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A linearised approximation of the log-likelihood objective function is presented as a
potential alternative to iterative fitting methods employed by logistic regression. The log-
likelihood objective function is solved using linear programming and a modified version of the
linearised logistic regressionmodel is presented, which facilitates best subset variable selection.
The resulting model is a mixed integer linear programming problem which incorporates a
cardinality constraint on the number of variables. The suggested approach maintains many
attractive properties, such as its ability to quantify the quality of the resulting variable selection
solution, its independence of the subjective choice of p-values inherent to typical stepwise
variable selection approaches, and its capability to edge closer to optimality within increasingly
reduced computing times when the correct settings are applied, even for large input datasets.

Computational results are presented to demonstrate the advantages of employing an exact
mathematical programming approach towards variable selection in logistic regression appli-
cations.
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1. Introduction
Logistic regressionmodelling has been and still remains one of themost frequently applied techniques
in a variety of application domains. More specifically, it has gained considerable popularity in the
finance industry for its ease of implementation and interpretability (even by stakeholders that are
not mathematically inclined), and providing the ability to easily monitor the stability of predictor
variables over time (a procedure that is paramount in scorecard modelling).
Although computability is not a concern when fitting logistic regression models, the construction

of parsimonious models through the application of variable selection techniques, for instance best
subset selection, does pose some challenges. In spite of advances in computing technology over the
last decade, practical experience has shown that best subset selection remains an extremely resource

1Corresponding author.
MSC2010 subject classifications. 62J12, 90C05, 90C11.

South African Statistical Journal
Vol. 54, No. 1, 93–129
https://doi.org/10.37920/sasj.2020.54.1.6
© 2020 South African Statistical Association

93



intensive variable selection method, even for a modest number of predictors. Potts and Patetta
(1999) explain that best subset selection becomes computationally infeasible when considering data
sets comprising more than approximately 40 to 50 inputs. Lund (2017) states that analysts who
make use of the software package SAS should consider abandoning best subset selection when the
number of variables is 75 or more, citing the exponential increase in execution time. Specifically,
best subset selection is considered to be an NP-hard problem2 (Natarajan, 1995). Most NP problems
are notoriously difficult to solve, even by modern software packages. The application of forward
and backward selection approaches are practical alternatives, however, it may be to the detriment of
optimality.
In this paper, the use of exact mathematical modelling approaches, e.g. mixed integer linear

programming (MILP), is suggested as an alternative to traditional stepwise approaches. Solving
large scale and/or real-world problems using exact approaches have been neglected for a considerable
amount of time within the statistical community due to a widespread belief that such methods may
be intractable (Bertsimas and King, 2016). However, significant improvements in computing power
and algorithmic advances over the last three decades have resulted in an incredible 200 billion factor
speedup in the solving of hard optimisation problems – see e.g. Bertsimas, King and Mazumder
(2016).
The exact approach suggested in this paper towards the maximisation of the objective function

in logistic regression modelling involves the linearisation of the log-likelihood function such that
the posterior probabilities of the model, P(Yi = 1|Xi = x) = πi , are obtained. More specifically, the
maximum likelihood function of the logistic regression problem is formulated as a linear program-
ming problem (LP) and is solved by employing the well-known simplex method, yielding models
that are comparable with those produced by standard numerical approaches. In a number of cases,
marginally better regression estimates are obtained by the linearised model, as shown in empirical
studies in Section 5.
Finally, variable selection is introduced and it is observed that the exact methodology produces

accurate and predictive models when concepts of best subset selection are incorporated into the
linearised model formulation. The novelty of the suggested approach is the ability to produce proven,
optimal and parsimonious logistic regression models. Additionally, empirical evidence suggests that
the linearised logistic regression model with best subset selection has the potential to yield solutions
that are increasingly closer to optimality within progessively shorter computing times – even for
noticably large datasets – when appropriate parameters are used for the MILP formulation.
The rest of this paper is structured as follows: in Section 2 a background on logistic regression, the

standard numerical approach used to fit logistic regressionmodels to data and similar work carried out
by previous authors, is discussed. In Section 3 a linearised alternative of the log-likelihood function
is introduced, followed by a MILP formulation which facilitates variable selection as part of logistic
regression. The suggestedMILP formulation is also comparedwith existingmethodologies in Section
4. Section 5 encompasses computational results obtained from fitting models to both simulated and
real-world data using the methods discussed in Sections 2 and 3 and the subsequent comparison
thereof. In Section 6 experimental evidence is presented which allows the reader to analyse the

2NP problems are mathematical problems where it is theoretically possible to check the correctness of a solution in polynomial
time, but it is very difficult to arrive at the solution itself. NP-hard problems are problems that are believed to be at least as
hard as the hardest problems in NP.
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trade-off between the quality of solutions obtained and model execution time given different levels
of granularity imposed on the linearised approximation of the log-likelihood function. Lastly, in
Section 7 a set of summary remarks and a brief discussion around future work conclude the paper.

2. Background and related work
While the subject of variable selection within regression models is vast and encompasses a massive
overabundance of approaches, best subset selection will be specifically discussed within the context
of the linearised logistic regression formulation. In most applications, the design matrix X will
consist of a very large number of columns or input variables and it might be unreasonable to expect
a classifier to make predictions based on all of these inputs. Ultimately, it would be desirable for any
approach to choose the most relevant subset of predictors from the input space that would result in a
parsimonious model which can easily be interpreted, but at the same time also produces satisfactory
and accurate results. In order to conduct meaningful statistical inference, it might therefore be
assumed that the vector of true regression coefficients β may be approximated by a sparse vector
that contains many zeros. The best subset selection problem, which chooses a subset of q variables
out of the possible p predictors, can be formulated as the following optimisation problem in linear
regression where Y ∈ R (Miller, 2002):

min
β

1
2
‖Y − Xβ‖22,

subject to
‖β‖0 ≤ q,

where ‖ · ‖0 is the L0-norm and counts the number of non-zeros in β, or ‖β‖0 =
∑p

l=1 I(βl , 0) and
I( · ) is the indicator function.
In logistic regression, the constraint imposed on the vector of regression parameters in terms of

the L0-norm will remain the same, with only the objective function that changes. In the case where
Y ∈ {0,1}, the best subset selection problem becomes

max
β

log L(β),

subject to
‖β‖0 ≤ q.

Bertsimas et al. (2016) address the best subset problem via a modern optimisation lens by devel-
oping a mixed integer nonlinear optimisation approach (MIO) for choosing q out of p input variables
in a linear regression model with n observations and a continuous dependent variable. Additionally,
a discrete extension of modern first order continuous optimisation methods that produce high quality
feasible solutions is also obtained and used by the authors as warm starts in their MIO. Their resulting
approach provides a guarantee on the optimality of the solution, can accommodate side constraints
on the regression coefficients, and can be extended to problems with the least absolute deviation
loss as objective function (median regression). The authors note that their formulation provides
optimal solutions for problems with n in the 1000s and p in the 100s and near-optimal solutions for
problems with n in the 100s and p in the 1000s. Both versions of solutions are said to be achieved in
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minutes. In Bertsimas and King (2016), the work performed in Bertsimas et al. (2016) is extended
to produce much more comprehensive regression models. These include conditional constraints
that cater for multicollinearity present in the data, variable transformations, forcing certain variables
into the model (based on prior knowledge), introducing selective sparsity for variables with a group
sparsity structure, and ensuring that no more than one variable from a subset of m variables, where
m < p, is included in the model. Maldonado, Perez, Weber and Labbe (2014) direct their efforts
towards support vector machines (SVMs), as opposed to traditional regression models where the
output vector Y is continuous, and suggest a model formulation similar to that of Bertsimas et al.
(2016).
Consider the following MIO formulation from Bertsimas et al. (2016) which addresses best subset

selection in linear regression:
min
β

1
2
‖Y − Xβ‖22, (1)

subject to

− MlL zl ≤ βl ≤ MlU zl for l = 1, . . . , p, (2)
zl ∈ {0,1} for l = 1, . . . , p, (3)
p∑
l=1

zl ≤ q. (4)

While the objective function itself is of little concern within the context of logistic regression, the
constraints that are used to enforce variable selection through mixed integer programming are noted.
In the above set of constraints, zl is a binary decision variable corresponding to the l-th regression
coefficient βl . Clearly, if zl = 1 then βl is non-zero and included in the model. Alternatively, when
zl = 0, the first constraint ensures that βl is omitted from the final solution. The third constraint
subsequently ensures that no more than q variables can be chosen as inputs in the final regression
model by forcing the remaining p − q regression coefficients to be exactly equal to zero. The values
MlL and MlU serve as lower and upper bounds for the size of the l-th regression coefficient. While
the choice of MlL and MlU is subjective, Bertsimas et al. (2016) list a variety of approaches that
assist in finding suitable values for these bounds. For numerical stability one would like to choose
MlL and MlU such that the differences −MlL + β

∗
l
and MlU − β∗l are as small as possible, where β∗

l

is the optimum value of the l-th regression coefficient.
The class of nonlinear regression methods considered in this paper is limited to problems where

the vector of dependent variable entries Y is dichotomous and binary, i.e. each target value Yi takes
a value in a discrete set G that contains two classes, which can be expressed as Yi ∈ G, where
G = {0,1}. Obtaining the posterior probabilities P(Yi = 1|Xi = x) is usually of great interest within
these problem settings. A common practice is therefore the use of logistic regression or probit
regression models, as these models produce the desired results by providing the modeller with a
posterior probability as output while also maintaining various attractive properties – see Hastie,
Tibshirani and Friedman (2001).
From this point forward, logistic regression with a binary response vector Y will be the sole focus

in this paper. Kutner, Nachtsheim, Neter and Li (2005) provide a thorough and easily interpretable
explanation for the derivation of both logistic regression and probit regression models in the binary
case.
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A logistic regression model is fitted to the data using the method of maximum likelihood. The
resulting fit will produce parameter estimates for the regression coefficients in the logistic response
function. When logistic regression models are being considered, it is assumed that the entries of Y
follow an independent Bernoulli dstribution and that each observation has a binary outcome value,
or Yi ∈ {0,1}.
Assuming there are n cases, taking the logarithm of the joint distribution function L(Y1, . . . ,Yn)

yields the log-likelihood function given by

log L(Y1, . . . ,Yn) =
n∑
i=1

Yi(Xiβ) −
n∑
i=1

log[1 + exp(Xiβ)], (5)

where Yi is the response value of the i-th observation, for i = 1, . . . ,n, X is an n × p design matrix
that contains the input the variables, and β is a p × 1 vector of regression coefficients.
By maximising (5), the solution values for the paramter vector β, namely β̂, are obtained. One

