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Over the years, the standard regression analysis method for discrete time compet-
ing risks data has been to model the data with discrete time cause-specific hazards.
While a few continuous time competing risks models have been proposed in the
literature, it is a well documented fact that these models are not appropriate for
application in discrete time as is. The vertical regression model of Nicolaie et al.
(2010) is the latest of these continuous time competing risks models. We refor-
mulate this regression model for the purpose of application in discrete time. We
demonstrate that the proposed model can easily be implemented by using existing
software for discrete time models. We apply the proposed model together with some
of the existing discrete time models to real discrete time competing risks data and
find that the proposed model and these models compare favourably.
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1. Introduction
Competing risks models continue to be popular with researchers in applied sciences where time
is measured in discrete units; see Hwang and Chu (2013), Cleric et al. (2014), Bertoni and Groh
(2014), and Vallejos and Steel (2017) for examples of recent applications. The data that arise from
such applications are often referred to as discrete time competing risks data, i.e., the subjects are
exposed to multiple risks of failure and the time to failure is observed in discrete units. With 𝐽 failure
causes, let 𝑇 and 𝐷 denote time to failure and failure type, respectively, such that 𝐷 ∈ {1, 2, . . . , 𝐽}.
Suppose that𝐶 is time to censoring. In general, observed competing risks data can be represented by
y = (𝑡𝑖 ,x𝑇𝑖 ,Δ𝑖)𝑇 , 𝑖 = 1, . . . 𝑛, where 𝑇𝑖 = 𝑇𝑖 ∧ 𝐶𝑖 and Δ𝑖 = 𝐼 (𝑇 ≤ 𝐶𝑖)𝐷𝑖 . The vector x𝑖 represents
the set of covariates that describe subject 𝑖. To distinguish between continuous time and discrete time
competing riks data, it is assumed that time is observed in discrete units, i.e., 𝑇, 𝐶 ∈ {1, 2, . . . , 𝑞}
for a positive integer 𝑞. The multinomial model has been the standard regression model for analysis
of discrete time competing risks data (Ambrogi et al., 2009; Tutz and Schmid, 2016). This model
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proposes discrete time cause-specific hazards for modelling competing risks data. The definition of
discrete time cause-specific hazards is given by

𝜆 𝑗 (𝑡) = 𝑃(𝑇 = 𝑡, 𝐷 = 𝑗 |𝑇 ≥ 𝑡),

for 𝑡 = 1, . . . , 𝑞 and 𝑗 = 1, . . . , 𝐽. With covariates, the model for cause-specific hazards is given by

𝜆 𝑗 (𝑡 |x,α) = exp
(
𝛼0 𝑗𝑡 + x𝑇α1 𝑗

)
1 + ∑𝐽

𝑙=1 exp
(
𝛼0𝑙𝑡 + x𝑇α1𝑙

) , (1)

for 𝑗 = 1, . . . , 𝐽 and 𝑡 = 1, . . . , 𝑞, where 𝛼0𝑙𝑡 is the duration coefficient at time 𝑡 and α1 𝑗 is a
vector of regression coefficients. The cause-specific hazard parameters α 𝑗 , 𝑗 = 1, . . . , 𝐽, where
α 𝑗 = (𝛼0 𝑗1 . . . 𝛼0 𝑗𝑞 ,α

𝑇
1 𝑗 )𝑇 are estimated simultaneously by fitting a multinomial distribution to

observed data in a long format. The estimates for the cumulative incidence function can be obtained
from

�̂�𝑗 (𝑡 |x, α̂) =
∑︁
𝑠:𝑠≤𝑡

𝑆(𝑠 − 1|x, α̂)�̂� 𝑗 (𝑠 |x, α̂), (2)

for 𝑗 = 1, . . . , 𝐽 and 𝑠 = 1, . . . , 𝑞, where 𝑆(𝑡 |x, α̂) = ∏𝑡
𝑠=1 (1 − �̂�(𝑠 |x, α̂)) and 𝑆(𝑡 = 0|x, α̂) = 1.

