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In this short paper, the multivariate Poisson-Gamma, the multinomial N -mixture and the
negative multinomial distributions are shown to have probability mass functions of the same
form and thus to share, broadly, the same distributional properties. The three distributions are,
however, fundamentally very different in nature, that is, in terms of genesis, interpretation and
model building, and these differences are highlighted and discussed.
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1. Introduction
The aim of this paper is to introduce a family of three multivariate discrete distributions, namely
the multivariate Poisson-Gamma, the multinomial N-mixture and the negative multinomial, which
are related in distribution but not in terms of genesis, interpretation and model building. The paper
is organised as follows. A motivation for each of the three distributions is presented in Section 2,
together with an outline of the derivation of the probability mass functions and a brief discussion of
the common distributional properties. Models which are based on the three distributions of interest,
together with details relating to parameter estimation and inference, are introduced in Section 3 and
some important differences are highlighted and discussed. Finally, in Section 4, the distributional
similarities and the modelling differences between the three distributions are drawn together and
some recommendations for further research are made.

2. The family of distributions

2.1 The multivariate Poisson-Gamma distribution
The motivation for the Poisson-Gamma distribution comes from the early papers of Arbous and
Kerrich (1951) and Bates and Neyman (1952) on accident proneness. Specifically, consider a vector
of counts y = (y1, . . . , yd) representing the numbers of each of d types of accident incurred by an
individual. The counts yj are taken to be Poisson distributedwith parameters µjν, j = 1, . . . , d, where
the terms µj > 0 are unknown constants relating to the type of accident incurred and ν > 0 is a random
term representing the accident proneness of the individual. In order to accommodate variation in
accident proneness across individuals, the term ν is taken to follow a gamma distribution with shape
parameter α and rate parameter β, that is ν ∼Gamma(α, β)with mean α/β. In other words the vector
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y conditional on ν comprises independent Poisson counts. A more meaningful parametrisation of
the random term ν with α = β and thus with E[ν] = 1 was introduced into the economic literature by
Hausman et al. (1984) and is now widely used. The unconditional probability mass function (pmf)
of the counts thus follows immediately by integrating out ν, where ν ∼ Gamma(r,r) with α = β = r ,
and is given by

Prob(y1, . . . , yd) =
Γ(r +

∑d
j=1 yj)∏d

j=1 yj! Γ(r)

d∏
j=1

(
µj

r +
∑d

j=1 µj

)yj (
r

r +
∑d

j=1 µj

)r
(1)

with overdispersion parameter r (Cameron and Trivedi, 1998, Section 9.4.1; Solis-Trapala and
Farewell, 2005).
Applications of the multivariate Poisson-Gamma distribution have been reported somewhat spo-

radically in the literature. In all cases the associated models are taken to be log-linear, with the vector
of counts regressed against an appropriate set of explanatory variables. For example, Hausman et al.
(1984) used the distribution to model panel data and Mothafer et al. (2016) to model crash frequency
data. In addition, Solis-Trapala and Farewell (2005) provide applications within the context of medi-
cal statistics and Schmidt and Schwabe (2020) report the construction of optimal block designs based
on the Poisson-Gamma setting.

2.2 The multinomial N-mixture distribution
The motivation for the multinomial N-mixture distribution comes from removal sampling protocols
used in ecology (Dorazio et al., 2005). Specifically, suppose that animals are removed from a closed
population at d successive times and are counted but not returned to the population. The process
stops before all animals have been removed and thus the total number of animals present in the
population, say n, remains unknown. The setting can be formulated as a multinomial comprising
d + 1 classes with the probability of capturing an animal in the jth class given by πj, j = 1, . . . , d,
and with πd+1 = 1 −

∑d
j=1 πj . Thus the counts yj, j = 1, . . . , d, are recorded at the first d times

and the count in the (d + 1)th class is then equal to n −
∑d

j=1 yj , and is unknown. In constructing a
distribution for the observed counts yj, j = 1, . . . , d, it is sensible to adopt a mixing distribution for
the unknown total n. In the present study n is taken to follow a negative binomial distribution with
pmf of the form

Γ(n + r)
Γ(r) n!