of the most popular methods for estimating regression coefficients in logistic regression makes use
of a heuristic version of the numerical Newton–Raphson method (Okeh and Oyeka, 2013). Many
software packages employ this method in one way or another. When using the Newton–Raphson
method to maximise the likelihood, the model starts off with an initial “guess” for the vector of
parameter values, after which it subsequently progresses in an iterative fashion. In each step the
function is updated by evaluating it at the estimated vector β̂ obtained from the previous step until the
difference in the log-likelihood between the current iteration and previous iteration is insignificant,
or L(β̂ j+1) − L(β̂ j) = ε for some small value ε , where j represents the j-th iteration.
After noting that most commercial MIO software packages struggle to handle nonlinear objective

functions effectively (as is the case with logistic regression with feature selection), Sato, Takano,
Miyashiro and Yoshise (2015) suggest a piecewise linear approximation of the logistic regression
model objective function, which allows themodel to be formulated as an LP. Variable selection is then
subsequently facilitated by the introduction of integer choice variables to the model constraints (the
use of integer choice variables will be discussed in more detail in Section 3). Kamiya, Miyashiro and
Takano (2019) embrace the concepts put forth by Sato et al. (2015) – which involve the formulating of
dichotomous regression models as MIO problems – by presenting a multinomial logistic regression
modelwith best subset selection as amixed integer optimisation problem. Both sets of authors indicate
that their respective models exhibit favourable generalisation characteristics and are solved within a
reasonable amount of time, along with results that rival L1-regularisation, or lasso (Tibshirani, 1996),
and stepwise regression methods.
Sato et al. (2015) first present the logistic regression model as a nonlinear optimisation problem3:

min
β

2
n∑
i=1

f (Yi(Xiβ)), (6)

where
f (v) = log(1 + exp(−v)) (7)

is the logistic loss function, which is obtained from the log-likelihood function. As−∑n
i=1 f (Yi(Xiβ))

is equal to the log-likelihood, the authors choose to minimise
∑n

i=1 f (Yi(Xiβ)) instead of maximising

3Note that Sato et al. (2015) make use of Y ∈ {−1, 1} and not Y ∈ {0, 1}.
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the negative logistic loss function, which produces the same result. This would explain why the
log-likelihood in (5) is maximised whereas the objective function in (6) is minimised.
The proposed linearisation approach finds the minimum of the objective function in (6) by a series

of linear functions which “cut” away the non-feasible region located below the logistic loss function
line. Specifically, given a set of k symmetric grid values gj, j = 1, . . . , k, which are not necessarily
equally spaced and where the distance (gj+1 − gj) is not necessarily equal, the function in (7) may be
approximated by the pointwise maximum of a set of linear inequalities, or

f (v) ≈ max{ f ′(gj)(v − gj) + f (gj)} for j = 1, . . . , k
= min{t |t ≥ f ′(gj)(v − gj) + f (gj)} for j = 1, . . . , k .

The nonlinear model with objective function in (6) is then formulated as the following LP:

min
β

2
n∑
i=1

ti, (8)

subject to

ti ≥ f ′(gj)(Yi(Xiβ) − gj) + f (gj) for j = 1, . . . , k; i = 1, . . . ,n. (9)

Figure 1 illustrates graphically how the objective function is approximated with the set of inequalities
in (9) . The solid line represents the logistic loss function evaluated by the nonlinear model shown in
(6), while the dashed lines represent a linear approximation of the same function. When the number
of grid values k is relatively small, as in Figure 1, a greater disparity exists between the objective
function of the nonlinear model and its linearised counterpart. This difference is demonstrated by
the shaded triangular region in the figure. The objective function of the piecewise linear model
is optimised at the intersection of the two tangent lines, indicated by the solid coordinate. When
more linear inequalities are added to the model, the relative gap between the results achieved by the
nonlinear model and the approximated linear regression formulation narrows.
In order to accommodate variable selection, Sato et al. (2015) proposed the followingmixed integer

linear programming model:

min
β,z

2
n∑
i=1

ti + F(
p∑
l=1

zl + 1), (10)

subject to

ti ≥ f ′(gj)(Yi(Xiβ) − gj) + f (gj) for j = 1, . . . , k; i = 1, . . . ,n, (11)
zl = 0⇒ βl = 0 for l = 1, . . . , p, (12)
zl ∈ {0,1} for l = 1, . . . , p, (13)

where F is a penalty that limits the number of features included in the final model. When F = 2,
the most optimal model is selected based on the AIC or Akaike Information Criterion (Akaike,
1973), whereas F = log(n) will result in a final model that was selected using the BIC or Bayesian
Information Criterion (Schwartz, 1978).
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Figure 1. Linearised logistic regression model with two tangent lines.

3. Formulating the log-likelihood function as a MILP within a best subset selection
framework

An important attribute of the log-likelihood function is the fact that it is concave. For more than
half a century it has been well known that a local optimal solution for a convex function f (x) will
also be a global optimal solution. Therefore, a numerical approach taken towards the maximisation
of the objective function in (5) would produce a global optimal solution for the estimated coefficient
vector β̂.
The linearisation of the log-likelihood function (5) is facilitated through the use of a grid consisting

of k equally spaced grid values gj , j = 1, . . . , k, spanning the range [A,B], where A,B ∈ R and the
distance (gj+1 − gj) is identical for all j. For simplification, the choice of A and B used to define
the range of the grid can be considered as arbitrary. However, suggestions on selecting a potentially
appropriate grid are given in Section 5 of this paper. A linearised version of the log-likelihood
objective function is given by the following linear programming problem:

max
n∑
i=1

k∑
j=1

(
gjYi − log[1 + exp(gj)]

)
λi j, (14)

subject to

k∑
j=1

gjλi j = Xiβ for i = 1, . . . ,n, (15)

k∑
j=1

λi j = 1 for i = 1, . . . ,n, (16)
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0 ≤ λi j ≤ 1 for j = 1, . . . , k; i = 1, . . . ,n, (17)

where k is the number of grid values specified in the linearisation, gj is the j-th grid value, and λi j
is the j-th weight value associated with the j-th grid value for the i-th observation.

Theorem 1. For a small enough grid interval (gj+1 −gj), the linear programming problem (14)–(17)
provides an optimal solution to the log-likelihood function given by

log L(Y1, . . . ,Yn) =
n∑
i=1

Yi(Xiβ) −
n∑
i=1

log[1 + exp(Xiβ)].

Proof. For k = 2, we have from constraint (15) that λi1g1 + λi2g2 = Xiβ, for i = 1, . . . ,n. For a
specific case i, it can be shown that

Yi(Xiβ) − log[1 + exp(Xiβ)] = Yi(λi1g1 + λi2g2) − log[1 + exp(λi1g1 + λi2g2)]
≤ Yi(λi1g1 + λi2g2) − (λi1 log[1 + exp(g1)] + λi2 log[1 + exp(g2)]) ,

since λi1g1 + λi2g2 is a convex combination of the adjacent grid points g1 and g2, according to
constraints (16) and (17). Therefore, for a large enough k, gj+1 ≈ gj so that

Yi(Xiβ) − log[1 + exp(Xiβ)] ≈ Yi
©«

k∑
j=1

λi jgj
ª®¬
−

k∑
j=1

λi j log[1 + exp(gj)]

=

k∑
j=1

(
gjYi − log[1 + exp(gj)]

)
λi j . �

Similar to the approach by Bertsimas et al. (2016), variable selection for logistic regression is
introduced by reformulating (14)–(17) as a MILP. More specifically, the binary decision variable zl
is introduced to determine whether the l-th variable is included in the model or not. If zl = 1 then
βl is non-zero and included in the model. Alternatively, when zl = 0, βl is omitted from the final
solution. The parameter q is introduced to limit the number of variables selected for inclusion in
the final model and the values MlL and MlU serve as lower and upper bounds for the size of the l-th
regression coefficient.
The objective of the logistic regression problem with variable selection is to

max
n∑
i=1

k∑
j=1

(
gjYi − log[1 + exp(gj)]

)
λi j, (18)

subject to

k∑
j=1

λi jgj = Xiβ for i = 1, . . . ,n, (19)

k∑
j=1

λi j = 1 for i = 1, . . . ,n, (20)

0 ≤ λi j ≤ 1 for j = 1, . . . , k; i = 1, . . . ,n, (21)
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− MlL zl ≤ βl ≤ MlU zl for l = 1, . . . , p, (22)
zl ∈ {0,1} for l = 1, . . . , p, (23)
p∑
l=1

zl ≤ q. (24)

4. Comparison with existing approaches
The formulation of the linearised logistic regression model with best subset selection shown in (18)–
(24) is premised on the same motivations listed by Sato et al. (2015), which mainly involve three
critical concepts, namely:

• As is the case with the model presented by Bertsimas et al. (2016), Sato et al. (2015) make
use of binary z-variables to facilitate variable selection, which has proven to be useful when
feature selection is carried out within a mixed integer optimisation framework.

• A linear approximation of the nonlinear logistic regressionmodel objective function is proposed
so as to allow the regression model with variable selection to be formulated as a MILP.

• The use of a mixed integer linear optimisation model is suggested so as to provide the end
user with a guarantee on the optimality of the solution, as opposed to more traditional variable
selection methods that depend on the evaluation of p-values and variable significance levels4.

Indeed, the model shown in (18)–(24) and MILP proposed by Sato et al. (2015) share many
similarities, especially considering that each observation, for i = 1, . . . ,n, is associated with k
constraints in the constraint matrix. However, a key difference that exists between the two MILP
formulations is the fact that the logistic regression model in (10)–(13) attempts to linearise the
logistic loss function, whereas the model suggested in (18)–(24) attempts to directly linearise the
log-likelihood function itself. Consider Figure 2 and the subsequent discussion thereof.
In Figure 2 the nonlinear log-likelihood function, which is equal to − f (v) in (7), is plotted as a

solid line. The two dashed lines represent the linear approximation of the logistic loss function as
put forth by Sato et al. (2015) in (8)–(9), which was also shown previously in Figure 1. The dotted
lines visually represent the linearisation of the log-likelihood function proposed in (18)–(24). If
the number of grid values k is not substantially large, a larger gap will exist between the optimal
objective function value achieved by both linearised models and the maximum log-likelihood value
found by the nonlinear model. Specifically, the model in (10)–(13) will be optimised somewhere
close to coordinate P1, whereas the logistic regression model in (18)–(24) will yield an optimal
log-likelihood value that is located on the dotted line. In fact, the maximised log-likelihood value
will be a convex combination of two adjacent grid values (note that the grid values are shown as
empty circle coordinates in Figure 2).
The following notable differences exist between the two linearised logistic regression models:

4 Kutner et al. (2005) state that stepwise regression approaches, such as forward and backward regression, will produce a
single “good” model fit. However, these methods fail to provide the modeller with some sort of a guarantee which shows that
the resulting solution is the best possible model found amongst all combinations of predictors.
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Figure 2. Comparison of two linearised logistic regression models.

