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1. Introduction
The conditional density function plays an important role in nonparametric prediction. In addition,
it provides the most informative summary of the relationships between a variable of interest Y and
a covariate X . There is extensive literature on conditional density function estimation when the
data are either independent or dependent and in finite or infinite dimensional spaces. For example,
Hyndman et al. (1996) studied the kernel estimator of the conditional density and its bias-corrected
version. Fan et al. (1996) developed a direct estimation method via an innovative ‘double-kernel’
local linear approach. Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002) proposed
several simple and useful rules for selecting bandwidths for conditional density estimation. Hall
et al. (2004) applied the cross-validation technique to estimate the conditional density. Fan and Yim
(2004) proposed a consistent data-driven bandwidth selection procedure in estimating the conditional
density functions. In these papers, it is assumed that the data are fully observed.
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In the case of finite-dimensional data, it is well known that the kernel method is inferior to the
local linear fitting because of limitations such as large bias, non-adaptation as well as boundary
effects. Recently, some results on the local linear modelling in the functional data setting have been
obtained. Baíllo and Grané (2009) first proposed a local linear estimator of the regression operator
when the explanatory variable takes values in a Hilbert space. When the explanatory variable takes
values in a semi-metric space, Barrientos-Marin et al. (2010) proposed another alternative version
of the local linear estimator of the regression operator in the i.i.d. setup, which was called a locally
modelled regression estimator. They found that the estimator made its computation easy and fast
while keeping good performance. Then, this method has been employed to estimate the conditional
density (Demongeot et al., 2013; Rachdi et al., 2014), the conditional distribution (see Demongeot
et al., 2014) and the conditional quantile (see Messaci et al., 2015) of a scalar response given a
functional explanatory variable in the i.i.d. setting.
In some fields such as reliability or survival analysis, the random variable (rv) Y (which has

unknown continuous distribution function (df) F) can be regarded as the lifetime of patients under
study. In reality it is not possible to observe the survival time of all patients, and often some of them
are still alive at the end of the study, withdraw, or die from other causes than those addressed by the
study. In those cases, we observe another random variable C indicating censoring. Then, assuming
that {Yi, i ≥ 1} is a stationary sequence satisfying some dependency conditions, and {Ci, i ≥ 1}
is a sequence of i.i.d. censoring random variables with common unknown continuous distribution
function (df) G and we observe only the n pairs (Ti, δi), for i = 1, . . . ,n, where Ti = min(Yi,Ci)

and δi = I(Yi ≤ Ci). We suppose that (Yi) and (Ci) for i = 1, . . . ,n are independent, which
ensures the identifiability of the model. Moreover, in this case the distribution J of T1 satisfies
1 − J = (1 − F)(1 − G).
Now let X be a rv taking values in F , where F is a semi-metric space equipped with a semi-metric

d. A semi-metric space (F , d) satisfies all the conditions of a metric space except it need not satisfy
d(x1, x2) = 0, x1, x2 ∈ F ⇒ x1 = x2. For example, set Fm = Cm[0,1], i.e., the set of functions with
continuous mth derivatives on [0,1],m ≥ 0; the semi-metric dm(·, ·) is defined as

dm(x1, x2) =

{∫ 1

0
[x(m)1 (t) − x(m)2 (t)]

2dt
}1/2

, x1, x2 ∈ Fm,

where x(m)1 (·) and x(m)2 (·) denote the mth derivatives of x1(·) and x2(·), respectively. In the case that
m = 3, it is easily seen that if x1(t) = t, x2(t) = t2, t ∈ [0,1], then d3(x1, x2) = 0. Then, (F3, d3) is a
semi-metric space .
The α-mixing (strong mixing) condition is the weakest among mixing conditions known in the

literature and it has an important role in a number of applications with survival data (see Kang
and Koehler, 1997; or Cai et al., 2000). We begin by recalling the definition of the strong mixing
property. For this we introduce the following notations. Let F k

i (V) denote the σ-algebra generated
by

{
Vj, i ≤ j ≤ k

}
.

Definition 1. Let {Vi, i = 1,2, ...} be a strictly stationary sequence of random variables. Given a
positive integer n, set

α(n) = sup
{
|IP(A ∩ B) − IP(A)IP(B)| : A ∈ F k

1 (V) and B ∈ F∞k+n(V), k ∈ IN∗
}
.

The sequence {Vi, i ≥ 1} is said to be α-mixing if the mixing coefficient α(n) → 0 as n→∞.
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This condition was introduced by Rosenblatt (1956). The strong mixing condition is reasonably
weak and has many practical applications (for more details, see Doukhan, 1994; Dedecker et al.,
2007).
In this paper we are interested in establishing the asymptotic normality of the local linear esti-

mator of the conditional density when the response variable is subject to random censoring and the
observations are generated by an α-mixing process. In the case of finite dimensional data, Fan et al.
(1996) established the joint asymptotic normality of the estimators of the conditional density and its
derivative under stationary ρ-mixing processes. Liang and Baek (2016) also get similar results under
left-truncated and α-mixing data. Recently, Xiong et al. (2018) established the asymptotic normality
of the local linear estimator of the conditional density for functional time series data. This work will
extend their results to α-mixing conditions for functional censored data.
This paper is organised as follows. In Section 2 we introduce the estimators of the conditional

density function. In Sections 3 and 4 we give some assumptions and comments. The main results
are formulated in Section 5. In Sections 6 and 7 we give the proofs of our results.