Lee et al. (2018) proposed a regression model for estimating the cause-specific hazards individually
by applying a binomial distribution. Henceforth, we shall refer to this model as the binomial model.
The model for the cumulative incidence function in (2) complicates the evaluation of the covariate
effects. Recently, Berger et al. (2020) advanced a method for modelling the cumulative incidence
function directly on covariates as an extension of the model proposed by Fine and Gray (1999) for
discrete time data. For further discussion of discrete time competing risks models; see, for example,
Schmid and Berger (2020). There are other methods for modelling the cause-specific hazards such as
Classification and Regression Trees (CART) which are also discussed in Schmid and Berger (2020).

The vertical model (Nicolaie et al., 2010) is the latest continuous time competing risks model. Our
main objective in this article is to adapt this model for the purposes of application in discrete time.
The vertical model postulates a decomposition of the joint distribution of (𝑇 ;𝐷) into a distribution
for failure type conditional on failure time and a marginal distribution for failure time:

𝑃(𝑇 ;𝐷) = 𝑃(𝐷 |𝑇)𝑃(𝑇).

Amongst other things, this assumption gives rise to characterisation of competing risks data in
terms of failure type probabilities conditional on failure time (relative hazards) and total hazards as
an alternative to the more familiar and popular cause-specific hazards. In fact, the cause-specific
hazards and all other estimands, including the cumulative incidence function estimates, are now
obtained from the relative hazards and total hazard estimates. While modelling observed data with
the cause-specific hazards has its advantages, such as allowing for a direct and simpler means for
evaluation of covariate effects on the risks of failure, in some instances it is not possible to estimate
these quantities directly from data. It is not possible, for example, to model data with cause-specific
hazards when some of the subjects have failed with unknown failure causes. This means that, in the
presence of missing failure causes, the existing discrete time models are immediately disqualified
from application unless data are edited by, for example, excluding the affected subjects. Nicolaie
et al. (2015) demonstrated that the vertical model of Nicolaie et al. (2010) is invariant to the presence
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or absence of missing failure causes, i.e., the model can also be applied to data with missing failure
causes as is in the continuous time domain. Another complication that may arise with competing
risk data is that it may come with a sizeable proportion of cured subjects. Cured subjects are
assumed to be mixed with censored subjects and the various methods for handling these subjects
advance different techniques for splitting cured subject from the subjects that will eventually fail. The
multinomial model, on the other hand, retains the censored subjects intact and usually regards them
as reference category when the cause-specific hazard parameters are estimated. In the estimation of
target cause-specific hazards, the binomial model (Lee et al., 2018) is just as handicapped because it
regards the competing failure times as censored and lumps them together with real censored subjects
as a reference category. The same authors, that is, Nicolaie et al. (2018), have extended the vertical
model for handling cured subjects in the continuous time setting. This is not the first time that another
option for modelling data has been suggested as an alternative to the cause-specific hazards. The
model that has come to be known as the mixture competing risks model (Larson and Dinse, 1985)
proposes failure-type probabilities and component hazards for modelling competing risks data. This
follows from yet another reformulation of the bivariate distribution of (𝑇, 𝐷) that is expressed in
terms of a marginal distribution for failure type and a failure time distribution conditional on failure
type:

𝑃(𝑇, 𝐷) = 𝑃(𝐷)𝑃(𝑇 |𝐷).
This approach has proved to be more flexible than the cause-specific hazards — for example, the
mixture model forms the bases for the well known mixture cure model; see Peng and Taylor (2014)
for a review of this model. Furthermore, the model has been extended to handle cured subjects in
competing risks settings (Choi, 2002; Zhiping, 2011). In presenting a vertical model in discrete time,
it is envisaged that the proposed model can, in the least, be upscaled to address the limitations of
the cause-specific hazard denominated discrete time competing risks model as discussed, i.e., the
handling of missing failure causes and cured subjects.