(
µ

µ + r

)n (
r

µ + r

)r
,

where µ represents the mean animal abundance in the population and r the overdispersion parameter,
that is n ∼ NegBin(r, µ). The pmf of the observed counts can then be obtained in closed form by a
subtle change of indices (Haines, 2020) and is given by

Prob(y1, . . . , yd) =
Γ(r +

∑d
j=1 yj)∏d

j=1 yj! Γ(r)

d∏
j=1

(
µπj

r + µ
∑d

j=1 πj

)yj (
r

r + µ
∑d

j=1 πj

)r
. (2)

There is a range of applications of the multinomial N-mixture distribution within the context of
statistical ecology, including removal sampling, multi-observer and capture-recapture protocols, and
these are extensively covered in Chapter 7 of the book by Kéry and Royle (2015). In all cases,
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the infinite sum embedded in the basic formulation of the pmf of the distribution is approximated
by placing an upper bound on that sum and, as a consequence, results are obtained numerically
(Dorazio et al., 2005; Kéry, 2018). Note that the pmf of the multinomial N-mixture distribution was
included in the early review paper of Sibuya et al. (1964) but with a formulation different to that
introduced here. Specifically, the authors considered a sequence of independent Bernoulli trials with
a probability of success ρ and took the requisite pmf to be the probability of a success at the rth
trial. No applications relating to this parametrisation appear to have been reported in the literature
however.

2.3 The negative multinomial distribution
There are a number of ways in which the negative multinomial distribution can be motivated but
that based on inverse sampling is, arguably, the most attractive. Specifically, the inverse sampling
strategy proceeds by taking independent samples from a multinomial distribution with d + 1 classes
and attendant probabilities pj, j = 1, . . . , d + 1, with

∑d+1
j=1 pj = 1, until the count in the (d + 1)th

class is equal to r . The pmf of the counts yj, j = 1, . . . , d, follows from straightforward combinatorial
arguments and is given by

Prob(y1, . . . , yd) =
Γ(r +

∑d
j=1 yj)∏d

j=1 yj! Γ(r)

d∏
j=1

pyjj prd+1. (3)

The motivation is predicated on the assumption that r is an integer but is readily extended to the
general case with r > 0. Specifically, following Zhou and Lange (2010), consider d independent
Poisson processes with intensities pj, j = 1, . . . , d, run for a time which is gamma distributed with
shape parameter r and rate parameter pd+1. Then the joint pmf of the counts associated with the d
processes under this strategy is given by (3). More broadly, and in line with the univariate case, the
parameter r can be interpreted as an overdispersion parameter.
Applications of the negative multinomial distribution focus on the fact that counts with pmf (3)

are positively correlated and involve, at least in general, comparisons with the multinomial and
Dirichlet-based multinomial distributions (Johnson et al., 1997, Chapter 36). Such comparisons are,
however, delicate and can be inconclusive. This is evidenced by the findings of Zhang et al. (2017)
which are based on simulated and real RNA-seq data.

2.4 Commonalities
It is immediately clear that the pmfs for the multivariate Poisson-Gamma, the multinomial N-mixture
and the negative multinomial distributions are of the same form. Specifically, consider the negative
multinomial with probabilities pj, j = 1, . . . , d, pd+1 = 1 −

∑d
j=1 pj , and overdispersion parameter r .