2. The model
We assume that there exists a regular version of the conditional probability of Y given X , which
is absolutely continuous with respect to the Lebesgue measure on R and has a twice continuously
differentiable density, denoted by f x(y). When the data are complete, local polynomial smoothing
is based on the assumption that the functional parameter is smooth enough to be locally well
approximated by a polynomial. In functional statistics, there are several ways for extending the local
linear ideas (cf. Baíllo and Grané, 2009; Barrientos-Marin et al., 2010). Here we adopt the fast
functional local modelling, that is, we estimate the conditional density f x(y) by â where the pair
(â, b̂) is obtained by minimising the following quantity:

min
(a,b)∈IR2

n∑
i=1

(
h−1
H H(h−1

H (y − Yi)) − a − bβ(Xi, x)
)2

K(h−1
K δ(x,Xi)),

where β(·, ·) and δ(·, ·) are locating functions defined from F 2 to IR, such that ∀x ∈ F , β(x, x) = 0
and d(·, ·) = |δ(·, ·)|, with K and H being kernels and hK = hK ,n (resp. hH = hH ,n) chosen as a
sequence of positive real numbers.
In the censored case, we adapt the idea of Carbonez et al. (1995), Kohler et al. (2002), and

Khardani et al. (2010) to the infinite dimensional case by using a smooth distribution function H(·)
instead of a step function. In practice G(·) := 1 −G(·) is unknown. Therefore, we replace G(·) by its
Kaplan–Meier (Kaplan and Meier, 1958) estimate Gn(·) given by

Gn(y) := 1 − Gn(y) =


∏n

i=1

(
1 −

1 − δ(i)
n − i + 1

)1{T(i)≤y}
if y < T(n),

0 otherwise,

where T(1) < T(2) < ... < T(n) are the order statistics of Ti and δ(i) is the concomitant of T(i), which is
known to be uniformly convergent to G. Then the estimator of f x(y) is defined as â where the pair
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(â, b̂) minimises the following quantity:

min
(a,b)∈IR2

n∑
i=1

(
h−1
H δiG

−1
n (Ti)H(h

−1
H (y − Ti)) − a − bβ(Xi, x)

)2
K(h−1

K δ(x,Xi)). (1)

Here we denote â by f̂ x(y). In addition, the estimator b̂ may similarly be used as an estimator of the
derivative of f x(y).
In what follows, we put, for any x ∈ F , and for all i = 1, . . . ,n,

Ki = K(h−1
K δ(x,Xi)), βi = β(Xi, x) and Hi = H(h−1

H (y − Ti)).

Let

X =
©«

1 β1
...

...

1 βn

ª®®®¬ , H∗ =
©«

h−1
H δ1G

−1
n (T1)H1
...

h−1
H δnG

−1
n (Tn)Hn

ª®®®¬ , W = diag(K(h−1
K δ(x,Xi))).

Then, from (1), simple algebra shows that

(â, b̂)t = (XtWX)−1XtWH∗.

Let

Sn =

(
sn0 sn1
sn1 sn2

)
and tn =

(
tn0
tn1

)
,

where

snj =
1

nIE[K1]

n∑
i=1

(
βi
hK

) j
Ki and tnj =

1
nIE[K1]

n∑
i=1

(
βi
hK

) j
Kih−1

H δiG
−1
n (Ti)Hi .

Then
( f̂ x(y), b̂)t = diag(1, h−1

K )S
−1
n tn.

Clearly, by simple algebra, we get explicitly the following expression for f̂ x(y):

f̂ x(y) =

∑n
i, j=1 δiG

−1
n (Ti)Wi j(x)H(h−1

H (y − Ti))

hH
∑n

i, j=1 Wi j(x)
,

where
Wi j(x) = β(Xi, x)

(
β(Xi, x) − β(Xj, x)

)
K(h−1

K δ(x,Xi))K(h−1
K δ(x,Xj)),

with the convention 0/0 = 0.

3. Notations and hypotheses
In what follows, for any distribution function L, let τL := sup{t : L(t) < 1} be its support’s right
endpoint. Observe that τJ = min(τF , τG) and consider τ < τJ . LetΩ be a compact subset of (−∞, τ].
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In the sequel, letC,C1,andC2 denote generic finite positive constantswhose values are unimportant
and may change from line to line. Set

φx(r1,r2) = IP(r2 ≤ δ(x,X) ≤ r1),

ψl(·) =
∂l f (.)(y)
∂yl

,

Ψl(s) = IE [ψl(X) − ψl(x)|δ(x,X) = s] , for some l ∈ {0,2}.

We will assume the following hypotheses:

(H1) For any r > 0, φx(r) := φx(−r,r) > 0 and there exists a function χx(·) such that

∀t ∈ [−1,1], lim
h→0

φx(−h, th)
φx(h)

= χx(t).

(H2) For any l ∈ {0,2}, the quantities Ψ′
l
(0) and Ψ′′

l
(0) exist, where Ψ′

l
and Ψ′′

l
denote the first and

the second derivatives of Ψl , respectively.

(H3) (Yi, Xi)i≥1 is a sequence of stationary α-mixing rvs with coefficient α(n).

(H4) The mixing coefficient α(n) satisfies:

(i) α(n) = O(n−λ) for some λ > 3;

(ii) there exist positive integers q := qn such that q = o((n hHφx(hK ))1/2) and

lim
n→∞
(n (hHφx(hK ))−1)1/2α(q) = 0.

(H5) The locating operator β(·, ·) satisfies the following three conditions:

(i) ∀z ∈ F , C1 |δ(x, z)| ≤ |β(x, z)| ≤ C2 |δ(x, z)|, where 0 < C1 < C2,

(ii) supu∈B(x,r) |β(u, x) − δ(x,u)| = o(r), and

(iii) hK
∫
B(x,hK )

β(u, x)dPX (u) = o(
∫
B(x,hK )

β2(u, x)dPX (u)),

where B(x,r) = {z ∈ F /|δ(x, z)| ≤ r} is a ball centered at x with radius r and PX (u) is
the probability distribution of X .

(H6) (i) K is a positive, differentiable function supported within [−1,1]. Its derivative K ′ satisfies
K ′(t) < 0, for −1 ≤ t < 1, and K(1) > 0.

(ii) The random variable δ(X, x) is measurable with respect to the σ-field generated by the
random variable β(X, x).

(H7) H is a positive function, integrable, bounded, symmetric and such that∫
H(t)dt = 1 and

∫
t2H(t)dt < ∞.

(H8) The bandwidths hK and hH satisfy

lim
n→∞

hK = 0, lim
n→∞

hH = 0 and lim
n→∞

n hHφx(hK ) = ∞.
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(H9) (i) supi,j P[(Xi,Xj) ∈ B(x, hK ) × B(x, hK )] ≤ f (x)g(hK ) as hK → 0, where g(hK ) → 0
as hK → 0 and f (x) is a nonnegative functional in x ∈ F . We assume that the ratio
g(hK )/φ2

x(hK ) is bounded.

