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The asymptotic mean integrated squared error (AMISE) and the kernel efficiency (KE)
of kernel distribution function estimators are well studied. In this note we define new non-
parametric distribution function estimators by kernel-smoothing an initial kernel distribution
function estimator. We show that, under certain conditions, the AMISE and the KE can be
improved. A concrete example and a Monte Carlo simulation are worked out for illustration.
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1. Introduction
Given a random sample X1, . . . ,Xn from an unknown absolutely continuous distribution function
(df ) F(·), the kernel distribution function estimator is given by

F̂h(x; K) = 1
n

n∑
i=1

K
(

x − Xi

h

)
, (1)

with K(x) =
∫ x

−∞ k(t)dt, where k is a kernel density, and bandwidth h.
In this note we apply kernel-smoothing with kernel k1 (and corresponding df K1) and bandwidth

b to F̂h(·; K0) with initial kernel density k0 (and corresponding df K0) and bandwidth h, i.e., we
consider

F̂h,b(x; K0,K1) = 1
b

∫ +∞

−∞
k1

( x − y

b

)
F̂h(y; K0)dy. (2)
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Note that we can rewrite F̂h,b(·; K0,K1) in two ways

F̂h,b(x; K0,K1) = 1
n

n∑
i=1

∫ ∞

−∞
k1(u)K0

(
x − Xi

h
− b

h
u
)

du (3)

and

F̂h,b(x; K0,K1) = 1
n

n∑
i=1

∫ ∞

−∞
k0(u)K1

(
x − Xi

b
− h

b
u
)

du. (4)

From expression (3) it is clear that if b/h � 0 (i.e., b/h → 0) then F̂h,b(x; K0,K1) � F̂h(x; K0).
Similarly, if h/b � 0 (i.e., h/b→ 0), it follows from (4) that F̂h,b(x; K0,K1) � F̂b(x; K1). Therefore,
the interesting case is b/h = c for some constant c > 0. We have

F̂h,ch(x; K0,K1) = 1
nch

n∑
i=1

∫ ∞

−∞
k1

( x − y

ch

)
K0

(
y − Xi

h

)
dy. (5)

A simple calculation shows that

F̂h,ch(x; K0,K1) = 1
n

n∑
i=1

Kc

(
x − Xi

h

)
, (6)

which is a standard kernel distribution function estimator with Kc given by the convolution of K0
and k1,c(y) = c−1k1(y/c), i.e.,

Kc(t) =
∫ ∞

−∞
k1,c(y)K0(t − y)dy = (K0 ∗ k1,c)(t).

The main objective of the paper is to show that, based on a comparison of the asymptotic mean
integrated squared error (AMISE) and the kernel efficiency (KE) of F̂h,ch(·; K0,K1) and F̂h(·; K0), it
can be beneficial to kernel-smooth a kernel distribution function estimator.
The present study parallels results in Janssen et al. (2019) on kernel-smoothed kernel density

estimators.

2. Preliminaries
Throughout this paper we assume the following standard conditions on the distributions F, K0 and
K1, and on the bandwidth h.

(F) F has two continuous derivatives f and f ′ and 0 < D( f ) :=
∫ ∞
−∞( f ′(x))2dF(x) < ∞.

(K) K0 and K1 have densities k0 and k1 on (−∞,+∞) which are symmetric around 0, with µ2(ki) =∫ ∞
−∞ z2ki(z)dz < ∞, i = 0,1.

(h) h = hn is a sequence of positive numbers, such that hn → 0 and nhn →∞ as n→∞.

Extensions to kernels with compact support [−L, L] are possible. The results remain true but the
proof of Lemma 1 is different.
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Under (F), (K) and (h) a typical accuracy measure of F̂h(·; K) is the AMISE, which is the leading
term (n large, h small) of the mean integrated squared error (Azzalini, 1981; Altman and Leger,
1995; Swanepoel and Van Graan, 2005). It is given by

AMISE(F̂h(·; K)) = 1
6n
− 2

h
n

I(K)R( f ) + 1
4

h4µ2
2(k)D( f ), (7)

with

I(K) =
∫ ∞

−∞
zk(z)K(z)dz =

1
2

∫ ∞

−∞
K(z)(1 − K(z))dz

and, for every square integrable g,

R(g) =
∫ ∞

−∞
g2(x)dx.