1. Let kmax be a significantly large number that tends to infinity. While k � kmax , the lin-
earised model in (10)–(13) will tend to overestimate the log-likelihhood function, whereas the
linearised model in (18)–(24) will tend to underestimate it. Simply put, the proposed model in
(18)–(24) yields a more conservative estimate and provides assurance that model fit can only
be improved.

2. Sato et al. (2015) do not explicitly specify a cardinality parameter to facilitate variable selection,
as is the case with constraint (24) in the model in (18)–(24) and constraint (4) in the model
proposed by Bertsimas et al. (2016). Instead, the authors include a penalty term in the objective
function, similar to the Lagrangian form of lasso. In turn, the penalty term performs feature
selection based on the AIC or BIC. Empirical studies have shown that criteria such as the
AIC or BIC have a tendency to favour models with an overabundance of predictors, unless the
sample size n is sufficiently large (Kutner et al., 2005).

3. A different approach is followed for selecting the appropriate grid values gj , j = 1, . . . , k, that
are utilised in the linearisation performed by the two respective models. Specifically, Sato
et al. (2015) propose a greedy algorithm that sequentially adds tangent lines one by one to
the model whereby each additional linear inequality attemps to reduce the area of the shaded
triangle shown in Figure 1, thereby decreasing the gap that exists between the nonlinear model
and its linearised version. While this method is quick and effective, it produces a grid of values
that are not particularly intuitive if they need to be specified explicitly – especially for a novice
modeller. Alternatively, the suggested model in (18)–(24) does not add grid values iteratively,
but instead requires the modeller to specify the beginning and end points of the grid, along
with the number of grid values k that the user would like the model to employ during its
execution. It will then proceed to utilise a grid of k equally spaced knots that lie within the
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aforementioned specified range. In Section 5.6 of this paper, an approach is suggested that
provides the user with a relatively easy-to-follow and less mathematically intensive method
for determining a suitable grid of coordinates. Ultimately, the modeller will have to determine
his or her preference towards algorithmic transparency and ease of understanding versus his
or her inclination towards model autonomy and speed of execution when considering the two
approaches.

5. Results
In order to assess the performance of the proposed formulations presented in equations (14)–(17)
and (18)–(24), the linearised logistic regression model with variable selection was implemented and
solved using the commercial product IBM ILOG CPLEX Optimization Studio, version 12.6. The
results of these efforts were then compared to runs that were executed on the same datasets using
SAS’s PROC LOGISTIC procedure in a 64-bit version of SAS Enterprise Guide 7.1. Note, however,
that IBM ILOG CPLEX is a mathematical programming solver and not a statistical analysis tool.
Ultimately, obtaining results comparable to (or better than) those achieved in SAS would be

ideal, since its PROC LOGISTIC procedure is considered to be the benchmark in this exercise.
Additionally, all simulated datasets that were used for synthetic model runs were generated in SAS
Enterprise Guide. All work was carried out on a desktop computer with Intel i7-3770 3.40GHz
processor, 16 GB of RAM and 64-bit Windows 7 operating system.
The reader should note that, throughout the section, the term “CPLEX run” refers to the linearised

formulation produced in equations (14)–(17) and (18)–(24), whereas the term “SAS run” refers to the
same model carried out using SAS’s logistic procedure. Lastly, it should be known that for Sections 5
and 6, the quantities p and q do not include the intercept term of the logistic regression model. This
means that a logistic regression problem that considers a total of p potential features will be based
on a design matrix with p + 1 columns, where an additional column of 1s is added for the intercept
term.

5.1 Simulated data runs
To perform comparisons on simulated data, a design matrix X that contains p input variables from a
standard normal distribution for a total of n observations, was generated. To obtain a binary response
vector Y, the following steps were carried out:

1. Generate an n × 1 vector U that contains n uniformly distributed random variables.

2. Generate an n × 1 vector L that contains n random variables having a logistic distribution by
utilising the vector U obtained in step 1. The i-th entry of L is given by Li = log[Ui/(1−Ui)].

3. Generate an n × 1 vector Yc which represents a latent output variable with a logistic error
distribution, where the i-th entry ofYc is given byY c

i =
∑

l∈Q β∗
l
Xil+Li . In the aforementioned

summation, X is the input variable matrix containing p variables from a standard normal
distribution, β∗

l
= 1 for l ∈ Q and β∗j = 0 for j < Q. β∗

l
is the true underlying value specified

for the l-th regression parameter.

4. To produce a binary response vector containing either 0 or 1 entries, an n × 1 vector Y was
generated, where Yi = 1 if Y c

i ≥ 0, else Yi = 0 if Y c
i < 0 .
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Initially, a sample containing n = 1 000 observations with p = 100 standard normal random variables
was generated. A column of 1s was concatenated horizontally to the matrix of input variables in order
to compensate for the intercept of the regressionmodel, meaning that the designmatrix contains a total
of p+1 columns. A set of 10 equi-spaced variables was then chosen to influence the response and has
true regression coefficients greater than zero. Given that X0 represents the intercept term, the variables
X1,X11,X21,X31,X41,X51,X61,X71,X81 and X91 were all selected to be associated with a regression
coefficient of one, i.e. β∗

l
= 1 where l ∈ Q and Q is the set {1,11,21,31,41,51,61,71,81,91}. The

response vector was then constructed as a linear combination of these 10 variables using steps 3 and
4 outlined above. The dataset contained a total of 500 “goods” or observations with Y = 0 and 500
“bads” or observations with Y = 1. Note that no variable selection was performed in either SAS
or CPLEX during this simulation. The purpose is to first establish whether the proposed linearised
formulation in (14)–(17) yields the desired results when used to fit a logistic regression model before
cardinality constraints come into play.
The logistic regression model in SAS achieves a maximum log-likelihood of −273.836. The

iterative algorithm employed by SAS appears to be quite successful in separating the estimated
regression coefficients associated with the 10 variables mentioned above (that were set to influence
the target variable) from the parameter estimates obtained for the other 90 variables. The fitted
coefficient values for the entire collection of non-influential predictors are scattered around the zero-
line, with the largest deviations being close to 0.2 or −0.2. Alternatively, all parameter estimates that
were found for the 10 chosen variables had the correct sign and were far removed from the other fitted
coefficients, with most estimates scattered between 1.4 and 1.5 (with the exception of the coefficient
obtained for X11). Overall, the results can be interpreted as desirable, given the clear separation
between the parameter estimates for the two groups and their relative close proximity to their true
underlying values. The fact that the model tends to overestimate the coefficients for the 10 variables
that were selected to influence the response, is noted, with a difference of roughly 0.5 between the
estimated and true underlying parameter values for the majority of these inputs. However, given the
relatively small size of the sample, this can be expected to improve with an increase in the number
of observations.
Using a grid of 401 knots that span between −20 and 20 with 0.1 intervals, a logistic regression

model is fitted to the data using the linearised model in (14)–(17). The model produces identical
results to those found in the SAS run, with a maximum log-likelihood of −273.9 achieved in 20.56
seconds, along with parameter estimates that are nearly indistinguishable from those obtained by
SAS’s iterative algorithm. Consequently, the same interpretation applies.
A second run was performed wherein the range of the grid used in the linearisation was kept the

same (−20 and 20), but intervals were specified to have a length of 0.01, resulting in a total of 4 001
grid values (as opposed to the 401 knots used in the previous run). This was done in order to ascertain
whether or not an improvement in the model can been seen by reducing the distance between the
grid values (this is based on the notion – as shown in Section 3 – that as the distance between the
knots tends to zero, the continuous log-likelihood function employed by the iterative algorithm is
obtained). While the linearised model only produces results after 3 minutes and 24 seconds (roughly
3 minutes more than needed by the previous run where only 401 grid values are employed), barely no
real increase in the log-likelihood is recorded, with a maximum objective function value of −273.836
obtained (an improvement of only 0.044 over the previous run). The estimated parameter estimates
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Figure 3. Regression parameter estimates obtained by SAS and CPLEX model runs.

Table 1. Results of CPLEX and SAS runs.

n log L: CPLEX linearised run log L: SAS logistic procedure
3 000 −957.671 −957.427
5 000 −1 704.744 −1 704.3

10 000 −3 447.104 −3 446.2
20 000 −7 001.821 −6 999.979
50 000 −17 596.363 −17 577.649

were nearly identical to those fitted during the previous run. The empirical studies presented in
Section 6 examine the trade-off between model execution time and the accuracy of results when the
number of grid values which are employed in the linearised approximation, is varied.
Figure 3 illustrates the regression coefficient estimates produced by the aforementioned SAS and

CPLEX runs. The x-axis denotes the variable number, from 0 to 100, while the y-axis represents the
corresponding value of the estimated regression parameter for the variable in question. Note how the
fitted coefficients produced for the 10 variables that were selected are located far above the rest and
tend to be closer to one, while the rest are situated closer to zero.
Runs were then executed where the number of observations contained in the dataset, n, was

increased. Table 1 shows log-likelihood values obtained for different values of n and the subsequent
comparison thereof with the maximum likelihood estimate (MLE) produced by SAS.
While not shown graphically in this paper, it should be noted that as the number of observations,

n, in the training set increases, both the linearised model used in CPLEX and the iterative model
employed by SAS obtain parameter estimates that are located increasingly closer to their true un-
derlying values. As the number of records within the design matrix on which the classifier is being
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trained becomes greater, it allows the model to produce a solution for the estimated coefficient vector
that is a much less biased estimate of the true underlying parameter vector (Potts and Patetta, 1999).
At n = 20 000 observations, the estimated coefficients for the 10 inputs that were chosen to influence
the response (with true underlying parameter of β∗ = 1) were close to 1, while the fitted parameters
for the remaining 90 variables were all found within an extremely narrow range centered around the
zero-line, with all values between −0.05 and 0.05. At n = 50 000, fitted coefficients for the selected
10 variables were almost exactly equal to one, while the parameter estimates for the remaining 90
variables were scattered close to the zero-line. Notice from Table 1, however, that the log-likelhood
values produced by the linearised model in CPLEX are marginally lower than the objective function
values obtained in SAS. This can be attributed to the fact that the proposed model in (14)–(17) serves
as a linear approximation of the log-likelihood function in (5). The model in CPLEX will only yield
maximum likelihood function values identical to those in SAS when k is substantially inflated and
tends to infinity.
Overall, the proposed linearised model appears to fare well and yields log-likelihood objective

function values that compare favourably with the nonlinear model in SAS. The parameter estimates
obtained for the variables chosen to influence the response (with true underlying value of one) are
forced to be much higher, while the fitted coefficients produced for the set of unselected inputs (with
true underlying value of zero) are scattered within an increasingly narrow range about the zero-line.
It should be noted, however, that these results are based on a design matrix with a very weak inter-
variable correlation structure. The next section explores the behaviour of the proposed linearised
model fitted to data with correlated outputs.