(ii) For all j > 1, the joint conditional density f (·, ·)(·, ·) of (Y1,Yj) given (X1,Xj) exists on
IR × IR × F × F and satisfies f (x1 ,x j )(y1, yj) ≤ C for (y1, yj, x1, xj) ∈ IR × IR × B(x; r0) ×

B(x; r0), where r0 > 0.

(iii) For all j > 1, the conditional density f (·, ·)(·) of Y1 given (X1,Xj) exists on IR × F × F
and satisfies f (x1 ,x j )(y1) ≤ C for (y1, x1, xj) ∈ IR × B(x; r0) × B(x; r0).

(iv) For all j > 1, the conditional density f (·, ·)(·) of Yj given (X1,Xj) exists on IR × F × F
and satisfies f (x1 ,x j )(yj) ≤ C for (yj, x1, xj) ∈ IR × B(x; r0) × B(x; r0).

(H10) limn→∞ n h5
Hφx(hK ) = 0 and limn→∞ n hH h4

Kφx(hK ) = 0.

Remark 1. Assumption (H1) characterises the concentration property of the probability measure of
the functional variable X , while Assumption (H2) is a regularity condition which characterises the
functional space of ourmodel. Assumptions (H3) and (H4)(i) specify themodel and the rate ofmixing
coefficient. Conditions in (H4) allow us to employ Bernstein’s big-block and small-block technique
to prove asymptotic normality for an α-mixing sequence. Assumption (H5)(i) is necessary to control
the shape of the local functional object β; Assumption (H5)(ii) is unrestrictive and Assumption
(H5)(iii) is a pivotal hypothesis on the local performance of the operator β. Assumption (H6)(i),
(H7) and (H8) are used commonly in the literature. Assumption (H9) is mainly technical, which is
employed to simplify the calculations of covariances in the proof. Finally, Assumption (H10) is used
to remove the bias term.

4. Main results: asymptotic normality
To give the main result, we list some notations. In the sequel, we let

Ma = Ka(1) −
∫ 1

−1
(Ka(u))′χx(u)du,

where a > 0,

N(a, b) = Ka(1) −
∫ 1

−1
(ubKa(u))′χx(u)du,

for all a > 0 and b > 1, and

S =

(
1 0
0 N(1,2)

M1

)
, V = ©«

M2
M2

1
0

0 N(2,2)
M2

1

ª®¬ , U =

(
N(1,2)

M1
N(1,3)

M1

)
.

Theorem 1. Suppose that Assumptions (H1)–(H9) hold. Then

(nhHφx(hK ))1/2
[
diag(1, hK )

(
f̂ x(y) − f x(y)
b̂ − Ψ′0(0)

)
−

h2
K

2
Ψ
′′
0 (0)S

−1U

−
h2
H

2
ψ2(x)

∫
t2H(t)dt

(
1
0

)]
D
−→ N

(
0,G

−1
(y) f x(y)

∫
H2(t)dtS−1VS−1

)
.
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Corollary 1. Suppose that Assumptions (H1)–(H9) hold. Then

(nhHφx(hK ))1/2( f̂ x(y) − f x(y) −
h2
K

2
Ψ
′′
0 (0)

N(1,2)
M1

−
h2
H

2
ψ2(x)

∫
t2H(t)dt)

D
−→ N(0,V x

HK (y)),

where
V x
HK (y) = G

−1
(y) f x(y)

M2

M2
1

∫
H2(t)dt .

Now, to construct confidence intervals for f x(y) we need to remove the bias term and obtain a
plug-in estimator of

G
−1
(y)

f x(y)
hH

M2

M2
1nφx(hK )

∫
H2(t)dt. (2)

Corollary 2. Suppose that Assumptions (H1)–(H10) hold. Then(
nhHφx(hK )

V x
HK (y)

)1/2
( f̂ x(y) − f x(y))

D
−→ N(0,1).

On the other hand, by Assumptions (H1), (H5) and (H6)(i) we know that M2/M2
1nφx(hK ) can be

estimated by IE(K2
1 )/IE

2(K1), and by applying the kernel estimator of f x(y) and the Kaplan–Meier
estimator of G

−1
(y) given above, the quantity (2) can be estimated by

G
−1
n (y)

f̂ x(y)
hH

IE(K2
1 )

IE2(K1)

∫
H2(t)dt + σ̂2(y/x).

Then, we approximate a (1 − γ) confidence interval of f x(y) by[
f̂ x(y) − u1−γ/2σ̂(y/x); f̂ x(y) + u1−γ/2σ̂(y/x)

]
,

where u1−γ/2 denotes the (1 − γ/2)-level quantile of the standard normal distribution.

5. Computational studies
In this section, a simulation study is carried out to investigate the finite-sample performance of the
local linear estimator fLL(y |x) of the conditional density function under right-censored and functional
dependent data. As everyone knows, the applicability of the asymptotic normality result requires a
practical estimation of the asymptotic bias and variance. For this we neglect the bias term and we
use a plug-in approach to construct an estimator of the asymptotic variance of the conditional density
function given by

G
−1
(y)

f x(y)
hH

M2

M2
1nφx(hK )

∫
H2(t)dt. (3)

To test the effectiveness of the asymptotic normality result and to gauge its usefulness, let us
consider the following regression model where the response is a scalar: Yi = r(Xi) + εi , i = 1, . . . ,n,
where εi is the error generated by an autoregressive model defined by

εi =
1
√

2
(εi−1 + ηi) , i = 1, . . . ,n,
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Figure 1. A set of 300 simulated curves.

with {ηi}i a sequence of i.i.d. normally distributed random variables with a variance equal to 0.1.
The explanatory variables are constructed according to

X(t) = A(2 − cos(πtW)) + (1 − A) cos(πtW), t ∈ [0,1],

where W is generated from a standard normal distribution and A is a Bernoulli random variable with
parameter p = 0.5. The Xi are generated from 300 curves and are plotted in Figure 1. On the other
hand, n i.i.d. random variables {Ci}i are generated from the exponential distribution E(λ) and for
i = 1, . . . ,n = 300, the scalar response Yi is computed by considering the following operator:

r(X) = 4 exp


1

2 +
∫ π/2

0 |Xi(t)|2

 .
Given X = x, we can easily see that Y has as a normal distribution with mean r(x) and variance

0.2. Then, we can get the corresponding conditional density, which is explicitly defined by

fY |X (y |x) =
1

√
2π × 0.3

exp
{
−

1
2 × 0.3

(y − r(x))2
}
.
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Figure 2. Distribution of the MSE obtained for different CR for n = 300.

