B2
SWLS , is

followed.
These two estimates of PE are used to calculate the previously defined difference,

�Di f f = P̂E
B1
SWLS − P̂E

B2
SWLS .

The process outlined above is repeated a large number of times, say B, resulting in B differences,
{�Di f f b}, b = 1, . . . ,B, which are used to calculate an optimism,

optimismSWLS =
1
B

B∑
b=1

�Di f f b .

The bootstrap estimate of PE under CS is then calculated as

P̂E
BS

SWLS = P̂E
Apparent

SWLS + optimismSWLS .
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4. Methodology

4.1 Data description
The dataset that will be used in this analysis and that will act as surrogate population is the 2005/2006
Income and Expenditure Survey (IES) of Statistics South Africa. The intention of the IES is to
examine income and expenditure in South Africa and, in this research, it will be used to model
personal income, y, based on a selection of covariates, x1, . . . , xp .
A number of adjustments were made to the original 2005/2006 IES such that a “clean” dataset

could be obtained which then became the surrogate population used in this simulation study. In a
nutshell, the only records that were retained are those for which an age of at least 21 and no older
than 65 as well as a positive income was captured. This decision was made such that the surrogate
population contains persons of working age while keeping in mind that those at least 21 years old
include persons that have completed their bachelor’s degrees as well as those that either did not
complete school or that did not continue with a post-school education. The covariates identified from
the IES for the modelling of personal income are:

• age, X1;

• gender (1 = male, 2 = female), X2;

A dummy variable was constructed for gender and “female” was chosen as the reference
category.

• ethnic group (1 = black, 2 = coloured, 3 = indian/asian, 4 = white);

Ethnic groups 3 and 4 are very small in comparison to ethnic group 1 and were thus
combined in an attempt to not end up with empty groups in the simulation study.
“Black” was considered the reference category, since it had the largest proportion of
observations in the surrogate population. Dummy variables RD2, and RD3 were formed
for the remaining two race categories.

• education level (coded from 0 to 26).

This variable was grouped into 7 categories, i.e. no education, some primary, complete
primary, early high school, non-completed high school, completed high school, and post
high school education, of which “no education” was considered the reference category
and dummy variables ED2,ED3, . . . ,ED7 were formed for the remaining six education
level categories.

These predictors comprise the main effects of the income model to which first-order interactions
between gender, race and education level were added. Hence, the IES linear model is given by

y = β0 + β1X1 + β2X2 + β3RD2 + β4RD3 + β5ED2 + β6ED3 + β7ED4

+ β8ED5 + β9ED6 + β10ED7 + β11X2RD2 + . . . + β30RD3ED7 + ε.
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4.2 Simulation study
Determining which of the PE estimation methods perform “best” requires a comparison of the
obtained estimates of PE to the “true” PE. Since the “true” PE is unknown it also needs to be
estimated. For this purpose, the surrogate population will be considered as the population from
which the “truth” can be deduced. Hence, the simulation study for the evaluation of the SWLSmodel
PE consists of two phases: the calculation of the “true” PE, and the comparison of the PE estimation
methods to the “true” PE through the evaluation of diagnostic measures.
To determine the “true” PE it was recommended byMolinaro et al. (2005) that a number of samples

be selected from the population and that each of these samples be considered a training set while
all observations in the population but not in the training set form the test set. For this purpose, and
also for the comparison of the estimated PEs to the “truth”, R = 100 samples were selected from
the surrogate population. Each sample followed a stratified two-stage cluster design with the nine
provinces of South Africa as strata and enumerated areas (EAs), the smallest geographical area into
which the country has been divided for survey purposes, as PSUs. The surrogate population consists
of N = 2978 PSUs across the 9 strata. Although no clear rule exists as to what the size of the training
sets should be, it is recommended that they do not contain fewer observations than the test set. Thus,
each sample contains 50% of the PSUs across the 9 strata. In each selected PSU, four households
(HH) were selected and one person per HH was included in the final sample.
At each sampling stage, equal probability samplingwas used in the hope that largeweight variability

would be achieved such that the effect of weight trimming on inference precision could be observed.
Differential non-response was also simulated in the design to evaluate the weighting procedures
under non-perfect circumstances which are generally found in practice.
Consider the first phase where the “true” PE is estimated and let the R replicate samples denote

the R training sets. Let the population number of PSUs be denoted by N where N = ∑H
h=1 Nh , and