5.2 Simulated data runs with correlated inputs
For these simulations, the same approach outlined in Section 5.1 was utilised. However, a key
difference to note is that linear correlations were deliberately introduced to create between-variable
correlations within the design matrix. Specifically, correlated variables were generated such that the
i j-th entry of the correlation matrix is given by ρ |i−j | for some specified correlation value ρ. This was
done by using a variation of Cholesky’s decomposition (Press, Flannery, Teukolsky and Vetterling,
1992) outlined in the following steps:

1. For some specified value ρ, generate a correlation matrix Γ such that the i j-th entry is given
by Γi j = ρ |i−j | .

2. Obtain a p× p diagonal matrix D where the entries along the diagonal are given by Dii =
√

Γii .

3. Find a p × p matrix R by setting R = D−1ΓD−1.

4. Find a p × p matrix C where the entries of C are obtained as follows:

a. Ci j = Ri j/
√

Rji if j = 1,

b. Ci j = 0 if j > i,

c. Ci j =
∑j−1

k=1
[
CikCjk

] /(∑j−1
k=1 C2

jk

)
for j < i and j , i.

5. Obtain a new design matrix Xnew by multiplying the current input variable matrix containing
p standard normal random variables with the transpose of C, or Xnew = XCT .
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The new design matrix obtained in step 5 will now have a correlation matrix closely resembling the
one specified in step 1.
For the first correlations run, 500 observations and 100 variables from a standard normal distri-

bution were generated. Once more, a column of 1s is added to the matrix of inputs to compensate
for the intercept term of the regression model. By using the steps outlined above, correlations
are introduced into the design matrix by specifying ρ = 0.5 as set out in step 1. Again, 10
equi-spaced variables are chosen to have an effect on the response by stipulating that the inputs
X1,X11,X21,X31,X41,X51,X61,X71,X81 and X91 all have a true regression coefficient of one, i.e.
β∗
l
= 1, l ∈ Q, where β∗

l
is the true underlying value of the regression parameter. The binary

dependent vector Y is obtained in the same way as before. The dataset contained a total of 254
“goods” or observations with Y = 0 and 246 “bads” or observations with Y = 1.
When ρ = 0.5, SAS obtains a maximum log-likelihood value of −107.643. The model fitted by the

linearised logistic regression executed within CPLEX, on the other hand, attained a log-likelihood
value of −108.328 after 10.38 seconds of execution by utilising a grid of 401 knots spanning the
range [−20,20] with intervals of 0.1. Additionally, the linearised model was refitted in CPLEX
where a grid consisting of 4 001 knots were used, once again with a range of [−20,20], but with 0.01
intervals instead. As with previous simulations, this was done in order to gauge whether or not the
linearised model produces more accurate results alongside an increase in the number of grid values.
However, after fitting the model for 1 minute and 51 seconds, an objective value of −108.305 for
the likelihood function was obtained, resulting in a meager increase of 0.023, or 0.02%. In contrast,
the time consumed by fitting the model increased nearly ten-fold by 969.36%. After noting that no
substantial difference exists between the parameter estimates obtained by the two linearised model
runs, it can be inferred – as in the Section 6.1 – that a substantial increase in the size of the grid in
the linearised model does not necessarily amount to a meaningful improvement in accuracy.
When the parameter estimates themselves are analysed, it can be seen that very little difference

exists between the fitted regression coefficients produced by the two respectivemodels. It is noted that
the coefficients obtained by both SAS and CPLEX deviate quite wildly from their true underlying
parameter values. However, this can be expected in the presence of moderate to severe linear
correlations that exist between input variables. On a positive note, both algorithms appear to be quite
successful in creating two distinct groups of estimates by assigning much higher fitted coefficient
values to the 10 variables chosen to influence the response, as opposed to the lower estimate values
obtained for the other 90 design matrix columns. Ultimately, this will result in the original 10
variables having a much larger influence on the scores obtained for new observations, which is a
welcome attribute. Finally, it can be seen that CPLEX produces estimated coefficients that are slightly
closer to their true underlying specified values as opposed to those fitted by SAS. The estimates of
the 10 chosen variables are vaguely closer to one, while the fitted coefficients associated with the
remaining 90 inputs are scattered marginally closer towards the zero-line. Figure 4 provides a
graphical representation of estimated coefficients obtained by each model where ρ = 0.5.
In order to assess the validity of using (18)–(24) to facilitate variable selection in regressionmodels,

both SAS andCPLEXmodels are refitted to the dataset with ρ = 0.5, but a cardinality constraint q was
added to the models during the second round of model execution. Since it is known that 10 equally
spaced inputs were selected to influence the response, the cardinality parameter was set to q = 10,
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Figure 4. Regression parameter estimates obtained by SAS and CPLEX models when ρ = 0.5.

meaning that both models were instructed to have exactly 10 non-zero estimated parameters5 in
their final solution vectors. Best subset selection was performed in SAS by using the SELECTION =
SCORE option in the PROCLOGISTIC statement, along with the options START=10 and STOP=10.
This allows SAS to only return the best 10-variable model. SAS utilises the Leaps and Bounds or
LBA method of Furnival and Wilson (1974) to perform best subset selection. SAS attained a 10-
variable model with a log-likelihood of −164.698, while the linearised model in CPLEX produced
10 estimates for the exact same variables chosen by the SAS best subset selection procedure, yielding
a final likelihood value of −165.243. Both models selected non-zero estimates for the 10 initial
variables chosen to have true regression coefficients of one and no significant difference was found
between the two solution vectors. Furthermore, both models obtained final coefficient estimates that
were very close to their true underlying values, with slight deviations for X11 (β̂11 = 1.1336), X21
(β̂21 = 0.8011) and X71 (β̂71 = 1.3081). Table 2 shows the estimated regression coefficients for the
10 selected variables in both models.
For the second and third correlation exercises, the correlation parameter ρ was specified to be 0.8

and 0.85, respectively, resulting in much more severe linear correlations being present in the training
data. SAS displayed log-likelihood values of −78.789 for ρ = 0.8 and −89.862 for ρ = 0.85, whereas
the linearised model concluded with objective function values of −82.181 for ρ = 0.8 and −94.473
for ρ = 0.85. As can be expected, the parameter estimates obtained by both models were noticeably

5The number of non-zero parameter estimates becomes 11 when the intercept is also considered.
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Table 2. Estimated regression coefficients obtained by SAS and
CPLEX when cardinality constraints are applied and ρ = 0.5.

Variable CPLEX fitted coefficient SAS fitted coefficient
X1 0.9475 0.9579
X11 1.1336 1.1360
X21 0.8011 0.8157
X31 1.0249 1.0249
X41 1.0041 1.0119
X51 1.0101 1.0253
X61 0.9924 0.9927
X71 1.3081 1.3076
X81 1.0129 1.0081
X91 0.9999 1.0035

different from their true underlying values that were specified during the creation of the datasets,
with the models failing to establish two distinct groups of estimates like those seen previously when
the correlation coefficient was not as extreme. This resulted in a final solution vector where the fitted
parameters seem to be far removed from their true underlying values for both models. Once more,
as in the case where ρ = 0.5, it was noted that the linearised model obtains fitted coefficients that
are located marginally closer to their true specified values. Figure 5 plots the results for both models
when ρ = 0.8.

5.3 Tests on real-world data: HEART dataset
In this exercise, the performance of the proposed linearised model is tested on a real-world dataset
that is openly available for download. It should be noted that for this test, equation (14)–(17) is
tested first, meaning that a linearised model without subset selection is fitted to the data. This is
done to gauge whether or not the linearised model produces results comparable to the benchmark
when applied to data that were not simulated. Afterwards, the proposed model in (18)–(24) is fitted
in order to perform best subset selection on the same set of data.
Consider theHEARTdataset that is readily available under the SASHELP library in SASEnterprise

Guide or Base SAS and contains the results of the Framingham Heart Study (SAS Institute Inc.,
2017). The dataset comprises of 5 209 observations with various attributes. The response variable
in question is called Status and is equal to 1 if the subject died and 0 if the subject survived. Of the
5 209 subjects, 3 218 survived (Y = 0) and 1991 died (Y = 1). Table 3 lists the 12 predictors that
exist within the dataset (note that variables marked with an [*] were not supplied within the dataset,
but were custom inputs that were created based on the data that were available).
All variables that contained missing values (except for the Smoking variable) were imputed with

the median value of the dataset for the predictor in question. In the case of the Smoking variable,
the value was set equal to 0 if it was missing. Finally, using a 50/50 split, half of the dataset was
selected at random to train the models. The other half was used to test the generalisation abilities of
both models.
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Figure 5. Regression parameter estimates obtained by SAS and CPLEX models when ρ = 0.8

The solutions obtained from the linearised approach as well as SAS’s PROC LOGISTIC procedure
are nearly identical, with virtually no difference between the estimated regression coefficient vectors.
In either case, the models choose relatively high coefficient estimates for the subject’s age, whether
the subject was diagnosed with cardiovascular disease, whether the subject smokes, and the subject’s
gender, while setting the parameter estimates for the remaining variables close to zero. While the
cardinality constraints discussed in equation (18)–(24) were not utilised during this round of model
execution, the results suggest that if best subset selection was applied, the estimated coefficients of
the remaining variables could have been set exactly equal to zero without much loss of accuracy.
Figure 6 illustrates graphically the estimates produced by the linearised model in CPLEX (again,
note that SAS’s logistic procedure yielded identical solutions).
Since the solutions provided by both approaches are the same, it should come as no surprise

that the models obtained from both SAS and CPLEX display similar misclassification rates and
Gini coefficients. While the linearised model attains a 24.07% misclassification rate on the training
set and 24.62% misclassification rate on the test set, the SAS logistic regression model displays
misclassification rates of 24.14% and 24.39% on the training and test sets, respectively. A Gini6

coefficient of 63.79 obtained from the CPLEX model is slightly higher than the 63.75 Gini value

6AGini coefficient is often used in conjunction with or instead of the c-statistic or area under the curve (AUC), all of which are
ranking tools utilised to measure model performance and have similar interpretations (Rezac and Rezac, 2011). Specifically,
AUC = (Gini + 100)/2.
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Table 3. List of predictor variables from the HEART dataset used as inputs in regression.