Therefore, the conditional mode, the conditional mean r(x), and the conditional median functions
will coincide andwill be equal to r(x), for any fixed x. Our goal, now, involves evaluating the accuracy
of the conditional mode function estimator based on randomly censored data. The computation of this
estimator is based on the observed data (Xi,Ti, δi)i=1,...,n ,where Ti = min(Yi,Ci) and δi = 1{Yi ≤Ci }.
In this simulation study, we present results only for the case where i = 2 and q = 1. For this, we

take K0(s) = 3(1 − s2)1[1,1), K(1) > 0, and K1(s) = 3(1 − s2)1[1,1]. Elsewhere, as it is well known
in FDA, the choice of the metric and the smoothing parameters have crucial roles in computational
respects. To optimise these choices for this illustration, we use the local cross-validation procedure
method for choosing smoothing parameters hK and hH (see Laksaci et al., 2013).
Another important point for ensuring good behaviour of the considered methods is to use locating

functions δ and/or β that are well adapted to the kind of data that we have to deal with. Here, it
is clear that the shape of the curves (cf. Figure 1) allows us to use the locating functions σ and β
defined by the derivatives of the curves. More precisely, we take

δ(x, x ′) =
(∫ 1

0
(x(i)(t) − x ′(i)(t))2dt

)1/2

and β(x, x ′) =
∫ 1

0
α(t)(xi(t) − x ′i (t))

2dt,

where x(i) denotes the ith derivative of the curve x, and α is the eigenfunction of the empirical
covariance operator n−1 ∑n

i=1(X
(i)
j − X̄ (i))(X (i)j − X̄ (i)) associated with the q−greatest eigenvalues.

The performance of the conditional mode estimator θ̂n(x) is evaluated on N = 400 replications using
different sample sizes n = 50,100,200,300. The mean squared error (MSE) is considered here; in
particular, for a fixed x, MSE = 1

400
∑400

m=1(θ̂n,m(x) − r(x))2. Figure 2 displays the distribution of the
obtained MSE given by the N replications. One can observe that the proposed estimator performs
well, especially when the sample size increases. This conclusion is confirmed by Table 1 which
provides a numerical summary of the distribution of the MSE with different censored rates (CR).
In the second part of the simulation studies, we are interested in the evaluation of the prediction
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Table 1. Numerical summary of the distribution of the MSE, for
N = 400, obtained for n = 50,100,200 and 300.

CR = 2% CR = 7% CR = 16% CR = 49%

n = 50 0.392 0.472 0.673 2.431
n = 100 0.301 0.332 0.472 1.964
n = 200 0.220 0.292 0.346 1. 632
n = 300 0.102 0.150 0.215 1.214

accuracy of the conditional median with different censored rates (CR). A sample (Xi,Yi)i=1,...,550 of
size n = 550 generated from the model described above, is considered for this purpose. We split this
sample in two parts: a learning subsample {(Xi,Yi); i = 1, . . . ,500}, which is used to calculate the
predictor (the conditional mode in this case), and a testing subsample {(Xi,Yi); i = 501, . . . ,550},
used to evaluate the performance of the predictor. The prediction accuracy is measured for different
values of CR by using the Mean Absolute Error (MAE) defined as M AE = 1

50
∑550

i=501 |Yi − θ̂n(Xi)|,
as well as the Mean Squared Error (MSE) defined as MSE = 1

50
∑550

i=501(Yi − θ̂n(Xi))
2. We can

see that the prediction accuracy of the conditional mode decreases as the censored rate increases.
For censoring distributions we considered E(2) − 1, (CR = 7%,M AE = 0.204,MSE = 0.483),
E(2), (CR = 16%,M AE = 0.363,MSE = 0.62), and E(2) + 5, (CR = 49%,M AE = 1.052,MSE =
2.291).

6. Appendix
To prove the main result we need the following lemmas.

Lemma 1 (see Rachdi et al., 2014). Suppose that Assumptions (H1), (H5) and (H6)(i) hold. Then,

(a) IE[Ka
1 ] = Maφx(hk) + o(φx(hk)), for a > 0;

(b) IE[Ka
1 β1] = o(hkφx(hk)), for all a > 0;

(c) IE[Ka
1 β

b
1 ] = N(a, b)hb

k
φx(hk) + o(hb

k
φx(hk)), for all a > 0, b > 1.

Lemma 2. Suppose that Assumptions (H2), (H5)–(H7) and (H9) hold. Then,

(a) h−2
H IE[K1Kjδ1G

−1
(T1)H1δjG

−1
(Tj)Hj] = O(g(hK ));

h−1
H IE[K1Kjδ1G

−1
(T1)H1] = O(g(hK ));

h−1
H IE[K1KjδjG

−1
(Tj)Hj] = O(g(hK ))IE[K1Kj] = O((g(hK )), for all j > 1.

(b) h−1
H IE[Ka

1 β
b
1 δ1G

−c
(T1)Hc

1 ] = G
1−c
(y)

∫
Hc(t)dt

{
ψ0(x)IE[Ka

1 β
b
1 ] + Ψ

′
0(0)IE[K

a
1 β

b+1
1 ]

}
+

h2
H

2
G

1−c
(y)

∫
t2Hc(t)dt

{
ψ2(x)IE[Ka

1 β
b
1 ] + Ψ

′
2(0)IE[K

a
1 β

b+1
1 ]

}
+ o(IE[Ka

1 β
b+1
1 ]) + o(h2

H IE[Ka
1 β

b
1 ])

for a > 0, b = 0 and c = 0, or b > 1 and c > 1.
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Lemma 3 (see Xiong et al., 2018). Suppose that Assumptions (H1)–(H9) hold. Then

sn0
P
−→ 1, sn1

P
−→ 0, sn2

P
−→

N(1,2)
M1

, sn3
P
−→

N(1,3)
M1

.