Note that the version of MISE we are using is E{
∫ ∞
−∞[F̂h(x; K) − F(x)]2dF(x)} (see e.g. Swanepoel,

1988).
Minimising AMISE(F̂h(·; K)) with respect to h gives

h0 =

{
2I(K)R( f )
µ2

2(k)D( f )

}1/3
n−1/3

as optimal bandwidth, for which

AMISE(F̂h0 (·; K)) = 1
6n
− 3

41/3
(I(K))4/3
(µ2(k))2/3

((R( f ))4/3
(D( f ))1/3 n−4/3. (8)

The factor in (8) that depends on the kernel K is denoted by

C(K) = (I(K))
4/3

(µ2(k))2/3

and needs to be maximized. Applying the Cauchy–Schwarz inequality to I(K) =
∫ ∞
−∞ zk(z)(K(z) −

1
2 )dz gives that I(K) ≤ (µ2(k)/12)1/2 and hence C(K) ≤ (

√
12)−4/3.

This upper bound corresponds to the value of C(Ku), where Ku is the df of a uniform distribution
on [−L, L], for any L > 0. See also Swanepoel (1988) and Jones (1990). Hence Ku maximizes C(K)
and hence minimizes AMISE(F̂h0 (·; K)) in (8) and is therefore the optimal kernel.
In terms of C(K), kernel efficiency for the kernel distribution K is therefore defined as

KE(K) =
{

C(K)
C(Ku)

}3/4
.

Some popular kernels with their KE values are: uniform (KE = 1.000), Epanechnikov (KE = 0.995),
triangular (KE = 0.989) and normal (KE = 0.977).
In Section 3 we show that, under some conditions, AMISE(F̂h,ch(·; K0,K1)) is smaller than

AMISE(F̂h(·; K0), i.e., kernel-smoothing the kernel distribution function is beneficial. Kernel
efficiencies, KE(K0) and KE(Kc), are compared in Section 4. A concrete example and a Monte
Carlo simulation illustrate the theory. We conclude this section with a key lemma on the behaviour
of I(Kc). The technical proof is in the Appendix.
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Lemma 1. Assume (F), (K), (h), k0 has a bounded, continuous derivative almost everywhere (a.e.)
with respect to Lebesgue measure which is ultimately monotone in both tails and R(k0) < ∞. Then,
for c→ 0,

I(Kc) = I(K0) + 1
2

c2µ2(k1)R(k0) + o(c2).

3. Minimized AMISE comparison
For ease of notation we write

Θh,0 := AMISE(F̂h(·; K0)),
Θh,0,1(c) := AMISE(F̂h,ch(·; K0,K1)).

Theorem 1. Assume the conditions of Lemma 1. Then there exists a constant c0 = c0(k0) such that

inf
h>0
Θh,0,1(c) < inf

h>0
Θh,0 for all 0 < c ≤ c0 (9)

if and only if

I(K0) < R(k0)µ2(k0). (10)

Proof. From (8) we have with kc = K ′c ,

inf
h>0
Θh,0,1(c) − inf

h>0
Θh,0=

3
41/3

{
I(K0)4/3
µ2(k0)2/3

− I(Kc)4/3
µ2(kc)2/3

} (R( f ))4/3
(D( f ))1/3 n−4/3,

and this is strictly negative if and only if

I(K0)2µ2(kc) < I(Kc)2µ2(k0). (11)

Since µ2(kc) is the variance of a convolution, we have that µ2(kc) = µ2(k0) + c2µ2(k1). Using this
and Lemma 1 we obtain after some easy algebra that (11) holds for all c sufficiently small if and only
if (10) holds. �

4. Kernel efficiency
To compare the kernel efficiencies KE(Kc) and KE(K0) for given kernel densities k0 and k1, we use
the following relation, obtained from the definitions of KE(K) and C(K) in Section 2:

KE(K0)
KE(Kc) =

I(K0)
µ2(k0)1/2

/
I(Kc)

µ2(kc)1/2
.