Nh is the number of PSUs in stratum h, h = 1, . . . ,H. Consider the rth replicate with nr = ∑H
h=1 nhr

PSUs, where nhr is the number of PSUs in stratum h, and let r denote the training set on which the
SWLS model is fitted. It should be pointed out that, since the replicate samples have been selected
based on a CS design, an SWLS model is fitted to the training set. The test set thus consists of the
remaining N − nr PSUs to be predicted by the fitted SWLS model. Consider the hth stratum in the
test set with Nh − nhr PSUs and Nhj SSUs in the jth PSU, j = 1, . . . ,Nh − nhr . The “true” stratum
PE, denoted by (P̃E)hr , is then calculated as(

P̃E
)
hr

=
1

Nh − nhr

Nh−nhr∑
j=1

1
Nhj

Nh j∑
i=1

(
yhji − ŷhji

)2
,

where h = 1, . . . ,H. Finally, the “true” PE is calculated as(
P̃E

)
r

=
H∑
h=1

Nh

N

(
P̃E

)
hr
.

Note that the sampling weights are not used in the calculation of (P̃E)r . It is important to use the
sampling weights when fitting a linear model to the training set since the training set is a complex
sample from the population. However, the test set contains the remainder of the population units
that are not included in the training set. Thus, no sampling weights are in question when calculating
(P̃E)r from the test set.
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This is repeated for all R replicate samples resulting in R estimates of the “true” PE, {(P̃E)r },r =
1, . . . ,R. The overall estimate of the “true” PE, P̃E , can thus be calculated as the average of the R
estimated PEs.
Alternatively, as described in Molinaro et al. (2005), the R estimates of the “true” PE can be seen

as R individual PEs, one for each replicate sample. Both approaches to the estimation of P̃E will be
considered. Let the first approach be referred to as the Luus approach while the second approach is
referred to as the Molinaro approach.
The replicates have a second purpose in the simulation study, namely as a sample from which the

PE can be estimated by the cross-validation methods and the bootstrap discussed in Sections 2 and 3.
Diagnostic measures, namely bias and mean squared error (MSE), for estimators obtained from five
types of weighting will be compared where the estimates were obtained using both the untrimmed and
the trimmed weights. These are: design weight (Design); linear calibrated and integrated weighting
based on person auxiliary variables (Linpp); linear calibrated and integrated weighting based on
person and household auxiliary variables (Linph); raking ratio calibrated and integrated weighting
based on person auxiliary variables (RRpp); and raking ratio calibrated and integrated weighting
based on person and household auxiliary variables (RRph). The person level auxiliary variables (pp)
used in the construction of the integrated weights, are: province (9 categories); gender (2 categories);
race (4 categories); and age (9 categories). The person and household level auxiliary variables
(ph): all four person level auxiliary variables; area (2 categories); dwelling type (2 categories); and
household size (3 categories).
The weight trimming methods used will be the 4Avg, 1.5IQR, 3.5Med and the Hill. The 1.5IQR

and the Hill thresholds were introduced by Luus (2016). The remaining methods are well-known
thresholds already in use (Izrael et al., 2009; Valliant et al., 2013). For information on these trimming
methods, the reader is invited to consult the referenced literature.
For each PE estimation method and for each type of weighting, both untrimmed and trimmed, the

diagnostic measures are compared, and a subset of the results is presented in the next section.

5. Discussion of results

SAS® was used for sampling from the surrogate population and for the calculation of the different
sampling weights while the analyses were performed in R.

5.1 Choice of K

The choice of K for cross-validation is of importance and, for SRS data, it is chosen based on a
bias-variance trade-off. Consequently it has been found that when K = 5 or K = 10 the estimated
PEs have neither a high bias nor a high variance (James et al., 2013). Is the same true for CS data?
This section presents results to be used to answer this question.
Figure 1 shows the average estimated PE for different values of K, namely 2, 5, 10, 15, 20, n

(LOOCV), as well as the bootstrap estimated PE based on B = 500 bootstrap samples selected from
each sample r , r = 1, . . . ,100, obtained when fitting the SWLS using the untrimmed design weight
and benchmarked weights.
In Figure 1 a significant decrease in the average estimated PE is observed as K is increased from 2

to 10. It can be seen that the average prediction error stabilises at approximately R = 40 samples and
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Figure 1. Average estimated PE.