Variable name Description
AgeAtStart Age of subject
Height Height of the subject
Weight Weight of the subject
Diastolic Diastolic blood pressure reading
Systolic The subject’s systolic blood pressure pressure reading
MRW The subject’s Metropolitan Relative Weight (similar to Body Mass Index)
Smoking Number of cigarettes smoked by the subject (0 for non-smokers)
Cholesterol The subject’s cholesterol level
CHD_ind* Indicates whether the subject was diagnosed with cardiovascular heart disease (1 if yes, 0 if no)
Smoke_ind* Indicates whether the subject smokes or not (1 if yes, 0 if no)
BP* Indicates whether the subject has high blood pressure or not (1 if yes, 0 if no)
Sex_bin The gender of the subject (1 if male, 0 if female)

seen for the SAS model when the ranking abilities of the models are evaluated on the training set,
while Gini coefficients of 61.29 for the CPLEX model and 61.36 for the SAS model were achieved
separately on the test set.
Next, the performance of the linearised model with best subset selection was tested. Since the

approach outlined in (18)–(24) was being utilised during the second round of model fitting, it
meant that the cardinality constraint q had to be explicitly specified. This was done by executing
SAS’s version of best subset selection by using the SELECTION = SCORE option in the PROC
LOGISITIC model statement and selecting BEST = 1. By specifying these arguments, SAS will
fit the best possible model containing l variables, for l = 1, . . . , p, where a model with p non-zero
estimated regression coefficients represents the full model with all of the input variables added to
the final output. In other words, SAS finds the best 1-variable model, after which it finds the best
2-variable model and proceeds through the list of inputs by repeating this exercise until all of the
design matrix columns are included in the last model iteration. After each model was fitted, the AUC
(area under the curve) was reported. This was done to determine the point at which the performance
of the model starts to diminish, meaning that the addition of more variables to the mix does not
improve model fit. Figure 7 illustrates that a model containing five input variables should suffice
(indicated by the square marker). Notice that the AUC starts to level off beyond this point, implying
that all subsequent models would deliver similar predictive performance.
By specifying q = 5 + 1, (one more to make provision for the intercept term), the model in

(18)–(24) was executed in CPLEX and yielded a maximum log-likelihood of −1305.83, while its
counterpart fitted in SAS achieved a near-identical MLE of −1305.47. Both approaches opted to
include the same five variables in the final model, along with estimated regression coefficients that
are nearly indistinguishable for the selected inputs and the intercept term. Furthermore, accuracy
statistics and Gini values were obtained which are strikingly similar to those seen previously when
no feature selection was applied. This supports the assertion made earlier which states that excluding
the remaining inputs in the design matrix (barring the five variables that were selected) will most
likely not have an adverse affect on the model’s predictive prowess.
Table 4 displays the estimated regression coefficients obtained by the two respective models when
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Figure 6. Coefficient estimates obtained by the linearised logistic regression model in CPLEX for
the HEART dataset.

best subset selection is applied, while Table 5 contains model evaluation metrics. From Table 5 it
can be seen that the linearised model with best subset selection outperformed the model fitted in SAS
by a small margin.

5.4 Tests on real-world data: JUNKMAIL dataset
For the second real-word exercise, a dataset within the SASHELP library called JUNKMAIL was
used. The data were collected by Hewlett-Packard labs (HP Computers) and subsequently donated by
George Forman. The set holds data relating to 4 601 emails that were classified as SPAM (Y = 1) or
PERSONAL / WORK-RELATED (Y = 0). The data are also openly available on the UCI Machine
Learning Repository. There are 57 numeric predictor variables, most of which relate to metrics
that indicate how frequently a certain word occurs within the email itself. Additionally, the last
three variables are considered to be run-length attributes and measure the length and sequences in
consecutive capital letters contained within the email. Already provided in the data was an indicator
column dubbed Test, which splits the data into a model training set and a test set. The training set
contains 3 065 observations, of which 1 847 correpsond to Y = 0, while 1 218 have a response of
Y = 1. This particular dataset was chosen due to the fact that it contains a moderate number of
observations (4 601) and a relatively large number of columns (57 predictors), which makes it more
relatable to and representative of an actual dataset that a user might encounter in daily life.
Exploratory data analysis revealed that most of the numeric variables contained a large number

of zeros as entries, with the majority of inputs consisting only 30% or less of non-zero values (with
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Figure 7. AUC for each model iteration applied to the HEART dataset.

some containing zero values for as much as 96% of the observations). For this reason, the dataset
was altered by changing each input into a binary variable. Every binary variable was given a value
of 0 if the entry of the original input was 0 and a value of 1 if its entry was greater than 0. The
binary variables were named by adding the prefix bin in front of the original variable’s name, e.g.
if the original input was called DOLL AR, the binary version would be called bin_DOLL AR. Both
models in SAS and CPLEX were then fitted using the binary predictors as inputs instead of the
original variables. The only columns that remained unchanged (no binary indicators were created for
them) were CAPAG, CAPLONG and CAPTOT AL. These variables related to the running length
of capital letters in the email and did not contain any zeros. Ultimately, each of the binary variables
can therefore be seen as an indication of whether or not a certain word occurred within the mail.

Table 4. Coefficient estimates obtained for theHEARTdataset during
best subset selection.

Variable CPLEX fitted coefficient SAS fitted coefficient
Intercept −8.8826 −8.8905
AgeAtStart 0.1096 0.1096
Systolic 0.0185 0.01849
Smoking 0.0301 0.03016
CHD_ind 1.1009 1.1023
Sex_bin 0.6170 0.6175
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Table 5. Evaluation metrics for the HEART
dataset based on models with best subset se-
lection.

Evaluation metric CPLEX SAS
Train Gini 63.79 63.74
Test Gini 61.36 61.33
Train Accuracy 75.93% 75.85%
Test Accuracy 75.77% 75.61%

To determine an appropriate value for the cardinality parameter q, the same approach that was
followed in Section 5.3 when best subset selection was carried out for the HEART dataset, was
applied here. Once more, the best l-variable model, for l = 1, . . . , p, was iteratively produced in
SAS using PROC LOGISTIC with the SELECTION = SCORE option, after which the AUC for each
model fit was recorded. A suitable candidate for the cardinality constraint in best subset selection
was determined by using the value of q that corresponds to the point at which no real improvement in
AUC can be seen. Figure 8 shows that a model with roughly eight input variables should be adequate
(refer to the square marker).
The linearised model with q = 8 plus one more to account for the intercept, employed a grid

spanning [−30,30] with 0.01 intervals and its optimality gap was set to 5% in order to aid execution
times. Both the linearised model and model in SAS produce solution vectors that are alike for the
majority of the variables, noting that seven out of the eight non-zero fitted coefficients correspond
to the same inputs. It can also be seen that the estimated regression coefficients obtained for these
seven inputs are very close to one another within the two solution vectors, with minor differences
existing between the two sets. The only exception is where SAS fits a non-zero regression estimate
to the variable bin_YOUR and the linearised model in CPLEX chooses a non-zero coefficient
for bin_OUR. While these are, in fact, different variables, both obtained estimated regression
parameters approximately equal to one (with β̂bin_OUR being exactly equal to one). Table 6 displays
the coefficients obtained by the two models.
When considering the accuracy of the models produced by the two respective techniques, it was

found that the linearised model obtained a higher objective function value of −740.66 for the log-
likelihood as opposed to the slightly lower −742.449 produced by its counterpart in SAS. The final
model fitted by SAS had a fractionally higher Gini statistic of 92.13 for the training set, as opposed
to a Gini of 92.09 associated with the linearised model with best subset selection. Alternatively, the
CPLEX logistic regression model obtained marginally better results for the test dataset, with a Gini
of 91.37 being higher than the 90.91 seen when SAS’s regression model is applied to the same test
set. In terms of misclassification rates, both models obtained an accuracy statistic of 91.06% for the
training dataset. However, once again, the linearised model appeared to fair better than the model
produced by SAS when test set accuracy was considered. While the model fitted in CPLEX showed
a misclassification rate of 8.59% for the test dataset, SAS’s final model obtained a misclassification
rate of 9.38% for the same set of data. The very small discrepancies that exist between the Gini
statistics and accuracy measures of the training and validation sets prove that both models appear to
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Figure 8. AUC for each model iteration applied to the JUNKMAIL dataset with binary predictors.

be quite stable.
In an attempt to understand why the two separate models are not producing identical solution

vectors, due to their inclination to have at least one predictor that differs in the subset of variables
included in the final model, both models were refitted again. During each instance of model fitting,
a different value was specified for the cardinality parameter q. The initial value of q was set to be
relatively low and subsequently increased in an ordinal fashion after each run.
It was noted that up until q = 6, both models yield identical solutions. At q = 6, the two

models choose to include bin_DOLL AR , bin_EDU, bin_E XCL AM AT ION , bin_FREE , bin_HP
and bin_RE MOVE . While small differences exist between the fitted regression parameter vectors
produced by the respective models, the estimated coefficients for these six inputs were largely the
same when comparisons were made. It should come as no surprise that both models achieved an
objective function value for the log-likelihood as well as Gini values and misclassification rates for
the training and test datasets that were nearly identical. At q = 7, SAS’s logistic procedure opts to fit
a non-zero coefficient to the variable bin_YOUR, whereas the linearised model in CPLEX chooses to
include the variable bin_MEET ING instead. When q = 8, the SAS logistic procedure concedes to
choose bin_MEET ING for inclusion in the final model (which was selected by the CPLEXmodel at
q = 7 in the previous step). However, the CPLEX model still chooses not to fit a non-zero coefficient
to the variable bin_YOUR (which was chosen by SAS at q = 7) and instead opts for the inclusion
of the input bin_OUR (as was seen in Table 6). When the cardinality parameter was set to q = 9,
it was found that both models elected the variable bin_1999 for inclusion at this step. Again, as
with q = 8, the solution vector produced by SAS contained bin_YOUR in the final model, whereas
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Table 6. Coefficient estimates obtained for the JUNKMAIL dataset.