Lemma 4 (see Volkonskii and Rozanov, 1959). Let V1, ...,Vm be α-mixing random variables mea-
surable with respect to the σ-algebras F j1

i1
, ...,F

jm
im

, respectively, with 1 ≤ i1 < j1 < ... < jm ≤ n,
1 ≤ w ≤ il+1 − jl and |Vj | ≤ 1 for l, j = 1,2, ...,m. Then,������IE


m∏
j=1

Vj

 −
m∏
j=1

IE[Vj]

������ ≤ 16(m − 1)αw,

where F b
a = σ{Vi,a ≤ i ≤ b} and αw is the mixing coefficient.

Lemma 5 (see Davydov, 1968, Corollary, p. 692). Suppose that X and Y are random variables
satisfying IE|X |p < ∞, IE|Y |q < ∞, where p,q > 1, p−1 + q−1 < 1. Then

|IE[XY ] − IE[X]IE[Y ]| ≤ 8IEp−1
|X |pIEq−1

|Y |q
{

sup
A∈σ(x),B∈σ(Y)

|p(A ∩ B) − p(A)p(B)|

}1−p−1−q−1

.

Proof of Theorem 1
Define

Tnj =
1

nIE[K1]

n∑
i=1

(
βi
hK

) j
Ki(h−1

H δiG
−1
n (Ti)Hi − IE[ f Xi (y)|βi]),

t∗nj =
1

nIE[K1]

n∑
i=1

(
βi
hK

) j
Ki(h−1

H δiG
−1
(Ti)Hi − IE[ f Xi (y)|βi]),

and let Tn = (Tn0,Tn1)
τ and t∗n = (t∗n0, t

∗
n1)

τ . In view of (H2), when |βi | ≤ ChK , by Taylor expansion,
we get

Ψ0(βi) = Ψ
′
0(0)βi +

1
2
Ψ
′′
0 (0)β

2
i + o(β2

i ).

Then,

IE[ f Xi (y)|βi] = f x(y) + IE[ f Xi (y) − f x(y)|βi]

= f x(y) + Ψ0(βi) (4)

= f x(y) + Ψ′0(0)βi +
1
2
Ψ
′′
0 (0)β

2
i + o(β2

i ).

Therefore,

(IE[ f X1 (y)|β1], ...., IE[ f Xn (y))|βn])
τ = X

(
f x(y)
Ψ
′
0(0)

)
+

1
2
Ψ
′′
0 (0)(β

2
1, ...., β

2
n)
τ + (o(β2

1), ...,o(β
2
n))

τ .

Then

S−1
n t∗n = diag(1, hK )

(
f̂ x(y) − f x(y)
Ψ̂
′
0(0) − Ψ

′
0(0)

)
−

h2
K

2
Ψ
′′
0 (0)S

−1
n

(
sn2
sn3

)
− o(h2

K )S
−1
n

(
sn2
sn3

)
− S−1

n (Tn − t∗n).
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Lemma 3 implies that
Sn

P
−→ S,

and

S−1
n

(
sn2
sn3

)
P
−→ S−1U.

The rest of the proof is divided into the following two steps:
Step 1. We verify that

S−1
n (Tn − t∗n) = Op

(√
log(log n)

n

)
.

Note that, for 0 ≤ j ≤ 1, we have

|Tnj − t∗nj | =

����� 1
nIE[K1]

n∑
i=1

(
βi
hK

) j
Kih−1

H δiHi

[
G
−1
n (Ti) − G

−1
(Ti)

] �����
≤ sup

t∈Ω

���G−1
n (t) − G

−1
(t)

��� 1
nh j

K IE[K1]

n∑
i=1

���β ji Kih−1
H Hi

��� .
Then from (nh j

K IE[K1])
−1 ∑n

i=1 |β
j
i Kih−1

H Hi | = Op(1), Lemma 3 and the LIL on the censoring law
(see formula (4.28) in Deheuvels and Einmahl, 2000), one obtains the result.
Step 2. We prove that

(nhHφx(hK ))1/2
{

t∗n −
h2
H

2
ψ2(x)

∫
t2H(t)dt

(
1
0

)
+ o(h2

H )

}
D
−→ N(0,G

−1
(y) f x(y)

∫
H2dtV).

(5)
For any given vector of real numbers a = (a0,a1)

τ , 0, set

Ui =
(hHφx(hK ))1/2

IE[K1]

(
a0 + a1

βi
hK

)
Ki

(
h−1
H δiG

−1
(Ti)Hi − IE[ f Xi (y)|βi]

)
,1 ≤ i ≤ n.

Then

(nhHφx(hK ))1/2aτ t∗n =
1
√

n

n∑
i=1
(Ui − IE[Ui]) +

1
√

n

n∑
i=1

IE[Ui]. (6)

From theCramér–Wold theorem andEquation (6), Equation (5)will hold if we can prove the following
two claims:

Claim 1. 1√
n

∑n
i=1 IE[Ui] = (nhHφx(hK ))1/2

{
a0h

2
Hψ2(x)

2

∫
t2H(t)dt + o(h2

H )

}
.

Claim 2. 1√
n

∑n
i=1(Ui − IE[Ui])

D
−→ N(0,∆2(y |x)),∆2(y |x) := G

−1
(y) f x(y)

∫
H2(t)dtaτVa.
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Proof of Claim 1.

1
√

n

n∑
i=1

IE[Ui] =
√

nIE[U1]

=
a0(nhHφx(hK ))1/2

IE[K1]
{h−1

H IE[K1δ1G
−1
(T1)H1] − IE[K1ψ0(X1)]}

+
a1(nhHφx(hK ))1/2

hK IE[K1]
{h−1

H IE[K1β1δ1G
−1
(T1)H1] − IE[K1β1ψ0(X1)]}.

For a = c = 1, we obtain from Lemma 2 that

h−1
H IE[K1β

b
1 δ1G

−1
(T1)H1] − IE[K1β

b
1ψ0(X1)]

=
h2
H

2

∫
t2H(t)dt{ψ2(x)IE[K1β

b
1 ] + Ψ

′
2(0)IE[K1β

b+1
1 ] + o(IE[K1β

b+1
1 ])} + o(h2

H IE[K1β
b
1 ]).