Then the distributional properties of themultivariate Poisson-Gamma can be recovered by substituting
pj with µj/(r + µj) and those of the multinomial N-mixture distribution by substituting pj with
µπj/(r + µ

∑d
j=1 πj), j = 1, . . . , d. In other words, the terms µj/(r + µj), µπj/(r + µ

∑d
j=1 πj) and

pj in the pmfs (1), (2) and (3), respectively, are interchangeable and are said here to be notationally
equivalent. It now follows that the probability generating functions of the three distributions are
of the same form and thus that the individual counts yj, j = 1, . . . , d, and the sum of the counts∑d

j=1 yj are distributed as negative binomials and, crucially, that the counts themselves are positively
correlated (Bates and Neyman, 1952; Johnson et al., 1997, Chapter 36).
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Themultivariate Poisson-Gammadistribution is derived from independent Poisson variateswhereas
the multinomial N-mixture and the negative multinomial distributions emanate from the multinomial
distribution. The three distributions of interest can, however, be linked by invoking the relationships
between the Poisson and the multinomial distributions. Specifically, counts of independent Poisson
variates given the sum of the counts follow a multinomial distribution and, conversely, counts from a
multinomial distribution with a Poisson mixing distribution on the sum of the counts are independent
Poisson variates (Dobson and Barnett, 2008, p. 150). The relationships so described are summarised
in the flow chart shown in Figure 1.

3. Models, estimation and inference
The broad-based setting adopted here is that in which n independent samples are taken from a
distribution of vectors of d counts, with covariates recorded for each count. The d counts thus
define d classes or categories. The counts are denoted here by yi j , the attendant vector of p sample-
specific covariates by xi = (xi1, . . . , xip) and the vector of t sample- and class-specific covariates,
that is cell-specific covariates, by zi j = (zi j ,1, . . . , zi j ,t ) for i = 1, . . . ,n, j = 1, . . . , d. The discussion
which follows draws heavily, but not exclusively, on three representative papers: that of Solis-Trapala
and Farewell (2005) relating to the multivariate Poisson-Gamma, that of Haines (2020) relating to
the multinomial N-mixture distribution, and that of Zhang et al. (2017) relating to the negative
multinomial distribution.

3.1 The multivariate Poisson-Gamma model
Consider first the multivariate Poisson-Gamma setting with E(yi j) = µi j, i = 1, . . . n, j = 1, . . . , d.
The associated model for µi j is, in general, taken to be log-linear, with counts regressed against
an appropriate set of explanatory variables, and the overdispersion parameter r is taken to be an
unknown constant. The parametrisation of the log-linear model is, however, subtle (Solis-Trapala
and Farewell, 2005). Specifically, covariates which are sample-specific and those which are both
sample- and class-specific should be distinguished. To fix ideas, suppose that the numbers of animals
at n independent sites are recorded over d days. Then covariates can be site-specific, such as distance
from water, and site- and day-specific, such as ambient temperature at the time of counting. The
correct formulation for µi j is then given by

ln(µi j) = β0 + x>i β + (zi j − z̄i+)
>γW + z̄>i+γB, (4)

where xi is a vector of covariates associated with sites only, zi j is a vector of covariates associated
with both sites and days and z̄i+ =

∑d
j=1 zi j/d . The term β0 represents the overall mean, the term β

is a vector of parameters conformable with the site covariates xi , and the terms γW and γB capture
the within- and between-site dependencies emanating from the covariates zi j and are conformable
with zi j , i = 1, . . . ,n, j = 1, . . . , d (Solis-Trapala and Farewell, 2005).
The likelihood for the parameters β, γ and r , where γ = (γW ,γB)

>, follows directly from the pmf
for the multivariate Poisson-Gamma distribution, that is pmf (1), and is given by

L(β,γ,r) =
n∏
i=1


Γ(r + yi+)

Γ(r)
∏d

j=1 yi j!

d∏
j=1

(
µi j

r + µi+

)yi j (
r

r + µi+

)r  , (5)
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yj ∼ Poisson(λj)

j = 1, . . . , d + 1

independent

Poisson

y1, . . . , yd+1 ∼
MN(n, π1, . . . , πd+1)

Multinomial

Γ(r +
∑d

j=1 yj)∏d
j=1 yj ! Γ(r)

d∏

j=1

(
µj

r +
∑d
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)yj
(

r

r +
∑d
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Multivariate
Poisson-Gamma