The vertical model is a “mixture” of a failure type and a failure time component, and as such, it
allows for separate models for total and relative hazards. When Nicolaie et al. (2010) introduced
the vertical model in continuous time, they modelled the total hazards to follow the Cox (1972)
proportional hazards assumption. To relocate the vertical model in the discrete time realm, we
propose discrete time total hazards to characterise the marginal failure time distribution. Consider
the following definition of discrete time total hazards:

𝜆(𝑡) = 𝑃(𝑇 = 𝑡 |𝑇 ≥ 𝑡) =
𝐽∑︁
𝑗=1
𝜆 𝑗 (𝑡),

for 𝑡 = 1, . . . , 𝑞. Consistent with discrete time survival analysis models (see, for example, Allison,
1982; Singer and Willet, 2003; Tutz and Schmid, 2016), the regression model for the total hazards
can be expressed as

𝑔(𝜆(𝑡 |x,β)) = 𝛽0𝑡 + x𝑇β1,

for 𝑡 = 1, . . . , 𝑞, where 𝑔(·) is a link function within the GLM framework. The scalar 𝛽0𝑡 is the
baseline total hazard coefficient at time 𝑡 and β1 is a vector of regression coefficients. The definition
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of relative hazards is given by

𝜋 𝑗 (𝑡) = 𝑃(𝐷 = 𝑗 |𝑇 = 𝑡) = 𝑃(𝐷 = 𝑗 ;𝑇 = 𝑡)
𝑃(𝑇 = 𝑡) =

𝑃(𝐷 = 𝑗 ;𝑇 = 𝑡)/𝑃(𝑇 ≥ 𝑡)
𝑃(𝑇 = 𝑡)/𝑃(𝑇 ≥ 𝑡)

=
𝑃(𝐷 = 𝑗 ;𝑇 = 𝑡;𝑇 ≥ 𝑡)/𝑃(𝑇 ≥ 𝑡)

𝑃(𝑇 = 𝑡;𝑇 ≥ 𝑡)/𝑃(𝑇 ≥ 𝑡) =
𝜆 𝑗 (𝑡)
𝜆(𝑡) , (3)

whence the term “relative hazards”. Since 𝐷 ∈ {1, . . . , 𝐽}, a multinomial distribution is the most
natural model for the conditional failure type distribution where the model for relative hazards is
given by

𝜋 𝑗 (𝑡 |x, γ) =
exp

(
𝛾0 𝑗𝑡 + x𝑇γ1 𝑗

)
{
1 + ∑𝐽−1

𝑙=1 exp
(
𝛾0𝑙𝑡 + x𝑇γ1𝑙

)} ,
for 𝑗 = 1, . . . , 𝐽 − 1, and 𝑡 = 1, . . . , 𝑞, with 𝜋𝐽 (𝑡 |x, γ) = 1 −∑𝐽−1

𝑗=1 𝜋 𝑗 (𝑡 |x, γ). The scalar 𝛾0 𝑗𝑡 is the
duration coefficient at time 𝑡, and γ1 𝑗 is a vector of regression coefficients.

Collect all the unknown parameters of the proposed model in θ = (β𝑇 , γ𝑇 )𝑇 , where β =
(𝛽01, . . . 𝛽0𝑞 ,β

𝑇
1 )𝑇 and γ = (γ𝑇1 , . . . γ𝑇(𝐽−1) )𝑇 , where γ 𝑗 = (𝛾0 𝑗1, . . . 𝛾0 𝑗𝑞 , γ

𝑇
1 𝑗 )𝑇 . As will be shown

in the next section, the full likelihood function mimics the underlying assumption of the model by
splitting into a failure time likelihood function and a conditional failure type likelihood function
which are specified in terms of total hazards and relative hazards, respectively. The split allows for
β and γ to be estimated separately. The most notable result of the vertical model assumption, i.e,
𝑃(𝑇 ;𝐷) = 𝑃(𝐷 |𝑇)𝑃(𝑇), is that the cause-specific hazard estimates are now derived from the total
hazard and relative hazard estimates

�̂� 𝑗 (𝑡 |x, θ̂) = �̂�(𝑡 |x, β̂)�̂� 𝑗 (𝑡 |x, γ̂),

for 𝑡 = 1, . . . , 𝑞 and 𝑗 = 1, . . . 𝐽. This result follows from rearranging (3). The cumulative incidence
function estimates can be obtained from