SAS CPLEX
Variable Coefficient Variable Coefficient
Intercept −2.3365 Intercept −2.2
bin_DOLL AR 2.173 bin_DOLL AR 2.3
bin_EDU −3.1087 bin_EDU −3.1
bin_E XCL AM AT ION 1.54 bin_E XCL AM AT ION 1.6
bin_FREE 1.5861 bin_FREE 1.6
bin_HP −3.7084 bin_HP −4
bin_MEET ING −2.976 bin_MEET ING −3.2
bin_RE MOVE 2.757 bin_RE MOVE 2.7
bin_YOUR 0.9179 bin_OUR 1

the CPLEX solution vector contained bin_OUR instead. Finally, at q = 10, the logistic regression
model fitted in SAS selected the variable bin_OUR as an addition to the final model – an input that
was selected by the CPLEX model much earlier on. However, the model produced by CPLEX still
chooses to neglect the variable bin_YOUR, which was already selected by SAS’s logisitic procedure
at q = 7, and instead chooses the predictor bin_RE to be part of the final solution. Table 7 shows the
log-likelihood values obtained along with model accuracy measures calculated for the training and
test sets, respectively, for different values of the cardinality parameter q.
Table 8 displays the regression parameter estimates produced by the two models for different

cardinality constraints.
Table 7 reveals that the logistic regression models fitted by the linearised model in CPLEX

consistently produced log-likelihood values along with Gini and accuracy statistics that were better
than those obtained by its SAS counterpart in most cases, regardless of the value of q.
Lastly, empirical results in Sato et al. (2015) show that the linearised approximation with variable

selection proposed by the authors selected between 28 and 31 variables for inclusion in the final
model when the approach in (10)–(13) was applied to the JUNKMAIL dataset. Unfortunately, the
authors do not report on model evaluation metrics such as the misclassification rate, Gini statistic
or AUC. Additionally, instead of splitting the modelling dataset so as to perform training versus
validation exercises, Sato et al. (2015) chose to utilise the full JUNKMAIL dataset during model
fitting. As a result, a comprehensive comparison of the different linearised approaches discussed
in Sections 2 and 3 could not be carried out. However, it can be seen that the model in (10)–(13)
selectedmore than three times the number of variables when compared the linearisedmodel proposed
in this paper. Furthermore, it is also observed that the eight-variable model shown above displays
impeccable levels of accuracy while simultaneously maintaining a high level of descriptiveness by
parsimoniously including a low number of predictors. In spite of the favourable results achieved in
this section, it would be naive to assume that the differences that exist between the model fitted by
Sato et al. (2015) and the model fitted above can entirely be attributed to the use of (18)–(24) instead
of (10)–(13). Instead, it should be acknowledged that an indispensable amount of value is added to
the quality of the models by exploratory data analysis and appropriate variable transformations.
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5.5 Test on high dimensional data
For this exercise, best subset selection was performed on a dataset where the number of input
variables is substantially large. By using the same approach described in Section 5.1, a dataset
containing n = 1 000 cases and p = 500 standard normal random variables was generated. Of
the 500 effects, a total of 15 equally spaced predictors were chosen to influence the response
and have true regression coefficients equal to one, meaning that β∗

l
= 1 where l ∈ Q and Q =

{1,11,21,31,41,51,61,71,81,91,101,111,121,131,141}. The remaining 485 inputs were specified
to have β∗j = 0 with j < Q and had no affect on the response.
As stated previously, best subset selection becomes extremely resource intensive when p � 40 due

to the exponential increase in execution time for each additional variable considered by the model.
For this reason, both models in SAS and CPLEX were only allowed to execute model fitting for a
predetermined amount of time. Once again, the model in (18)–(24) was used to facilitate best subset
selection in CPLEX, while the SELECTION = SCORE with START = 15 and STOP = 15 options
were specified in SAS PROC LOGISTIC.
After only two hours of execution, the linearised model in CPLEX already selects the correct 15

variables for inclusion by setting zl = 1 where l ∈ Q. Furthermore, all other variables are omitted
from the final model due to zj = 0, j < Q, in the CPLEX solution. Terminating the CPLEX logistic
regression model after two hours yields a log-likelihood value of −276.762 with an optimality gap
of 78.70%7. The exact same model is obtained when CPLEX is allowed to terminate after four hours
instead of two, with an identical objective function value of −276.762. However, the optimality gap
is reduced to 71.35%. In an attempt to find a model that is closer to optimality, the linearised model
in CPLEX was applied once more to the data with a specified run time of 48 hours. As with the
models produced after two and four hours, respectively, coefficient estimates greater than zero are
obtained for the correct 15 variables, while all other parameter estimates are set equal to exactly
zero. Once again, a maximum likelihood estimate of −276.762 is produced. In spite of identical
log-likelihood values, a significantly lower optimality gap of 58.68% is observed. Table 9 shows the
parameter estimates obtained by the linearised logistic regression model in CPLEX. Investigation
revealed that all three of the aforementioned models yielded the same estimated coefficient values
regardless of the execution times that were specified. Notice that the regression coefficients which
were estimated for the 15 variables are sufficiently close to their true underlying values of one.
In contrast to the linearised model in CPLEX, SAS fails to yield any results after 48 hours

of execution time. However, this can be expected, as best subset selection in SAS is considered
to be computationally impractical when p > 75 (Lund, 2017). Several course notes on regression
modelling in SAS, such as Patetta (2012) and Patetta, Huber andNizam (2009), suggest that modellers
should opt for stepwise variable selection procedures in such cases instead.
The results indicate that the linearised model yields sufficient output and can adequately perform

best subset selection when the number of predictors p is large. Specifically, the model in (18)–(24)
tends to select the appropriate inputs and produces the correct underlying model even when execution
is stopped early. Empirical studies show that (18)–(24) finds the correct model and parameter
estimates early on, but requires significantly more time to prove optimality. This is supported by the

7The optimality gap refers to the relative disparity that exists between the best lower bound solution and the best upper bound
solution, expressed as a percentage.
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Table 9. Parameter estimates produced by the linearised model in CPLEX for p = 500 and q = 15.

Coefficient Estimate
β0 0.0137
β1 1.2034
β11 1.1285
β21 0.9799
β31 1.1253
β41 0.9263
β51 0.8725
β61 1.1161
β71 0.9909
β81 1.1440
β91 1.0676
β101 1.1994
β111 1.1556
β121 1.1341
β131 0.9378
β141 0.9505

fact that all CPLEX runs obtained identical log-likelihood objective function values and estimated
coefficients, but exhibited a declining optimality gap alongside an increase in run time. Bertsimas
et al. (2016) encountered the same phenomenon, noting that their suggested MIO formulation for
best subset selection in linear regression produced suitable models fairly quickly, but needed notably
more time to provide a guarantee on optimality.

5.6 Choice of grid range and number of grid values, k
When the linearised model was fitted to both simulated and real-world datasets, it became apparent
that the range specified for the grid used in the linearisation is of a subjective nature and problem-
specific. Indeed, much wider ranges needed to be used for the JUNKMAIL dataset where the
estimated coefficients could potentially take on values much larger than one, as opposed to simulated
data where the inputs were standardised. However, it was found that if the true underlying regression
parameters are close to one or relatively small, the following range for the grid can be employed:

[−(1 + b)q, (1 + b)q], (25)

where q is the number of variables that have an influence on the response with the true underlying
regression coefficients being non-zero. If q is unknown, it can be replaced with p. The parameter
b is a buffer used to allow the model to deviate somewhat from the values of the true underlying
coefficient parameters when fitting the model, i.e. to allow for white noise. During the exercises
conducted on simulated data (as discussed in Sections 5.1 and 5.2), b ≤ 1 was found to be more than
adequate.
Alternatively, if no indication exists as to what values the true underlying regression parameters

may take on (as is the case with most real-world applications), a possible starting point would
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be to fit the full logistic regression model without variable selection (the choice of model does
not matter, so either the linearised model in (14)–(17) or nonlinear model in (5) with Newton–
Raphson method can be employed). Once the parameter estimates are obtained, calculate M1 =

min{∑p+1
l=1 β̂lX1l, . . . ,

∑p+1
l=1 β̂lXnl} and M2 = max{∑p+1

l=1 β̂lX1l, . . . ,
∑p+1

l=1 β̂lXnl}, where n is the num-
ber of observations in the modelling set. The following incarnation of (25) can then be used as a
potential range for the grid:

[M1 − b1,M2 + b2], (26)

where b1 and b2 have the same interpretation as b in (25) and are not necessarily equal to one
another (however, they might be). Note that when (26) is used, slightly larger values for b1 and b2,
with b1 > 1 and b2 > 1, need to be specified. For the real-world datasets presented in this paper,
5 ≤ bopt ≤ 20 with bopt = b1 = b2 was found to be a suitable choice. Occasionally, a situation
may present itself where M1 or M2 (or both) is unreasonably large. This is often caused by a select
few outliers that are present in the data. If M1 or M2 is significantly inflated, it may lead to extended
model execution times (if more grid values are used) or a linearised logistic regression model that
severely underestimates the nonlinear log-likelihood (if k is not increased to compensate for the wider
grid). To combat this, the user may opt to utilise Mα

1 = Pα and Mα
2 = P(1−α) instead, where Pα

denotes the (α × 100)-th percentile of the set {∑p+1
l=1 β̂lX1l, . . . ,

∑p+1
l=1 β̂lXnl}. While α = 0.05 serves

as a common middle ground, more conservative modellers might consider using α = 0.01, whereas
α = 0.1 may be employed by users who are less concerned with model accuracy and more focussed
on speed of execution.
The number of grid values k used in (18)–(24) remains a more subjective issue. As mentioned

previously, as k tends to infinity, the linearisedmodel resembles the nonlinear log-likelihood function.
Therefore, increasing k should result in improved estimates and, subsequently, amore accuratemodel.
However, experimental results have revealed that a substantial increase in k results in a rapid increase
in model execution time, but does not necessarily deliver a significant improvement in model fit.
The results presented next in Section 6 examine the trade-off that exists between the quality of the

solutions produced by the MILP formulation and model execution time for different values of k.