K ≥ 10. Furthermore, it is observed that the average estimated PE is smallest under the bootstrap
PE estimation approach and remains fairly stable across the range of R. A similar trend is observed
when considering the median estimated PE shown in Figure 2.
The standard deviations of the estimated PEs are shown in Figure 3. Once again, a significant

decrease in standard deviation is observed as K is increased from 2 to 10. The standard deviation
of the bootstrap PE estimates is again the smallest, but when R > 40 the difference is not as
distinguishable. It appears that K should be at least 10 when estimating the PE of the SWLS model.
Thus, results for K = 10,15,20,n (LOOCV) and the bootstrap are shown in the next section. Since

the linear calibrated and integrated weighting, i.e. Linpp and Linph , respectively, generally did not
perform as well as the raking ratio calibrated and integrated weighting, results based on Linpp and
Linph will not be shown here.

5.2 Results

Let the estimate of the PE obtained from the rth replicate sample be denoted by P̂Er ,r = 1, . . . ,R.
The “true” bias and MSE of P̂E , following the Luus approach to obtain the “true” test PE, are
approximated by ���biasL (

P̂E
)��� =

����( 1
R

∑
r

P̂Er

)
− P̃E

���� ,
and

MSEL
(
P̂E

)
=

1
R

∑
r

(
P̂Er − P̃E

)2
.

The results based on the Luus approach to “true” PE are shown in Figure 4 and Figure 5. When
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Figure 2. Median estimated PE.

Figure 3. Standard deviation of estimated PE.
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following the Molinaro approach the “true” bias and MSE of P̂E are approximated by���biasM (
P̂E

)��� =
���� 1R ∑

r

(
P̂Er − P̃Er

)���� ,
and

MSEM
(
P̂E

)
=

1
R

∑
r

(
P̂Er − P̃Er

)2
.

These results are shown in Figure 6 and Figure 7. For each estimation method of PE and for each
type of weighting, both untrimmed and trimmed, the diagnostic measures are compared, and a subset
of the results are presented below.
The “true” bias of the estimated PE, based on the Luus approach, for K = 10,15,20,n (LOOCV)

and the bootstrap using the design and benchmarked weights, untrimmed and trimmed, are shown in
Figure 4. The bias appears to reach a minimum when K is equal to 10. Furthermore, the minimum
bias is obtained when using the 1.5IQR trimmed person benchmarked weights (RRpp). However,
bias appears to stabilise when K ≥ 15 using the Hill trimmed person and household benchmarked
weights (RRph). The “true” bias of the bootstrap estimator of PE is larger than the cross-validation
PE estimators. However, the bias is reduced when using the 1.5IQR trimmed RRph weights. The
“true” bias based on the Molinaro approach, shown in Figure 6, achieves the same results.
The “true” MSE (Luus approach), shown in Figure 5, achieves a minimum under the bootstrap PE

estimation approach using the 1.5IQR trimmed person benchmarked weights (RRpp). However, the
“true” MSE (Luus approach) approximately stabilises when K ≥ 15 using the Hill trimmed person
benchmarked weights (RRpp).
The Molinaro “true” MSE in Figure 7 differs from the result in Figure 5. Here, the “true” MSE is

much larger than the “true” MSE in Figure 5. This implies that the variance of the Molinaro “true”
PE is much larger than the variance of the Luus “true” PE since the Luus and Molinaro “true” biases
are the same. This is not surprising since the Molinaro “true” PE approach is based on a single
training set and test set split. This is known to result in more variable PEs than when using more
training set test set splits and then averaging over the multiple “true” PEs, as is the case under the
Luus approach. However, the minimum is also achieved when the bootstrap PE estimation approach
is used based on the 1.5IQR trimmed person benchmarked weights (RRpp).