�̂�𝑗 (𝑡 |x, θ̂) =
∑︁
𝑠:𝑠≤𝑡

𝑆(𝑠 − 1|x, β̂)�̂�(𝑠 |x, β̂)�̂� 𝑗 (𝑠 |x, γ̂), (4)

for 𝑡 = 1, . . . 𝑞 and 𝑗 = 1, . . . 𝐽, where 𝑆(𝑡 |x, β̂) =
∑𝑡
𝑠=1 (1 − �̂�(𝑠 |x, β̂)) and 𝑆(𝑡 = 0|x, β̂) = 1.

This expression for the cumulative incidence function is no simpler than the expression given in
(2), because the cumulative incidence function is also modelled indirectly on data via the regression
models for the total and relative hazards in comparison to the model advanced by Berger et al. (2020).
This concludes the presentation of the vertical model as a discrete time model. The remainder of
the article is organised as follows. In Section 2, we demonstrate that β and γ can be estimated with
standard statistical software. This is followed by an application of the proposed model to real discrete
time competing risks data together with some of the existing discrete time competing risks models
for comparison purposes in Section 3. We conclude with a discussion in Section 4. The standard
errors for the cumulative incidence function estimates are derived in the Appendix.

2. Estimation
To determine the MLE of θ we maximise the observed data likelihood function w.r.t. θ. In the
construction of this likelihood function, the contribution of a subject 𝑖 that failed at time 𝑡𝑖 is now

24 NDLOVU, MELESSE & ZEWOTIR



𝑃(𝐷𝑖 = 𝑗 |𝑇𝑖 = 𝑡𝑖;x𝑖 , γ)𝑃(𝑇𝑖 = 𝑡𝑖 |x𝑖 ,β). Let 𝑑𝑖 𝑗 = 𝐼 (𝐷𝑖 = 𝑗) and 𝑑𝑖 =
∑𝐽
𝑗=1 𝑑𝑖 𝑗 . The observed data

log-likelihood can be written as

L(θ) =
𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑑𝑖 𝑗 log 𝑃(𝐷𝑖 = 𝑗 |𝑇𝑖 = 𝑡𝑖;x𝑖 , γ)𝑃(𝑇𝑖 = 𝑡𝑖 |x𝑖 ,β) + (1 − 𝑑𝑖) log 𝑃(𝑇𝑖 > 𝑡𝑖 |x𝑖 ,β)

=
𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑑𝑖 𝑗 log 𝑃(𝐷𝑖 = 𝑗 |𝑇𝑖 = 𝑡𝑖;x𝑖 , γ)

+
𝑛∑︁
𝑖=1

𝑑𝑖 log 𝑃(𝑇𝑖 = 𝑡𝑖 |x𝑖 ,β) + (1 − 𝑑𝑖) log 𝑃(𝑇𝑖 > 𝑡𝑖 |x𝑖 ,β) = L(γ) + L(β).

The observed data log-likelihood function L(θ) therefore splits into L(γ), a conditional failure type
log-likelihood function, and L(β), a standard univariate failure time log-likelihood function. The
conditional failure type log-likelihood L(γ) can be written as

L(γ) =
𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑑𝑖 𝑗 log 𝜋 𝑗 (𝑡𝑖 |x𝑖 , γ).

The conditional failure type log-likelihood L(γ) is easily recognisable as a kernel of a multinomial
log-likelihood function. Thus, γ can be estimated by fitting a multinomial distribution to the original
data by including duration as factor because the failure type probabilities are determined at each
observed failure time, i.e., at 𝑡 ∈ {1, 2, . . . , 𝑞}. By definition, censored subjects are excluded from
the estimation of relative hazards. The failure time log-likelihood function L(β) is a standard failure
time log-likelihood function. Note that since time to failure is discrete, the definition of the density
function is given by

𝑃(𝑇 = 𝑡 |x) = 𝜆(𝑡 |x,β)
(1 − 𝜆(𝑡 |x,β))

𝑡∏
𝑠=1

(1 − 𝜆(𝑠 |x,β)).