Γ(r +
∑d

j=1 yj)∏d
j=1 yj ! Γ(r)

d∏

j=1

π
yj

j (πd+1)r

Negative
Multinomial

Γ(r +
∑d

j=1 yj)∏d
j=1 yj ! Γ(r)

d∏

j=1

(
µπj

r + µ
∑d

j=1 πj

)yj
(

r

r + µ
∑d

j=1 πj

)r

Multinomial
N -mixture Model

λj = µjν

ν ∼ Gamma(r, r)

Distribution

n ∼ Poisson

πj ∝ λj

Given
d+1∑

j=1

yj = n

Inverse Sampling

with yd+1 = r

Distribution

n ∼ NegBin (r, µ)

Figure 1. Flow chart illustrating the relationships between the multivariate discrete distributions of
interest.
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where yi+ =
∑d

j=1 yi j and µi+ =
∑d

j=1 µi j . The expression for L(β,γ,r) can in fact be reformulated to
some advantage as the product of a conditional and a marginal likelihood (Solis-Trapala and Farewell,
2005). Specifically, the conditional likelihood depends only on the parameter γW and is given by

LC(γW ) =

n∏
i=1

yi+!∏d
j=1 yi j!

d∏
j=1

(
µi j

µi+

)yi j
,

which is the likelihood associated with that of a multinomial distribution. In addition, the marginal
likelihood is given by

LM (β,γ,r) =
n∏
i=1

Γ(r + yi+)

Γ(r) yi+!

(
µi+

r + µi+

)yi+ (
r

r + µi+

)r
and is that of a negative binomial with mean µi+ and overdispersion parameter r . Both these results
are in accord with the distributional properties of the multivariate Poisson-Gamma.
Maximum likelihood estimates (MLEs) of the parameters β,γ and r , denoted β̂, γ̂ and r̂ , can

be obtained by solving the likelihood equations using a Newton or Fisher scoring algorithm (Solis-
Trapala and Farewell, 2005). The information matrix for the parameters follows immediately from
the log-likelihood and, since −E

[
∂2 ln L(β,γ,r)/∂β∂r

]
= 0 and −E

[
∂2 ln L(β,γ,r)/∂γ∂r

]
= 0,

is block diagonal (Waller and Zelterman, 1997). Thus the parameters β and γ are information
orthogonal to the parameter r or, in other words, the asymptotic covariances of β̂ and γ̂ with r̂ are
zero (Pawitan, 2001, p. 287). In addition, Schmidt and Schwabe (2020) have derived an explicit
expression for the informationmatrix for β andγ in terms of that for independently distributed Poisson
variates with mean parameters µi j, i = 1, . . . ,n, j = 1, . . . , d. Profile likelihoods and confidence
sets for the parameters β,γ and r can be readily constructed, with the latter based on the inverse
of the observed information matrix. However, Solis-Trapala and Farewell (2005) noted that the
generalised estimating function for the parameters β and γ coincides with the score function and, as
a consequence, recommended that the robust sandwich estimator of the variance matrix of the MLEs
β̂ and γ̂ be used in preference to that based on the observed information matrix.
Other approaches to estimation and inference for the multivariate Poisson-Gamma model have

been introduced in the literature. For example, Dey and Chung (1992) explored Bayesian estimation
of the parameters of the log-linear model under normalised square error loss and, more recently, Tsou
(2016) examined the applicability of the robust likelihood technique but these approaches have not
been developed further.

3.2 The multinomial N-mixture model
Consider now the multinomial N-mixture setting within the context of removal sampling with
E(yi j) = µiπi j for i = 1, . . . ,n, j = 1, . . . , d (Haines, 2020). The parameter µi represents the mean
abundance at site i and the parameter πi j the probability associated with sample i and class j, that
is, the cell probability, i = 1, . . . ,n, j = 1, . . . , d. The term µi is modelled log-linearly, that is, as
ln µi = x>i β where xi is a vector of site-specific covariates and β is a vector of unknown parameters
conformable with xi , i = 1, . . . ,n. In addition, the overdispersion parameter r is taken to be an
unknown constant. Modelling the cell probability πi j is, however, not straightforward. Specifically,
πi j is a function of the probability of capture of an animal at site i and removal j and it is the latter
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probability which is meaningful in practice. Thus, the logit of pi j is taken to be a linear function of
appropriate covariates zi j and the resultant logistic function for pi j is then embedded in the term πi j
for i = 1, . . . ,n, j = 1, . . . , d. For example, if the probability of capture is taken to be a constant p
over all sites and all removals, then πi j = (1 − p)j−1p with logit(p) an appropriate linear function of
the cell-specific covariates of the form given in (4).
The development of the likelihood for the parameters β and γ is given in Haines (2020) and follows