From (11) in the proof of Theorem 1, we obtain the following result, showing that kernel-smoothing
the kernel distribution function can improve the kernel efficiency.

Corollary 1. Assume the conditions of Lemma 1. Then there exists a constant c0 = c0(k0) such that
KE(Kc) > KE(K0) for all 0 < c ≤ c0

if and only if

I(K0) < µ2(k0)R(k0).
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Remark 1. For K0 the uniform on [−L, L], we have I(K0) = L/6, R(k0) = 1/(2L), µ2(k0) = L2/3
and hence we have equality in (10). So the kernel efficiency cannot be improved. This is, of course,
in line with the optimality of the uniform kernel described in Section 1.

Example 1 (Convolution of Laplace and uniform kernels). Let k0(t) = exp(−|t |)/2, −∞ < t < ∞,
and k1,c(t) = I(−c ≤ t ≤ c)/(2c), with I(·) the indicator function. Calculations show that K0(t) =
exp(t)/2, for −∞ < t ≤ 0, and K0(t) = 1 − exp(−t)/2, for 0 ≤ t < ∞. Also, µ2(k0) = 2, R(k0) = 1/4
and I(K0) = 3/8, which imply that µ2(k0)R(k0) > I(K0), so that condition (10) of Theorem 1 is
satisfied.
A direct calculation yields, for c > 0,

Kc(t) = (K0 ∗ k1,c)(t) =




1
4c {e(t+c) − e(t−c)}, for t ≤ −c

1
2c (t + c) + 1

4c {e−(t+c) − e(t−c)}, for − c ≤ t ≤ c

1 − 1
4c {e(c−t) − e−(c+t)}, for t ≥ c.

Since µ2(kc) = µ2(k0) + c2µ2(k1), we have

µ2(kc) = 2 +
c2

3
, (12)

and after some tedious calculations we find that

I(Kc) =
(

c
6
+

1
2c
− 5

16c2

)
+ e−2c

(
1
8c
+

5
16c2

)
. (13)

From (12) and (13) it easily follows that C(Kc) is strictly increasing as c → ∞ with limit
limc→∞ C(Kc) = (1/12)2/3 � 0.19078. For example, if c � 16.9 then C(K16.9) � 0.1907. From the
strict monotonicity of C(Kc) we conclude from the proof of Theorem 1 that

inf
h>0
Θh,0,1(c) < inf

h>0
Θh,0 for all c > 0.

While the conclusion of Theorem 1 is only valid for c small, it turns out to be valid for all c > 0 in
this particular example. This follows from the exact calculations above and intuitively from the fact
that Kc(t) approaches the uniform distribution on [−c, c] when c becomes large.
Suppose we define the AMISE-efficiency of Kc with respect to K0 (see (8)) by

AME(Kc) :=
1/(6n) − infh>0 Θh,0,1(c)

1/(6n) − infh>0 Θh,0
=

C(Kc)
C(K0) .

Since C(K0) = (3/8)4/3/22/3 we have that AME(K16.9) � 1.12. This illustrates the beneficial effect
of kernel smoothing applied to the original distribution function estimator.
An interesting property of the family of kernels {Kc = K0 ∗ k1,c, c > 0} is that one can choose at

least one of its members such that KE(Kc) � 1 = KE(Ku). We indeed have C(Ku) = (1/12)2/3, and
hence if, for example c = 16.9, we obtain

KE(Kc) =
{

C(Kc)
C(Ku)

}3/4
= 0.999663,
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which improves

KE(K0) =
{

C(K0)
C(Ku)

}3/4
= 0.918558

in a substantial way.