6. Improving computing times
As stated before, best subset selection is an NP-hard problemwhich is often considered to be resource
intensive and is regularly abandoned in favour of more computationally friendly approaches, such
as stepwise regression. However, the results in this section will demonstrate that the application
of the MILP formulation in (18)–(24) with the appropriate settings allows the modeller to obtain
solutions that are closer to optimality within an increasingly shorter time frame, even in the case of
large datasets. In fact, improvements in model run time and/or optimality can be achieved by simply
specifying a suitable value for the number of grid values k utilised by the linearised approximation
of the log-likelihood function and by considering the optimality gap of the MILP prior to execution.
By specifying that the optimality gap must be greater than zero, significantly improved execution

times can be achieved. In Section 5 the optimality gap was briefly addressed. The gap refers to
the difference between the best lower bound solution and the best upper bound solution, which
is subsequently expressed as a percentage. The default optimality gap in the mathematical solver
CPLEX is usually set equal to a very small number that is close to zero, such as 1e − 5. A gap of
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zero will mean that the solution yielded by the model can be considered as the most optimal possible
solution attainable and cannot be improved. However, a smaller optimality gap that is closer to
zero might result in a situation where the solver takes longer to terminate, which in turn can lead to
prolonged model execution times. Ultimately, extended model run times in the presence of a small
gap can be attributed to the fact that the solver has to evaluate more nodes during its execution in
order to prove optimality. Empirical evidence in Section 5 of this paper, as well as results presented
by Bertsimas et al. (2016), suggest that the MILP regression model finds the correct solution fairly
quickly during the early stages of model fitting (when the gap is still relatively large), but requires
additional time in order to prove optimality. Therefore, the user can comfortably request the model
to terminate at a larger optimality gap, knowing that the resulting solution will be close to optimality
(or may even be the optimal solution). All of the results presented in this section were obtained from
models that were executed where the gap was set equal to 5% (unless stated otherwise), meaning
that the solutions found by these models are at most 5% worse than the most optimal solution. For a
detailed explanation on the concept of the optimality gap in mixed integer problems, refer to Gurobi
Optimization (2017).
Finally, recent advances in computing power, which have enabled solvers to take on much larger

and more complex problems, should also be acknowledged.
In this section, experiments were performed by fitting the linearised model in (18)–(24) to the data

for different values of k in order to investigate the trade-off between model run time and quality of
the results produced. Specifically, logistic regression models were iteratively executed on the same
set of data for k ∈ {401,161,81,41}. It should be noted that the maximum number of grid values
employed by all models in this section was set equal to 401 and that the solutions obtained when
k = 401 were used as a baseline reference. This means that the execution times of and results yielded
by all other models that were fitted to the same dataset for k , 401 were compared to those found
for the baseline model. This is motivated by the results obtained in Section 5, where it was found
that the linearised logistic regression model with k = 401 produced maximum likelihood estimates
that were sufficiently close to the MLE obtained by the nonlinear model in SAS. Additionally, it was
observed that using much larger values for k unnecessarily increased model execution times without
showing significant improvement in model fit.
Consider once more the simulated datasets that were used in the modelling exercises conducted in

Section 5.1 and recall that various training sets containing n observations, with n ∈ {1 000, 3 000,
5 000, 10 000}, and 100 variables from a standard normal distribution were generated. In all of
these datasets, 10 equally spaced features were chosen to influence a latent, continuous response
variable Yc and were specified to have a true regression coefficient of one, or β∗

l
= 1 for l ∈ Q,

where Q = {1,11,21,31,41,51,61,71,81,91}. A binary outcome vector was subsequently created
from Yc and served as the target variable for the logistic regression model. By knowing that the
final model should contain 10 predictors, the model in (18)–(24) was fitted to the data whereby q
was set equal to 10 plus one more to compensate for the intercept. Table 10 displays the maximum
likelihood estimates obtained during each round of model fitting for different values of k, along with
the corresponding time consumed by every instance of model execution.
Table 10 shows that a significant decrease in model execution time can be achieved by reducing

k. However, shrinking the number of grid values employed by the linearised model does not appear
to have an adverse effect on the MLE obtained by the model. Table 11 shows by how much the
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Table 10. Linearised logistic regression model performance for different values of k.

log L Time (in seconds)
k n = 1 000 n = 3 000 n = 5 000 n = 10 000 n = 1 000 n = 3 000 n = 5 000 n = 10 000

401 −321.037 −1 010.981 −1 755.168 −3 500.658 1 727.93 3 231.42 25 148.31 102 583.00
161 −321.459 −1 012.392 −1 757.545 −3 505.505 394.76 1 803.31 5 060.53 9 531.11
81 −323.021 −1 017.388 −1 766.271 −3 522.718 217.31 810.53 1 964.24 6 657.11
41 −329.252 −1 037.018 −1 800.191 −3 589.838 99.75 322.35 1 105.39 5 467.77

Table 11. Deterioration in log L for different values of k.

k n = 1 000 n = 3 000 n = 5 000 n = 10 000

401 – – – –
161 −0.13% −0.13% −0.13% −0.13%
81 −0.61% −0.63% −0.63% −0.63%
41 −2.55% −2.57% −2.56% −2.54%

optimum solution has weakened (in percentage terms) alongside smaller k values. It can be observed
that specifying lower values for k seems to exert very little influence on the quality of the solution
obtained.
From the results displayed in Tables 10 and 11 it can be seen that the amount of time required

to perform logistic regression modelling with best subset selection may be reduced by up to 90% if
the modeller is willing to accept a final solution that is less than 3% weaker. Furthermore, it should
be noted that all of the models selected the correct 10 variables for inclusion in the final solution,
regardless of the value specified for k. Lastly, parameter estimates obtained for these 10 inputs were
sufficiently close to their true underlying values of one, i.e. β̂l ≈ 1 for l ∈ Q, after each round of
model fitting.
Modelling exercises similar to those presented abovewere conducted on real-world datasets aswell.

Note that model performance for the HEART dataset in Section 5.3 was not considered in this section,
as themodelling set contains only 12 potential predictor variables, which can easily be accommodated
by most variable selection techniques. Instead, two additional real-world datasets were studied
alongside the JUNKMAILdataset, namely theONLINENEWSPOPULARITYdataset of Fernandes,
Vinagre and Cortez (2015) and the SUPERCONDUCTIVITY DATA dataset of Hamidieh (2018).
Both datasets, along with the JUNKMAIL dataset, were chosen for inclusion in this section of the
paper due to their relative size. The number of rows, n, as well as the dimensionality, p, of these
datasets are sufficiently large and are more representative of an actual set of data that a modeller
might encounter in practice. All of the aforementioned data are available for download from the UCI
Machine Learning Repository.
The ONLINE NEWS POPULARITY dataset contains a total of n = 39 640 records and 61

columns, of which 58 are potential predictors. Of these 58 columns, four were found to be linear
combinations of other features in the dataset and were subsequently removed, leaving 54 variables
that were eligible for inclusion in the final model. The target variable in question is called Shares
and captures the number of online shares of a news article upon publication. It was noted that the
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response vector is a numeric field which contains integer entries, where Shares ∈ Z+, which implies
that it cannot be used as-is in binary classification problems such as logistic regression. Instead,
a suggestion given by Fernandes et al. (2015) was applied whereby a news article was classified
as popular when it had more than 1 400 shares. Alternatively, an article with a lower number of
shares was seen as unpopular. This lead to the creation of the binary outcome variable Y for logistic
regression by specifying

Yi =

{
0 if Shares < 1400,
1 if Shares ≥ 1400,

for i = 1, . . . ,n.
The final dataset contained a total of 18 490 records with Y = 0 and 21 150 cases with Y = 1

after the target variable was transformed. As is the case within most predictive modelling settings,
the entire dataset containing almost 40 000 observations was not used for model training. A smaller
training set consisting of n1 = 10 000 cases was created by randomly sampling 5 000 observations
with Y = 1 and 5 000 observations with Y = 0 from the total set. The remaining n2 = 29 640
were used as a validation set to test the generalisation abilities of the model. Lastly, studying the
AUC curve produced by models fitted to the dataset revealed that the model becomes saturated when
approximately 22 predictors are included in the final solution. Therefore, the model in (18)–(24) with
best subset selection was executed on the training set by using q = 22 + 1 as a cardinality parameter
(one more to compensate for the intercept term in regression)8.
The SUPERCONDUCTIVITY DATA dataset contains information relating to the chemical com-

pound of superconductors, along with the critical temperature achieved by the superconductor which
is captured in a column named critical_temp and serves as the response variable of interest. The
table comprises of n = 21 263 observations and 81 features that can be used as potential predictors
in the final model. As is the case with the ONLINE NEWS POPULARITY dataset, the outcome
variable had to be discretised in order to formulate a suitable target variable for logistic regression,
since the field critical_temp is a postie, real-valued number. In a separate study wherein machine
learning models were trained to predict the critical temperature of superconductors, Stanev, Oses,
Kusne, Rodriguez, Paglione, Curtarolo and Takeuchi (2018) note that superconductors can be ade-
quately divided into two groups of materials associated with either high or low temperatures by using
critical_temp = 10K as a cut-off. A binary response variable was subsequently created as follows:

Yi =

{
0 if critical_temp < 10,
1 if critical_temp ≥ 10,

for i = 1, . . . ,n.
Once the transformation shown above was carried out, the final dataset encompassed a total of

7 729 observations with Y = 0 and 13 534 records with Y = 1. Once more, a smaller dataset was
created for the purposes of training the model. Results presented by Stanev et al. (2018) show that
satisfactory levels of accuracy can be achieved when predicting superconductor temperatures with a
modelling set that contains roughly 3 000 to 6 000 observations. For this reason, a training dataset

8 Recall that the same methodology was used to select a suitable value for q when logistic regression modelling with best
subset selection was carried out for the HEART and JUNKMAIL datasets in Section 5.