6. Conclusions and further research
The model often used to define the relationship between the response and the predictors is assumed
to be a linear model. When modelling a linear relationship between the response and predictors
obtained from CS sampling, the SWLSmodel is employed. Since modelling is often applied with the
aim to predict a future response, it is important to be able to evaluate how well the model performs
in this regard. Cross-validation has long been used, in the i.i.d. case, for the estimation of a model’s
prediction error, but is fairly unknown in the CS sampling case. In comparison to cross-validation
the bootstrap approach to estimating PE is not as well-known, even more so under complex sampling.
This paper extended K-fold cross-validation and the bootstrap to be used for the prediction error

estimation of the SWLS model. A simulation study, based on the IES 2005/2006 survey, was used
to, on the one hand, determine the optimal size of K in the SWLS case, and, on the other, evaluate
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Figure 4. Comparing the “true” bias of different CV estimators and the bootstrap estimator of PE
using the Luus approach.

Figure 5. Comparing the “true” MSE of different CV estimators and the bootstrap estimator of PE
using the Luus approach.
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Figure 6. Comparing the “true” bias of different CV estimators and the bootstrap estimator of PE
using the Molinaro approach.

Figure 7. Comparing the “true” MSE of different CV estimators and the bootstrap estimator of PE
using the Molinaro approach.
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the use of cross-validation and the bootstrap to estimate the PE of the SWLS model under different
sampling weights, both trimmed and untrimmed.
To determine which PE estimator performed “best” it was important to determine a “true” PE.

Molinaro et al. (2005) proposed selecting a number of samples from a surrogate population and then
using these samples as training sets for model fitting. The training models are then used to predict
the test set, which consists of all observations in the surrogate population but not in the training set.
In this article R = 100 samples were selected from the surrogate population (IES 2005/2006) and
by the Molinaro approach, 100 “true” PEs were obtained. This is similar to a validation set (VS)
approach. In contrast to this the Luus approach was proposed where the average of the 100 “true”
PEs was used as a single “true” PE. A “true” PE was obtained for each sampling weight, untrimmed
and trimmed, using both approaches. The “true” biases of the PE estimators are the same under both
approaches, but overall it was found that the “true” MSEs of the PE estimators are smaller under the
Luus “true” PE. Taking the average of the 100 “true” PEs appears to have smoothed the sampling
variability resulting in a more stable “true” PE.
Next it was found that at least K = 15 splits are required to adequately capture the variance

structure of the CS data. It should be mentioned that, since the splitting is done on the PSUs, the
number of PSUs would gauge the number of splits you can use. This surrogate population had a
large enough number of PSUs that allowed this range of K to be used. The analyst should just ensure
that each split contains at least two PSUs. Furthermore, under cross-validation, the Hill trimmed
person and household level benchmarked weights resulted in estimated PEs with the smallest bias
while the 1.5IQR trimmed person level benchmarked weights resulted in estimated PEs with the
smallest MSE. Concerning the bootstrap method, the bias of the bootstrap PE estimator was high in
comparison to the bias of the cross-validation PE estimators, but its MSE was lower than the MSE
of the cross-validation PE estimators. This implies that the variance of the bootstrap PE estimator is
smaller than that of the different cross-validation PE estimators.
In this paper it was argued that, since the training set weights have been adjusted upwards to

compensate for the deletion of the test set units, the data in the test set are simply new out-of-sample
covariates for which a responsemust be predicted using the fittedmodel. As such the test set sampling
weights are not adjusted nor are they used in the calculation of the test set PE. Alternatively, one
could argue that the training and test sets could be viewed as two independent samples from the
same population and as such, the sampling weights in both sets need to be adjusted. Further research
would consider this alternative.
With regards to the bootstrap estimator of PE, the bootstrapping pairs approach to linear modelling

was used in this paper. Alternatively, the bootstrapping residuals approach can be considered and
this would be done under further research.
The simulation results showed that the bootstrap estimator, on average, results in a lower estimated

PE (see Figure 1). It appears the bootstrap adjustment to the apparent error is too small in general,
leading to a too small final PE estimate. This is an aspect that needs further investigation in order to
obtain a more realistic adjustment.
A further observation made from the simulation results is that the bootstrap estimator generally

resulted in a larger bias. One suggestion is to use the bootstrap to estimate this bias and then use that
result to perform “bias-correction” of the bootstrap PE estimator. Alternatively, Efron and Tibshirani
(1998) discuss the .632 bootstrap estimator of PE, but it was not included here due to it being fairly
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computationally expensive. Given the improvement in modern computing power this estimator might
be viable for further research.
Finally, research is also currently underway on the application of the cross-validation methods for

the evaluation of the logistic regression model under CS.
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