Remark 2. For standard normal kernels k0(t) = k1(t) = φ(t),

kc(t) = k0 ∗ k1,c(t) = 1√
1 + c2

φ

(
t√

1 + c2

)
.

Hence C(Kc) = C(K0), C(·) is scale invariant, and therefore infh>0 Θh,0,1(c) = infh>0 Θh,0, i.e., we
have equality in (9). Also, AME(Kc) = 1 for all c ≥ 0. The reason for this is that (10) in Theorem 1
(and Corollary 1) is not satisfied, in fact we have

I(K0) = µ2(k0)R(k0) = 1
2
√
π
.

This provides a nice counterexample for Theorem 1.

Remark 3. In order to make F̂h,ch(x; K0,K1) suitable for practical applications we propose, in view
of the expression derived for the optimal bandwidth h0 and the expression for AMISE in (8), the
following choices of the tuning parameter c and the smoothing parameter h for specified kernels K0
and K1:

cm := arg max C(Kc),
and a simple normal-reference plug-in bandwidth selector is

ĥn(cm) := σ̂(108π)1/6{I(Kcm )/µ2
2(kcm )}1/3n−1/3,

where (see Silverman, 1986, p.47)

σ̂ := min{S, IQR/1.349},

with S the sample standard deviation and IQR the interquartile range. The factor 108π is obtained
by noting that R(φ) = (4π)−1/2 and D(φ) =

∫ ∞
−∞(φ′(x))2φ(x)dx =

√
3/(18π).

To demonstrate that the proposed plug-in bandwidth selector is effective, we perform, for k0(·)
the Laplace kernel and k1,c(·) the uniform kernel on [−c, c] (as in Example 1), a small Monte Carlo
simulation (based on 10000 simulation runs). Table 1 displays the Monte Carlo estimate of the
expected value of the ratio

R(n, c) =
Θ
ĥn(c),0,1(c)
Θ
ĥn(0),0

,

with ĥn(c) = σ̂(108π)1/6{I(Kc)/µ2
2(kc)}1/3n−1/3, for c ≥ 0. The standard errors of the Monte Carlo

estimates were found to be negligibly small and are therefore not reported in Table 1.
The grid of c-values is 0.25, 0.5, 5, 10, 20. As sample size we take n = 20, 30, 50, 100 and as

target distributions (TD) we take

(i) Φ(t), t ∈ R (standard normal),
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Table 1. Monte Carlo estimates of the expected values of R(n, c) for the
target distributions (c = 0.25, 0.5, 5, 10, 20 and n = 20, 30, 50, 100).

n/c 0.25 0.5 5 10 20

(i) Normal distribution
20 0.9985711 0.9946520 0.9312509 0.9253148 0.9241872
30 0.9988013 0.9955135 0.9423249 0.9373449 0.9363990
50 0.9990366 0.9963942 0.9536471 0.9496448 0.9488845
100 0.9992814 0.9973104 0.9654247 0.9624393 0.9618723
(ii) Contaminated normal distribution
20 0.9996937 0.9988535 0.9852620 0.9839895 0.9837478
30 0.9997861 0.9991995 0.9897089 0.9888203 0.9886515
50 0.9998678 0.9995053 0.9936402 0.9930911 0.9929867
100 0.9999107 0.9996657 0.9957030 0.9953320 0.9952615
(iii) Skewed unimodal distribution, case 1
20 0.9985482 0.9945664 0.9301498 0.9241186 0.9229730
30 0.9987823 0.9954425 0.9414131 0.9363545 0.9353936
50 0.9990239 0.9963468 0.9530370 0.9489820 0.9482118
100 0.9992734 0.9972804 0.9650396 0.9620210 0.9614476
(iv) Skewed unimodal distribution, case 2
20 0.9984089 0.9940450 0.9234480 0.9168381 0.9155825
30 0.9986813 0.9950644 0.9365521 0.9310737 0.9300331
50 0.9989554 0.9960902 0.9497387 0.9453989 0.9445745
100 0.9992299 0.9971176 0.9629459 0.9597464 0.9591387

Table 2. R( f ) and D( f ) for
the target distributions.