Therefore,

1
√

n

n∑
i=1

IE[Ui] =
a0(nhHφx(hK ))1/2

IE[K1]
IE[K1]

{
h2
H

2

∫
t2H(t)dtψ2(x) + o(h2

H )

}
+

a1(nhHφx(hK ))1/2

hK IE[K1]

{
h2
H

2

∫
t2H(t)dt{IE[K1β1]ψ2(x) + IE[K1β

2
1]Ψ

′
2(0)

+ o(IE[K1β
2
1])} + o(h2

H IE[K1β1])

}
.

Claim 1 now follows from Lemma 1.

Proof of Claim 2. The proof is similar to the proof of Theorem 4.1 in Xiong et al. (2018).

Assumption (H4)(ii) implies that there is a sequence of positive integers δn → ∞, such that
δnqn = o((nhHφx(hK ))1/2) and δn(n(hHφx(hK ))−1)1/2α(qn) → 0. Let ω = [ n

r+q ] and r =
[(nhHφx(hK ))1/2/δn]. Then,

q/r → 0, ωα(q) → 0, ωq/n→ 0, r/n→ 0, r/(nhHφx(hK ))1/2 → 0. (7)

Next we will employ Bernstein’s big-block and small-block procedure. Partition the set {1,2, .....,n}
into 2ω + 1 subsets with large block size r and small block size q. Let

Wi = Ui − IE[Ui], 1 ≤ i ≤ n, ζmn =

km+r−1∑
i=km

Wi, ζ
′
mn =

lm+q−1∑
i=lm

Wi, ζ
′′
mn =

n∑
i=ω(r+q)+1

Wi,

where km = (m − 1)(r + q) + 1, lm = (m − 1)(r + q) + r + 1, m = 1, ....,ω. Then,

1
√

n

n∑
i=1
(Ui − IE[Ui]) = n−1/2

n∑
i=1

Wi = n−1/2

{
ω∑

m=1
ζmn +

ω∑
m=1

ζ ′mn + ζ
′′
ωn

}
:= n−1/2{=1n + =2n + =3n}.
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Then it suffices to show that

n−1IE(=2n)
2 → 0,n−1IE(=3n)

2 → 0,Var[n−1/2=1n)] → ∆
2(y |x), (8)�����IE[exp(it

ω∑
m=1

n−1/2ζmn)] −

ω∏
m=1

IE[exp(itn−1/2ζmn)]

�����→ 0, (9)

An(ε) =
1
n

ω∑
m=1

IE[ζ2
mnI(|ζmn | > ε∆(y |x)

√
n)] → 0,∀ε > 0. (10)

We first prove (8). Write

n−1IE(=2n)
2 =

1
n

ω∑
m=1

lm+q−1∑
i=lm

IE[W2
i ] +

2
n

ω∑
m=1

∑
lm≤i< j≤lm+q−1

Cov(Wi,Wj) +
2
n

∑
1≤i< j≤ω

Cov(ζ ′in, ζ
′
jn)

:= J1n + J2n + J3n.

Calculate IE[W2
1 ] = IE[U2

1 ] − IE2[U1], where we note that IE[U2
1 ] is equal to

hHφx(hK )

IE2[K1]
IE[(a0 + a1

β1

hK
)2K2

1 (h
−1
H δ1G

−1
(T1)H1 − IE[ f X1 (y)|β1])

2]

=
a2

0hHφx(hK )

IE2[K1]
{h−2

H IE[K2
1 δ1G

−2
(T1)H2

1 ] − 2h−1
H IE[K2

1 δ1G
−1
(T1)H1IE[ f X1 (y)|β1]]

+ IE[K2
1 IE2[ f X1 (y)|β1]]}

+
a2

1hHφx(hK )

h2
K IE2[K1]

{h−2
H IE[K2

1 β
2
1δ1G

−2
(T1)H2

1 ] − 2h−1
H IE[K2

1 β
2
1δ1G

−1
(T1)H1IE[ f X1 (y)|β1]]

+ IE[K2
1 β

2
1IE2[ f X1 (y)|β1]]}

+
2a0a1hHφx(hK ))

hK IE2[K1]
{h−2

H IE[K2
1 β1δ1G

−2
(T1)H2

1 ] − 2h−1
H IE[K2

1 β1δ1G
−1
(T1)H1IE[ f X1 (y)|β1]]

+ IE[K2
1 β1IE2[ f X1 (y)|β1]]}.

Equation (4), Assumptions (H6)(i), (H5) and (H2) imply that

K2
1 IE[ f X1 (y)|β1] = K2

1 O(1) and K2
1 IE2[ f X1 (y)|β1] = K2

1 O(1).

Then we get

IE[U2
1 ] =

a2
0hHφx(hK )

IE2[K1]
{h−2

H IE[K2
1 δ1G

−2
(T1)H2

1 ] − 2h−1
H IE[K2

1 δ1G
−1
(T1)H1]O(1) + IE[K2

1 ]O(1)}

+
a2

1hHφx(hK )

h2
K IE2[K1]

{h−2
H IE[K2

1 β
2
1δ1G

−2
(T1)H2

1 ]

− 2h−1
H IE[K2

1 β
2
1δ1G

−1
(T1)H1]O(1) + IE[K2

1 β
2
1]O(1)}

+
2a0a1hHφx(hK ))

hK IE2[K1]
{h−2

H IE[K2
1 β1δ1G

−2
(T1)H2

1 ]

− 2h−1
H IE[K2

1 β1δ1G
−1
(T1)H1]O(1) + IE[K2

1 β1]O(1)},
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which, along with Lemma 1 and Lemma 2(b), implies that

IE[U2
1 ] → a2

0
M2

M2
1

G
−1
(y)

∫
H2(t)dtψ0(x) + a2

1
N(2,2)

M2
1

G
−1
(y)

∫
H2(t)dtψ0(x)

= a2
0
M2

M2
1

G
−1
(y)

∫
H2(t)dt f x(y) + a2

1
N(2,2)

M2
1

G
−1
(y)

∫
H2(t)dt f x(y)

= G
−1
(y) f x(y)

∫
H2(t)dtaτVa. (11)

From Claim 1 we have IE[U1] → 0. Hence,

IE[W2
1 ] = IE[U2

1 ] − IE2[U1] → ∆
2(y |x), (12)

which yields J1n = O(ωq/n) → 0 by Equation (7). From the definition of =2n, we know

|J2n | ≤
2
n

∑
1≤i< j≤n

|Cov(Wi,Wj)| =
2
n

∑
1≤i< j≤n

|Cov(Ui,Uj)|,

|J3n | ≤
2
n

∑
1≤i< j≤n

|Cov(Wi,Wj)| =
2
n

∑
1≤i< j≤n

|Cov(Ui,Uj)|.