VARIABLE SELECTION IN LOGISTIC REGRESSION 123



with n1 = 6 000 observations was composed by randomly sampling 3 000 cases with Y = 0 and
3 000 records with Y = 1. The other n2 = 15 263 observations that were excluded from the training
set were kept as a test set. In order to decide on a suitable value for the cardinality parameter q,
consideration was given to the results presented by Hamidieh (2018) and Stanev et al. (2018) instead
of having to draw up and analyse the AUC curve for 81 variables. Hamidieh (2018) opts to fit an
extreme gradient boost model to the data, where the untransformed response variable critical_temp
is used as a target. The author then proceeds to report the objective function gains achieved for each
input variable as a percentage of the total objective function improvement obtained when all features
are included in the model. By studying the individual gains of the top 20 predictors in the model,
it was found that the improvement in the final objective function value seems to diminish between
the first 10 to 15 variables. In turn, the emprical evidence supplied by Stanev et al. (2018) indicate
that the performance of their classifiers achieve a plateau for a model consisting of approximately 10
or more predictors. After analysing the results presented by the aforementioned authors, a value of
q = 10 + 1 was used when performing best subset selection on the superconductors dataset in order
to obtain a final model with 10 inputs and an intercept.
Recall that the exercises conducted in Section 5.4 involved the execution of the linearised logistic

regression model with best subset selection for the JUNKMAIL dataset where a variety of values
were specified for the cardinality parameter q, which produced solutions containing between q = 6
and q = 10 variables in the final model. This exercise was repeated, with the difference being that
increasingly less knot values were used for the linearisation of the log-likelihood objective function.
Table 12 displays the objective function value obtained and time consumed during each round of
model fitting, whereas Table 13 shows by how much the final solution has weakened alongside any
potential improvements in model execution time.
From Tables 12 and 13, it can be seen that the use of a rougher grid (i.e. less grid values or a smaller

k) results in a tremendous improvement in model execution time. Alternatively, no real deterioration
in the final log-likelihood objective function values is evident. Finally, while not displayed here,
note that Gini measures and accuracy rates similar to those in Table 7 were found for all of the
aforementioned models that were fitted to the JUNKMAIL dataset, regardless of the size of the grid.
As is the case with the JUNKMAIL dataset, empirical evidence suggests that the user sacrifices

very little when it comes to the quality of the final model when a less granular grid is utilised during
fitting of logistic regression models to the ONLINE NEWS POPULARITY dataset. However,
significant gains can be made with respect to model run times when the number of grid values k is
smaller. This is supported by results presented in Table 14 where the MILP formulation in (18)–(24)
was tasked with fitting a 22-variable model for a variety of values specified for k.
By studying Table 14, notice that all of the models that were fitted to the ONLINE NEWS

POPULARITY dataset obtained Gini values between 37 and 41. In turn, a Gini of 37 to 41 translates
to an AUC measure of approximately 68 to 71. These measurements closely resemble the model
evaluation metrics associated with a random forest model and gradient boosting machine that was
fitted to the same set of data by Fernandes et al. (2015). The random forest obtained by the authors had
an AUC of 72.7, while the gradient boosting machine achieved an AUC of 74.5. This suggests that
a rudimentary classifier like the logistic regression MILP, which produces simpler models that are
arguably more interpretable, has the ability to yield final models with similar predictive performance
when compared to much more complicated machine learning algorithms, such as random forests and
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gradient boosting machines.
The SUPERCONDUCTIVITY DATA dataset is by far the largest real-world dataset considered

within the best subset variable selection problem setting presented in this paper. Not only does
the training set consist of many rows (n1 = 6 000 cases), but it contains 81 potential predictors of
various scales, which is about twice the number of variables that best subset selection procedures are
expected to handle efficiently. For this reason, all logistic regression models that were fitted to the
SUPERCONDUCTIVITY DATA were allowed to execute for a maximum of 86 400 seconds, which
translates to 24 hours. Table 15 summarises the results obtained during each round of model fitting
when the logistic regression MILP was used to obtain 10-variable solutions.
Even though none of the models were able to conclude their execution within the specified time

limit, Table 15 suggests that high quality solutions are still achievable even when model fitting is
stopped early. Specifically, notice that improvements in the final log-likelihood objective function
value and optimality gap are realised when the MILP formulation employs a grid that is more coarse.
This is supported by consistently higher Gini and accuracy measures associated with lower k values.
This can most likely be attributed to the fact that the solver has to consider fewer constraints within
the limited amount of time that is made available for model fitting.
The results presented in this section indicate that the use of a less granular grid when performing

best subset selection with themodel in (18)–(24) entails many benefits. For moderately large datasets,
such as the JUNKMAIL dataset and ONLINENEWSPOPULARITY dataset, considerably improved
model run times can be achieved if the modeller is willing to accept an insignificant decay in the
quality of the final solution. For much larger datasets, like the SUPERCONDUCTIVITY DATA
dataset, the use of a grid consisting of less knot values can still yield satisfactory models alongside
potential improvements in the optimality gap and overall model fit, even when model execution
terminates early.

7. Conclusion and future work
Rapid advances in computing power and algorithmic execution in recent times have lead to a resur-
gence in interest in research directed towards the optimisation of linearmodels using exact approaches.
In this paper, the estimation of the parameter vector in a logistic regression model using a linearised
approximation of the log-likelihood function was shown. The proposed linearised logistic regression
model yields a solution that underestimates the maximum likelihood estimate. Experimental results
indicate that the linearised model produces results that are comparable (or identical) to those obtained
by models fitted using the iterative Newton–Raphson method. In some cases, the linearised model
performed better than its iterative counterpart. The suggested model (without subset selection) yields
solutions within a reasonable amount of time when the number of predictors, p, is in the 100s and
the number of observations, n, is in the 1000s, noting that scalable solutions are still attainable even
when n is notably larger at 20 000 records.
The proposed model was also extended to facilitate best subset selection via the introduction of

cardinality parameters. The results presented in this paper show that the linearised logistic regression
model with best subset selection consistantly produces parsimonious final models that are similar to
or occasionally better than the benchmark. Furthermore, it is observed that a trade-off exists between
accuracy and execution time when considering the number of grid values, k, employed in the
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linearisation of the log-likelihood objective function. Empirical evidence provided in Section 6 show
that the logistic regression MILP with best subset selection can produce models within increasingly
shorter periods of time if a suitable value for k is specified. In fact, by shrinking k quite significantly,
the modeller is able to obtain solutions considerably quicker without having to sacrifice much with
respect to the quality of the solution achieved. For substantially larger datasets, the use of less grid
values still yields satisfactory logistic regression models, even whenmodel execution is stopped early.
Additionally, potential improvements in overall model fit and accuracymeasures can be realised when
k is reduced for sizable modelling sets. A suggested approach on how to select an appropriate grid for
the linearised model was presented. While the approach put forth in Section 5 for selecting suitable
start and end points for the grid is relatively user-friendly and requires little mathematical rigour,
alternative methodologies towards the specification of the grid can perhaps be explored.
It is noted that the suggestedmodel with best subset selection tends to find the best q-variablemodel

and its corresponding parameter estimates fairly quickly, but requires a significant amount of time to
prove optimality. In turn, this can result in increased execution times. However, this is not unique
to the model suggested in (18)–(24) and has been documented for best subset selection applications
in linear regression as well – see Bertsimas et al. (2016). Therefore, further consideration should
be given to the structure of the MILP constraint matrix and the decomposition thereof for additional
algorithmic advances and reduced model run times.
Lastly, the properties of the logistic regression estimate vector β̂ should be explored to a greater

extent. Specifically, the effect of the upper and lower bounds MlL and MlU in constraint (22) in
(18)–(24) and the size of the grid should be investigated, as significantly lower upper bounds, higher
lower bounds or a narrower grid has the potential to shrink fitted regression coefficients, which could
yield biased estimates.

References
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.
In Petrov, B. N. and Csaki, F. (Editors) Proceedings of the 2nd International Symposium on
Information Theory. Budapest, 267–281.

Bertsimas, D. and King, A. (2016). OR Forum – an algorithmic approach to linear regression.
Operations research, 64, 2–16.

Bertsimas, D., King, A., and Mazumder, R. (2016). Best subset selection via a modern optimiza-
tion lens. The Annals of Statistics, 44, 813–852.

Fernandes, K., Vinagre, P., and Cortez, P. (2015). A proactive intelligent decision support system
for predicting the popularity of online news. In Proceedings of the 17th EPIA 2015 - Portuguese
Conference on Artificial Intelligence. Portugal.

Furnival, G. and Wilson, R. (1974). Regression by leaps and bounds. Technometrics, 16, 499–511.
Gurobi Optimization (2017). Gurobi Optimization User Manual: Mixed Integer Programming

(MIP) – A Primer on the Basics. http://www.gurobi.com/resources/getting-started/mip-basics.
Accessed on 2018-03-26.

Hamidieh, K. (2018). A data-driven statistical model for predicting the critical temperature of a
superconductor. Computational Materials Science, 154, 346–354.

128 VENTER & TERBLANCHE



Hastie, T., Tibshirani, R., and Friedman, J. (2001). Elements of Statistical Learning. Springer
Science and Business Media, New York.

Kamiya, S., Miyashiro, R., and Takano, Y. (2019). Feature subset selection for the multinomial
logit model viamixed-integer optimization. In Proceedings ofMachine Learning Research, PMLR,
volume 89. 1254–1263.

Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). Applied Linear Statistical Models.
Fifth edition. McGraw-Hill, New York.

Lund, B. (2017). Logistic model selection with SAS PROC’s LOGISTIC, HPLOGISTIC, HP-
GENSELECT – Paper AA02. In Proceedings of the 2017 Midwest SAS Users Group Conference.
St. Louis.

Maldonado, S., Perez, J., Weber, R., and Labbe, M. (2014). Feature selection for support vector
machines via mixed integer linear programming. Information Sciences, 279, 163 – 175.

Miller, A. (2002). Subset Selection in Regression. CRC Press, Boca Raton.
Natarajan, B. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing,
24, 227–234.

Okeh, U. and Oyeka, I. (2013). Estimating the Fisher’s scoring matrix formula from logistic model.
American Journal of Theoretical and Applied Statistics, 2, 221–227.

Patetta, M. (2012). Predictive Modelling Using Logistic Regression Course Notes. Course code
LWPMLR93/PMLR93. SAS Institute Inc., Cary.

Patetta, M., Huber, M., and Nizam, A. (2009). Categorical Data Analysis Using Logistic Regres-
sion Course Notes. Course code LWCDAL92/CDAL92. SAS Institute Inc., Cary.

Potts, W. and Patetta, M. (1999). Logistic Regression Modelling. SAS Institute Inc., Cary.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992). Numerical
Principles in FORTRAN: The Art of Scientific Computing. Second edition. Cambridge University
Press.

Rezac, M. and Rezac, F. (2011). How to measure the quality of credit scoring models. Journal of
Economics and Finance, 61, 486–507.

SAS Institute Inc. (2017). SASHELP Data Sets. SAS Institute Inc., Cary.
Sato, T., Takano, Y., Miyashiro, R., and Yoshise, A. (2015). Feature subset selection for logistic
regression via mixed integer optimization. Discussion Paper Series No. 1324, Department of
Policy and Planning Sciences, University of Tsukuba.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.
Stanev, V., Oses, C., Kusne, A. G., Rodriguez, E., Paglione, J., Curtarolo, S., and Takeuchi,

I. (2018). Machine learning modeling of superconducting critical temperature. Computational
Materials, 4, 1–14.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of Royal Statistical
Society: Series B, 58, 267–288.

Manuscript received 2019-05-02, revised 2019-09-20, accepted 2019-11-01.

VARIABLE SELECTION IN LOGISTIC REGRESSION 129