closely that of the multivariate Poisson-Gamma but with an additional layer of complexity derived
from the cell probabilities. Simplistically, the likelihood corresponds to that of the multivariate
Poisson-Gamma given in (5) but with the term µi j replaced by µiπi j for i = 1, . . . ,n, j = 1, . . . , d.
MLEs of the parameters can then be obtained by maximising the log-likelihood using a nonlinear
optimisation routine and confidence sets derived from the block-diagonal information matrix. In
addition, comparisons of results for the multinomial N-mixture model with a Poisson mixing distri-
bution, that is, for the model with independently distributed Poisson variates with mean parameters
µi j, i = 1, . . . ,n, j = 1, . . . , d, with those for the present setting are of some interest (Haines, 2020).
For example, likelihood-based hypothesis tests for the multinomial N-mixture model with a Poisson
mixing distribution against that with a negative binomial mixing distribution can be conducted and
are based solely on the site totals yi+, i = 1, . . . ,n.

3.3 The negative multinomial model
Following Zhang et al. (2017), consider n independent samples of counts taken from the negative
multinomial distribution with d classes, denoted yi = (yi1, . . . , yid), together with p sample-specific
covariates, denoted xi, i = 1, . . . ,n. Then E[yi j] = rpi j/pd+1 where pi,d+1 = 1 −

∑d
j=1 pi j , i =

1, . . . ,n, j = 1, . . . , d. Bishop et al. (1975, Section 13.8) formulated a model for this setting with the
probabilities pi j modelled as

µi j

r +
∑d

j=1 µi j
and pd+1 =

r

r +
∑d

j=1 µi j
,

where µi j = E[yi j]. This formulation has been invoked, for example, byWaller and Zelterman (1997)
and Zelterman (2004, pp. 49-51), but is somewhat confusing and essentially incorrect. Specifically,
the overdispersion parameter is inextricably associated with the probabilities in the model and does
not reflect the genesis of the negative multinomial distribution. To compound matters, the resultant
likelihood maps directly onto that of the multivariate Poisson-Gamma given in (5), which is in itself
misleading. In a recent paper, Zhang et al. (2017) proposed a link function for the probabilities which
does not include the overdispersion parameter r and is specified by

pi j =
exp(x>i β j)

1 +
∑d

j=1 exp(x>i β j)
, j = 1, . . . , d, and pi,d+1 =

1
1 +

∑d
j=1 exp(x>i β j)

for i = 1, . . . ,n. Thus E[yi j] = r exp(x>i β j). The regression parameters for the probabilities in the
model can thus be assembled in the p × d matrix B = (β1, . . . , βd) and relate directly to those in
the standard parametrisation of the multinomial distribution (Dobson and Barnett, 2008, p. 151). In
addition, the authors proposed that the overdispersion parameter r be modelled as r = ln x>i α or as
an unknown constant.
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The likelihood for the parameters β1, . . . , βd and r or α follows directly from the pmf of the negative
multinomial distribution given in (3). The number of parameters in the model, that is pd or p(d + 1),
can, however, be large and Zhang et al. (2017) observed that obtaining MLEs for the parameters
is “nontrivial”. Specifically, they found Newton and quasi-Newton routines for maximising the
log-likelihood to be unstable and the MM-algorithm, while more stable, to be slow. Zhang et al.
(2017) therefore introduced a framework for finding the MLEs of the parameters which incorporates
a new algorithm, iteratively reweighted Poisson regression (IRPR), coupled optimally with the fast
Newton method. The information matrix for the parameters β1, . . . , βd and r or α is derived in the
Supplementary Materials of Zhang et al. (2017) and is somewhat complicated. In particular, the only
term in the log-likelihood ` which involves both β j and r is given by −r ln(