Thus, L(β) can be written as

L(β) =
𝑛∑︁
𝑖=1

𝑑𝑖 log
𝜆(𝑡𝑖 |x𝑖 ,β)

(1 − 𝜆(𝑡𝑖 |x𝑖 ,β)) +
𝑡𝑖∑︁
𝑠=1

𝑑𝑖 log(1 − 𝜆(𝑠 |x𝑖 ,β)) +
𝑡𝑖∑︁
𝑠=1

(1 − 𝑑𝑖) log(1 − 𝜆(𝑠 |x𝑖 ,β))

=
𝑛∑︁
𝑖=1

𝑑𝑖 log
𝜆(𝑡𝑖 |x𝑖 ,β)

(1 − 𝜆(𝑡𝑖 |x𝑖 ,β)) +
𝑡𝑖∑︁
𝑠=1

log(1 − 𝜆(𝑠 |x𝑖 ,β)).

If we define 𝑑𝑖𝑠 such that 𝑑𝑖𝑠 = 0 for 𝑠 ≤ 𝑡𝑖 − 1 and 𝑑𝑖𝑡𝑖 = 𝑑𝑖 , then L(β) can be rewritten as

L(β) =
𝑛∑︁
𝑖=1

𝑡𝑖∑︁
𝑠=1

𝑑𝑖𝑠 log𝜆(𝑠 |x𝑖 ,β) + (1 − 𝑑𝑖𝑠) log(1 − 𝜆(𝑠 |x𝑖 ,β)).

This means that β can be estimated within the GLM framework by fitting a binomial distribution,
where 𝑑𝑖𝑠 ∼ B(1, 𝜆(𝑠 |x𝑖;β)). The data must be rearranged into a long format, where subject 𝑖
contributes d𝑖 = (𝑑𝑖1, . . . , 𝑑𝑖𝑡𝑖 )𝑇 as a response vector of successes out of (1, . . . , 1)𝑇 trials with x𝑖
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repeated 𝑡𝑖 times. This can easily be achieved by applying the R package discSurv (Welchowski
and Schmid, 2019).

Thus, both the total hazards and the relative hazards can be estimated with standard software
packages for the binomial and the multinomial distribution. Naturally, this ensures consistency and
asymptotic normalcy of θ̂.

3. Application
The main thrust of the proposed model is that it suggests an alternate method for the estimation of the
cause-specific hazards, i.e., the estimates for these quantities are now derived indirectly from the total
and relative hazard estimates. It should be instructive to compare the performance of the proposed
model against other models that propose direct estimation of cause-specific hazards from data. The
models that allow for direct estimation of the cause-specific hazards are the multinomial model
(Ambrogi et al., 2009; Tutz and Schmid, 2016) and the binomial model (Lee et al., 2018). We have
selected the multinomial model for comparison purposes because the model relies on maximisation
of the full likelihood function for estimation of relevant parameters as the proposed model. It is
straightforward to show that the relevant log-likelihood function for estimation of the cause-specific
hazards simultaneously is given by

L(α) =
𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑡𝑖∑︁
𝑠=1

𝑑𝑖 𝑗𝑠 log𝜆 𝑗 (𝑠 |x𝑖 ,α) + (1 −
𝐽∑︁
𝑗=1

𝑑𝑖 𝑗𝑠) log(1 − 𝜆(𝑠 |x𝑖 ,α)),

where 𝑑𝑖 𝑗 = 𝐼 (𝐷𝑖 = 𝑗) such that 𝑑𝑖 𝑗𝑠 = 0 for 𝑗 = 1, . . . , 𝑡𝑖 − 1 and 𝑑𝑖 𝑗𝑡𝑖 = 𝑑𝑖 𝑗 . The model for
the cause-specific hazards is given in (1). This log-likelihood function is a kernel of a multinomial
log-likelihood function. This means that γ can be estimated by applying a multinomial distribution
to data that have been arranged into a long format. Lee et al. (2018) proposed "collapsing" this log-
likelihood by censoring the competing failure times as in Prentice et al. (1978) into 𝐽 cause-specific
log-likelihood functions