Therefore, to prove J2n = o(1) and J3n = o(1), we need only prove that

1
n

∑
1≤i< j≤n

|Cov(Ui,Uj)| → 0. (13)

Take cn = [hHφx(hK )]−(1−
1
λ )/η , for some 1 − 1/λ < η < λ − 2. Then we set

G1 = {(1, j) : j ∈ {1, ......,n},1 ≤ j − 1 ≤ cn},

G2 = {(1, j) : j ∈ {1, ......,n}, cn + 1 ≤ j − 1 ≤ n − 1}.

According to the above splitting, we get

1
n

∑
1≤i< j≤n

|Cov(Ui,Uj)| =
∑
j∈G1

(1 −
j − 1

n
)|Cov(U1,Uj)| +

∑
j∈G2

(1 −
j − 1

n
)|Cov(U1,Uj)|. (14)

Note that

|Cov(Ui,Uj)| ≤ |IE[U1Uj]| + IE2[U1]. (15)

Equation (4), Assumptions (H6)(i), (H5) and (H2) imply that

K1IE[ f X1 (y)|β1] = K1O(1) and
β1

hK
K1 = K1O(1). (16)
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Then

|IE[U1Uj]| ≤ IE|U1Uj |

=
hHφx(hK )

IE2[K1]
IE

����� (a0 + a1
β1

hK

)
K1

(
h−1
H δ1G

−1
(T1)H1 − IE[ f X1 (y)|β1 |]

)
(
a0 + a1

βj

hK

)
Kj

(
h−1
H δjG

−1
(Tj)Hj − IE[ f Xj (y)|βj |]

)�����.
≤

hHφx(hK )

IE2[K1]
IE[O(1)K1Kj(h−1

H δ1G
−1
(T1)H1 +O(1))(h−1

H δjG
−1
(Tj)Hj +O(1))]

= O(1)
hHφx(hK )

IE2[K1]

{
h−2
H IE[K1Kjδ1G

−1
(T1)H1δjG

−1
(Tj)Hj]

+ h−1
H IE[K1Kjδ1G

−1
(T1)H1] + h−1

H IE[K1KjδjG
−1
(Tj)Hj] + IE[K1Kj]

}
,

which, with Lemma 2(a) and Assumption (H9)(i), implies that

|IE[U1Uj]| = O(hHφx(hK )). (17)

In addition, Claim 1 implies that

IE2[U1] = O(h5
Hφx(hK )). (18)

Then, Equations (15), (17) and (18) yield

Cov(U1,Uj) = O(hHφx(hK )). (19)

Equation (19) implies that∑
j∈G1

(
1 −

j − 1
n

)
|Cov(U1,Uj)| = O(1)

cn∑
j=1

hHφx(hK ) = O(cnhHφx(hK ))

= O(1)[hHφx(hK )]1−(1−
1
λ )/η → 0. (20)

On the other hand, it follows from Lemma 5 that

|Cov(U1,Uj)| ≤ 8[IE|U1 |
2λ]1/λ[α( j − 1)]1−

1
λ . (21)

The Cr-inequality and Equation (16) imply that

IE|[U1]|
2λ =

(hHφx(hK ))λ

IE2λ[K1]
IE

����(a0 + a1
β1

hK

)
K1(h−1

H δ1G
−1
(T1)H1 − IE[ f X1 (y)|β1])

����2λ
=
(hHφx(hK ))λ

IE2λ[K1]
IE

���O(1)K1(h−1
H δ1G

−1
(T1)H1 +O(1))

���2λ
≤ O(1)

(hHφx(hK ))λ

IE2λ[K1]
{IE[h−2λ

H K2λ
1 δ1G

−2λ
(T1)H2λ

1 ] + IE[K2λ
1 ]}

= O(1)
(hHφx(hK ))λ

IE2λ[K1]
{h1−2λ

H IE[h−1
H K2λ

1 δ1G
−2λ
(T1)H2λ

1 ] + IE[K2λ
1 ]},
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again by Lemma 1 and Lemma 2(b),

IE|U1 |
2λ = O((hHφx(hK ))1−λ). (22)

It follows from Equations (21) and (22) that∑
j∈G2

(1 −
j − 1

n
)|Cov(U1,Uj)| = O(1)

∑
j∈G2

[α( j − 1)]1−
1
λ (hHφx(hK ))−(1−

1
λ )

≤ O(1)
∑

m≥Cn+1
m−(λ−1)(hHφx(hK ))−(1−

1
λ )

≤ O(1)C−(λ−2)
n (hHφx(hK ))−(1−

1
λ )

≤ O(1)(hHφx(hK ))−(1−
1
λ )[hHφx(hK )]

(1− 1
λ )(λ−2)
η → 0. (23)

Equations (14), (20) and (23) imply (13). Then, we have n−1E(=2n)
2 → 0. As to n−1E(=3n)

2, by
(7), (11) and (13),

n−1IE(=3n)
2 ≤

1
n

n∑
i=ω(r+q)+1

IE[W2
i ] +

2
n

n∑
1≤i< j≤n

|Cov(Wi,Wj)|

≤
1
n

n∑
i=ω(r+q)+1

IE[U2
i ] +

2
n

n∑
1≤i< j≤n

|Cov(Ui,Uj)|

≤ C.
n − ω(r + q)

n
+

2
n

n∑
1≤i< j≤n

|Cov(Ui,Uj)| → 0.