∑d
j=1 exp(x>i β j)+ 1) and

thus −E[∂2`/∂β j∂r] is non-zero and the information matrix is therefore not block diagonal.
Zhang et al. (2017) compare the multinomial, the negative multinomial, the Dirichlet-multinomial

and the generalised Dirichlet-multinomial models in terms of model selection, hypothesis testing and
variable selection. Their findings are of interest in the present context, more particularly in relation
to the multinomial and negative multinomial models. Specifically, the authors note that information
criteria, such as AIC and BIC, and not likelihood-based tests, should be used in choosing a model
but that a standard range of tests, as, for example, the likelihood ratio test, the Wald test and the score
test, can be invoked to test the significance of the covariates. They also showed by means of extensive
simulations that, if the wrong model is chosen, tests of significance for the covariates exhibit highly
inflated Type I errors and variable selection by regularisation is poor and, in certain cases, no better
than a random selection process.

3.4 Similarities and differences
The multivariate Poisson-Gamma model arises quite naturally from independent Poisson variates.
In contrast, the multinomial N-mixture model is built from the multinomial distribution and neces-
sarily incorporates probabilities from that distribution. Nevertheless, the forms of the likelihoods
associated with these two distributions are similar and the same broad-based approach to estimation
and inference can be adopted. The difference between the likelihoods of the multivariate Poisson-
Gamma and the multinomial N-mixture models and that of the negative multinomial is, however,
stark. Specifically, the embedded probabilities of the negative multinomial are modelled directly by
means of an appropriate link function and, as a consequence, estimation of the parameters is not
straightforward and inference must be treated sensitively (Zhang et al., 2017).

4. Discussion
This paper is concerned with three distributions, the multivariate Poisson-Gamma distribution, the
multinomial N-mixture distribution and the negative multinomial distribution, all of which can be
used to model correlated count data. The distributions have probability mass functions of the same
form and therefore share a broad base of common properties, in particular with respect to moments,
marginal distributions and positive correlation. At the same time, the distributions are very different
in genesis and in terms of interpretation and this is reflected in the attendant model building and
analyses.
In drawing the three distributions together, it is interesting to examine how more recent work
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might impact on future research and applications. The multivariate Poisson-Gamma distribution has
received scant attention in the literature more recently, in part because researchers have found the
multivariate Poisson lognormal model to provide a better fit to their data (Egan and Herriges, 2006;
Choudhary et al., 2018). There are, however, applications in ecology, such as the example given
in Subsection 3.1, for which the multivariate Poisson-Gamma model may well be appropriate. The
multivariate N-mixture model was, until very recently, analysed using a numerical approximation
to the probability mass function. The paper of Haines (2020) now provides a statistical framework
for the model which is based on an explicit expression for the likelihood. Many advantages in terms
of computation, analysis and hypothesis testing so accrue and future applications will undoubtedly
draw on these results. The negative multinomial distribution has, somewhat surprisingly, been
underreported in the statistical literature, with many results embedded in applications and not made
explicit. The paper of Zhang et al. (2017) is therefore important in that the authors provide a
meaningful link function for the multinomial probabilities and set out a clear strategy for model
choice, analysis and hypothesis testing. Practitioners should find the guidelines so provided to be
invaluable when choosing and implementing a model from the broad spectrum of multinomial-based
models.
Finally it should be noted that the terms multivariate negative binomial distribution, multivariate

Poisson-Gamma and negativemultinomial have been used somewhat interchangeably in the literature.
It is therefore recommended here that the term multivariate negative binomial be used to refer to the
family of the three distributions of interest and that the name of the distribution used for a particular
setting, that is multivariate Poisson-Gamma, multinomial N-mixture or negative multinomial, should
reflect, very strictly, the genesis of the data.
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