L(α 𝑗 ) =
𝑛∑︁
𝑖=1

𝑡𝑖∑︁
𝑠=1

𝑑𝑖 𝑗𝑠 log𝜆 𝑗 (𝑠 |x𝑖 ,α 𝑗 ) + (1 − 𝑑𝑖 𝑗𝑠) log(1 − 𝜆(𝑠 |x𝑖 ,α 𝑗 )),

where

𝜆 𝑗 (𝑡 |x,α 𝑗 ) =
exp(𝛼0 𝑗𝑡 + x𝑇α1 𝑗 )

1 + exp(𝛼0 𝑗𝑡 + x𝑇α1 𝑗 )
.

Naturally, this is not proper because L(α) does not factor into 𝐽 cause-specific log-likelihood
functions L(α 𝑗 ), 𝑗 = 1, 2 . . . , 𝐽, in discrete time due to the excessive number of ties even though
similar estimates are obtained by either method. Furthermore, the 𝑑𝑖1𝑠 , 𝑑𝑖2𝑠 , . . . (1 − ∑𝐽

𝑗=1 𝑑𝑖 𝑗𝑠)
are correlated. This fact must be taken into account when the cause-specific hazard parameters
are estimated so as to obtain appropriate standard errors. Towards that end, Lee et al. (2018)
used GEE methods which entail maximisation of 𝐽 quasi log-likelihood functions to determine the
parameter estimates and the corresponding standard errors. Note that identical parameter estimates
are obtained by applying a straightforward binomial distribution or GEE methods — it therefore
suffices to compare the proposed model to the multinomial model.
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Table 1. Examples of data structures.
(a) (b)

Original Data Vertical Model: Failure Type Data

ID (Δ = 1) (Δ = 2) (Δ = 0) T X ID (Δ = 1) T X
1 0 1 0 4 x1 1 0 4 x1
2 0 0 1 3 x2 3 1 1 x3
3 1 0 0 1 x3 4 1 2 x4
4 1 0 0 2 x4
5 0 0 1 1 x5

(c) (d)
Multinomial Data Vertical Model: Failure Time Data

ID (Δ = 1) (Δ = 2) (Δ = 0) T X ID (Δ = 1 or 2) T X
𝑑𝑖1𝑠 𝑑𝑖2𝑠 1 − 𝑑𝑖1𝑠 − 𝑑𝑖2𝑠 𝑑𝑖𝑠 = 𝑑𝑖1𝑠 + 𝑑𝑖2𝑠

1 0 0 0 1 x1 1 0 1 x1
1 0 0 0 2 x1 1 0 2 x1
1 0 0 0 3 x1 1 0 3 x1
1 0 1 0 4 x1 1 1 4 x1
2 0 0 0 1 x2 2 0 1 x2
2 0 0 0 2 x2 2 0 2 x2
2 0 0 1 3 x2 2 0 3 x2
3 1 0 0 1 x3 3 1 1 x3
4 0 0 0 1 x4 4 0 1 x4
4 1 0 0 2 x4 4 1 2 x4
5 0 0 1 1 x5 5 0 1 x5

In Table 1, we have created fictitious data to introduce the data structure that is used by the proposed
model in contrast to the multinomial model. This table is based on 𝐽 = 2 and 5 subjects where subject
1 failed due to cause 2 at 𝑇 = 4, subject 2 censored at 𝑇 = 3, subject 3 that failed at 𝑇 = 1 due to cause
1, subject 4 that failed at 𝑇 = 2 due to cause 1 and subject 5 that was censored at 𝑇 = 1. Beginning
with the familiar multinomial model, in the estimation of the cause-specific hazards simultaneously,
a multinomial distribution is fitted to data set (c) with 𝑑𝑖1𝑠 , 𝑑𝑖2𝑠 , (1 − 𝑑𝑖1𝑠 − 𝑑𝑖2𝑠) as the response
vector, where T , as a factor, and X are explanatory variables. Usually, (1−𝑑𝑖1𝑠−𝑑𝑖2𝑠) is regarded as
a reference category. For the vertical model, to estimate the relative hazards, a binomial distribution
is fitted to data set (b) with, say Δ = 1, as the response variable. The covariates for the proposed
model are also T , as a factor, and X . The total hazards are estimated by fitting another binomial
distribution to data set (d) with 𝑑𝑖𝑠 as a response variable and again T , as a factor, and X are
explanatory variables.