Besides, since ωr/n→ 1, it follows from (12) and (13) that

Var[n−1/2=1n] =
1
n

IE(=1n)
2

=
1
n

ω∑
m=1

km+r−1∑
i=km

IE[W2
i ] +

2
n

ω∑
m=1

∑
km≤i< j≤km+r−1

|Cov(Wi,Wj)|

+
2
n

∑
1i< j≤n

|Cov(ζin, ζjn)|

=
ωr
n

IE[Wi]
2 +O ©«1

n

∑
1≤i< j≤n

|Cov(Ui,Uj)|
ª®¬→ ∆2(y |x),

and so (8) is proved.
As to (9), according to (7) and Lemma 4, we have�����IE[exp(it

ω∑
m=1

n−1/2ζmn)] −

ω∏
m=1

IE[exp(itn−1/2ζmn)]

����� ≤ 16(ω − 1)α(q + 1) ≤ 16ωα(q) → 0.

Finally, we establish (10). Thinking about max1≤m≤ω |ζmn |, from (16), Assumptions (H6)(i), (H7)
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and Lemma 1(a), we have

(hHφx(hK ))1/2

r
max

1≤m≤ω
|ζmn |

≤
(hHφx(hK ))1/2

r
max

1≤m≤ω

km+r−1∑
i=km

|Wi |

≤
(hHφx(hK ))1/2

r
max

1≤m≤ω

km+r−1∑
i=km

���� (hHφx(hK ))1/2

IE[K1]

����
× [|(a0 + a1

βi
hK
)Ki(h−1

H δiG
−1
(Ti)Hi − IE[ f Xi (y)|βi])|

+ |IE[(a0 + a1
βi
hK
)Ki(h−1

H δiG
−1
(Ti)Hi − IE[ f Xi (y)|βi])]|]

=
(hHφx(hK ))1/2

r
max

1≤m≤ω

km+r−1∑
i=km

(hHφx(hK ))1/2

IE[K1]
[O(1)Ki(h−1

H δiG
−1
(Ti)Hi +O(1))

+O(1)IE[Ki(h−1
H δiG

−1
(Ti)Hi +O(1))]]

=
hHφx(hK )

r
max

1≤m≤ω

km+r−1∑
i=km

O(h−1
H )

= O(1).

Therefore, we can get
max

1≤m≤ω
|ζmn | = O

(
r/

√
hHφx(hK )

)
,

which means that for large n,
I(|ζmn | > ε∆(y |x)

√
n) = 0,

by the fact that r/(hHφx(hK ))1/2 → 0 in (7). Therefore, An(ε) → 0. �

Proof of Lemma 2
(a) Under Assumptions (H2), (H5)–(H7) and (H9) and by a simple calculations we can show the
results.
(b) Take conditional expectation,

h−1
H IE[Ka

1 β
b
1 δ1G

−c
(T1)Hc

1 ] = h−1
H IE[Ka

1 β
b
1 IE[δ1G

−c
(T1)Hc

1 |X1]].

According to IE[δ1 |Y1] = G(Y1), we find

IE[δ1G
−c
(T1)Hc

1 |X1] = IE[IE[δ1G
−c
(T1)Hc

1 |Y1]|X1]]

= IE[G
−c
(Y1)Hc

1 IE[δ1 |Y1]|X1]]

= IE[G
1−c
(Y1)Hc

1 |X1],
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which yield that

h−1
H IE[Ka

1 β
b
1 δ1G

−c
(T1)Hc

1 ] = h−1
H IE[Ka

1 β
b
1 )IE[G

1−c
(Y1)Hc

1 |X1]]

= h−1
H IE[Ka

1 β
b
1

∫
G

1−c
(s)Hc(

y − s
hH
) f X1 (s)ds]

= IE[Ka
1 β

b
1

∫
G

1−c
(y − hH t)Hc(t) f X1 (y − hH t)dt]. (24)

Applying the Taylor expansion of order 2 to f X1 (·) in y, we obtain

f X1 (y − hH t) = f X1 (y) − hH t
∂ f X1 (y)

∂y
+

h2
H t2

2
∂2 f X1 (y)

∂2y
+ o(h2

H t2)

= ψ0(X1) − hH tψ1(X1) +
h2
H t2

2
ψ2(X1) + o(h2

H t2),

which, combined with (24), Assumption (H7), and from the fact that G(·) is continuous, yields

h−1
H IE[Ka

1 β
b
1 δ1G

−c
(T1)Hc

1 ] = G
1−c
(y)

∫
Hc(t)dtIE[Ka

1 β
b
1ψ0(X1)]

+
h2
H

2
G

1−c
(y)

∫
t2Hc(t)dtIE[Ka

1 β
b
1ψ2(X1)] + o(h2

H IE[Ka
1 β

b
1 ]). (25)

Now, following Rachdi et al. (2014), we show that

IE[Ka
1 β

b
1ψl(X1)] = ψl(x)IE[Ka

1 β
b
1 ] + IE[Ka

1 β
b
1 (ψl(X1) − ψl(x))]

= ψl(x)IE[Ka
1 β

b
1 ] + IE[Ka

1 β
b
1 IE[ψl(X1) − ψl(x)|β1]]

= ψl(x)IE[Ka
1 β

b
1 ] + IE[Ka

1 β
b
1Ψl(β1)],

and since Ψl(0) = 0 for l ∈ {0,2} and Assumption (H2), by the Taylor expansion of order 1, we
obtain

IE[Ka
1 β

b
1Ψl(β1)] = Ψ

′
l (0)IE[K

a
1 β

b+1
1 ] + o(IE[Ka

1 β
b+1
1 ]),

which, together with (25), implies

h−1
H IE[Ka

1 β
b
1 δ1G

−c
(T1)Hc

1 ] = G
1−c
(y)

∫
Hc(t)dt

{
ψ0(x)IE[Ka

1 β
b
1 ] + Ψ

′
0(0)IE[K

a
1 β

b+1
1 ]

}
+

h2
H

2
G

1−c
(y)

∫
t2Hc(t)dt

{
ψ2(x)IE[Ka

1 β
b
1 ] + Ψ

′
2(0)IE[K

a
1 β

b+1
1 ]

}
+ o(IE[Ka

1 β
b+1
1 ]) + o(h2

H IE[Ka
1 β

b
1 ]). �
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