TD R( f ) D( f )
(i) 0.28209 0.03063
(ii) 0.25215 0.02407
(iii) 0.25090 0.01863
(iv) 0.19294 0.00564
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(ii) 9
10Φ(t) + 1

10

(
1
3Φ

(
t
3
) )
, t ∈ R (contaminated normal),

(iii) 1
2Φ(t) + 1

2Φ(t − 1), t ∈ R (skewed unimodel distribution, case 1), and

(iv) 1
2Φ(t) + 1

2Φ(t − 2), t ∈ R (skewed unimodel distribution, case 2).

To calculate R(n, c) we need for the distributions (i)–(iv): R( f ) and D( f ). They are given in Table 2.
The results in this table clearly illustrate the beneficial effect, especially for moderate sample sizes,

on the AMISEwhen using F̂h,ch(x,K0,K1) in the estimation of normal mixture distribution functions.

Acknowledgements. We thank the associate editor and the reviewers for their valuable comments
(leading e.g. to Remark 2) and good suggestions (leading e.g. to the Monte Carlo study) to improve
the original manuscript.

Appendix
Proof of Lemma 1. Applying a Taylor expansion and the symmetry of k1 around zero, we obain that

Kc(t) = K0(t) +
(

c2

2

) ∫ +∞

−∞
z2k ′0(ηc(z, t))k1(z)dz, (A.1)

for some intermediate point ηc(z, t) between t − cz and t. For arbitrary large T > 0, define for any
distribution function K with density function k,

IT (K) =
(
1
2

) ∫ +T

−T
K(t)(1 − K(t))dt (A.2)

and

RT (k) =
∫ +T

−T
k2(t)dt. (A.3)

Thus, using (A.1) and (A.2), we may write

IT (Kc) = IT (K0) −
(

c2

2

) ∫ +T

−T
K0(t)Bc(t)dt +

(
c2

4

) ∫ +T

−T
Bc(t)(dt) −

(
c4

8

) ∫ +T

−T
B2
c(t)dt, (A.4)

where

Bc(t) =
∫ +∞

−∞
z2k ′0(ηc(z, t))k1(z)dz. (A.5)

Note that since k ′0 is a.e. continuous, k ′0(ηc(z, t)) → k ′0(t) a.e. as c→ 0. Also, the boundedness of k ′0
implies that |z2k ′0(ηc(z, t))k1(z)| ≤ Cz2k1(z), for some finite constant C > 0, with

∫ +∞
−∞ z2k1(z)dz =

µ2(k1) < ∞.
By applying Lebesgue’s dominated convergence theorem we therefore have from (A.5) that, for

c→ 0,

Bc(t) → k ′0(t)µ2(k1) a.e. (A.6)
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Define, for T > 0,

Jc(T) := (IT (Kc) − IT (K0))/c2. (A.7)

From (A.3), (A.4), (A.6) and (A.7) it follows, by using the symmetry of k0 and K0, and a similar
argument as in the derivation of (A.6), that

J(T) := lim
c→0

Jc(T) = −1
2
µ2(k1)(2K0(T) − 1)k0(T) + 1

2
µ2(k1)RT (k0). (A.8)

For all T sufficiently large (A.8) yields that

J ′(T) = −1
2
µ2(k1)(2K0(T) − 1)k ′0(T) ≥ 0,

since k ′0(T) ≤ 0. This implies that J(T) is nondecreasing for all large T (ultimately monotone). Thus,
J(T) → ` as T →∞, for some constant ` > 0. From (A.8) it is clear that

J(T) ≤ 1
2
µ2(k1)RT (k0) ≤ 1

2
µ2(k1)R(k0). (A.9)

Finally, we conclude from (A.8) and (A.9) that

` = sup
T>0

J(T) = J(∞) = 1
2
µ2(k1)R(k0). (A.10)

The proof of the lemma now follows from (A.7) and (A.10). �
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