The GLM methods are appropriate for application in the estimation of the total hazard parameters
because 𝑑𝑖1, . . . , 𝑑𝑖𝑡𝑖 are conditionally independent in the Markovian sense (Dinse and Larson, 1986).
Under the binomial model (Lee et al., 2018), two binomial distributions that account for the correlation
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between 𝑑𝑖1𝑠 and 𝑑𝑖2𝑠 are fitted to data set (c) within the GEE framework, with 𝑑𝑖 𝑗𝑠 , 𝑗 = 1, 2, as a
repose variable where T , as a factor, and X are explanatory variables.

Fitting a multinomial model is associated with a sizeable number of parameters that require
estimation simultaneously. This may give rise to computational difficulties in relation to the stability
of parameter estimates. Whilst the same number of parameters as in the multinomial model are
estimated when the vertical model is applied, the estimation burden is reduced somewhat because
the parameters to be estimated are shared as parameters for total hazards and the relative hazards.
Suppose that x is a p-dimensional vector, then a total of (𝐽 × (𝑞 + 𝑝)) parameters are estimated
simultaneously when the multinomial model is applied. When the proposed model is applied,
((𝐽 − 1) (𝑞 + 𝑝)) relative hazard parameters must be estimated simultaneously via the application of
a multinomial distribution and the other (𝑞 + 𝑝) parameters for the total hazards are estimated by
applying a binomial distribution. In this respect, the binomial model (Lee et al., 2018) outperforms
the proposed model and the multinomial model because the same number of parameters are estimated
(𝐽 × (𝑞 + 𝑝)), but (𝑝 × 𝑞) parameters for each failure cause are estimated separately.

We apply the proposed model to the freely available unemployment data (UnempDur) that come
with Ecdat (Croissant and Graves, 2020) R package. This discrete time competing risks data set
tracks time to failure by exit to full-time or part-time employment for 3343 unemployed subjects.
There are 339 subjects that exit to part-time employment, 1073 that exit to full-time employment, 574
with missing failure causes, and 1255 subjects that are censored. There are also 102 subjects with
incomplete information. These subjects are excluded from analysis together with the subjects that
have missing failure causes, to leave a final sample of size 2667 for analysis. The time 𝑇 is measured
in two-week intervals, and 𝑇 ∈ {1, 2, . . . , 27, 28}. This has been adjusted because of sparse events
beyond 𝑇 = 19 by collapsing 19 < 𝑇 ≤ 28 into a single interval so that 𝑇 ∈ {1, 2 . . . , 19}. The
covariates are Unemployment Insurance, Disregard Rate, Replacement Rate, Logwage and Tenure
in the lost job.

To illustrate the application of the proposed model, we proceed to demonstrate an established fact
in econometrics that receipt of unemployment benefits tends to discourage unemployed individuals
from seeking out employment opportunities. The two theories that support this view are labour-
supply and job search theories. For illustrative purposes, we have set Unemployment Insurance
(ui), Disregard Rate (dr) and Replacement Rate (rr) as explanatory variables. We have centred
the continuous variables, i.e., (dr) and (rr), at their respective averages and set nonrecipients of
insurance benefits as the reference category (ui = 0).

Accordingly, we have fitted two models, the proposed model (Model I) and the multinomial model
(Model II) for comparison purposes. We have also considered the model proposed by Berger et al.
(2020) for modelling the cumulative incidence function directly on data. We have referred to this
model as Model III. For total hazards in Model I, we have assumed a logistic model

Logit(𝜆(𝑡 |x,β)) = 𝛽0𝑡 + x𝑇β1,

for 𝑡 = 1, 2, . . . , 𝑞. Since 𝐽 = 2, we have modelled the relative hazards via a binomial distribution,
that is,

Logit(𝜋1 (𝑡 |x, γ1)) = 𝛾01𝑡 + x𝑇γ1,

for 𝑡 = 1, . . . , 19, where cause 1 is assumed to be exit to full-time employment. We display the
results of the analysis in Table 2. Returning to the main exercise of demonstrating the application of
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Table 2. Maximum likelihood estimates (with standard errors) for the Discrete Time
Vertical Model and the Multinomial Model (* denotes 𝑝 < 0.05).

Model I Model II
Discrete Time Vertical Model Multinomial Model

Coefficient γ β α1 α2

T1 1.082(0.119)∗ 1.203(0.060)∗ -1.505(0.068)∗ -2.572(0.111)∗
T2 1.135(0.161)∗ -1.512(0.075)∗ -1.802(0.084)∗ -2.917(0.144)∗
T3 1.113(0.202)∗ -1.713(0.089)∗ -2.002(0.101)∗ -3.121(0.175)∗
T4 0.844(0.273)∗ -2.244(0.122)∗ -2.583(0.141)∗ -3.506(0.227)∗
T5 1.012(0.216)∗ -1.441(0.096)∗ -1.752(0.109)∗ -2.783(0.182)∗
T6 1.065(0.378)∗ -2.483(0.161)∗ -2.778(0.184)∗ -3.877(0.324)∗
T7 1.151(0.251)∗ -1.307(0.109)∗ -1.579(0.121)∗ -2.776(0.217)∗
T8 0.281(0.441) -2.668(0.211)∗ -3.163(0.264)∗ -3.603(0.342)∗
T9 1.424(0.435)∗ -2.031(0.168)∗ -2.243(0.183)∗ -1.184(0.386)∗
T10 -0.032(0.824) -3.830(0.412)∗ -4.548(0.581)∗ -4.479(0.583)∗
T11 1.524(0.504)∗ -2.042(0.189)∗ -2.243(0.206)∗ -3.825(0.455)∗
T12 0.661(0.705) -3.049(0.323)∗ -3.431(0.383)∗ -4.215(0.583)∗
T13 0.967(0.425)∗ -1.702(0.187)∗ -2.004(0.211)∗ -4.215(0.363)∗
T14 1.528(0.461)∗ -1.386(0.182)∗ -1.592(0.196)∗ -3.131(0.418)∗
T15 1.731(0.633)∗ -1.634(0.228)∗ -1.803(0.242)∗ -3.586(0.586)∗
T16 0.982(0.674) -1.981(0.291)∗ -2.266(0.329)∗ -3.401(0.586)∗
T17 2.015(1.066) -2.138(0.347)∗ -2.277(0.367)∗ -4.298(1.006)∗
T18 1.158(0.816) -1.960(0.349)∗ -2.232(0.392)∗ -3.423(0.716)∗
T19 0.775(0.416) -0.337(0.214) -0.702(0.244)∗ -1.531(0.359)∗
ui 0.165(0.145) -1.185(0.058)∗ -1.156(0.066)∗ -1.273(0.114)∗
dr -1.848(0.996) -1.467(0.455)∗ -1.923(0.525)∗ -0.529(0.811)
rr -2.178(0.679)∗ -0.344(0.279) -0.759(0.310)∗ 0.879(0.522)∗

the proposed model where we assess the impact of ui in terms of whether it improves the prospects
of re-employment or not. Let us first consider the interpretation of �̂�01𝑡 , �̂�ui and 𝛽ui. Beginning
with �̂�01𝑡 , let 0 = (0, 𝑥dr, 𝑥rr) and 1 = (1, 𝑥dr, 𝑥rr) represent the reference and the treatment (ui)
explanatory vectors, respectively. Then,

�̂�1 (𝑡 |x = 0, γ̂)
1 − �̂�1 (𝑡 |x = 0, γ̂) = exp(�̂�01𝑡 ).

Since �̂�01𝑡 > 0 for all 𝑡 except for 𝑡 = 10, it means that given that a job has been landed, that
job is more likely to be a full-time job than a part-time job except for week 20 for nonrecipients
of the unemployment benefits. These odds increase by about 18% (exp(�̂�𝑢𝑖) = 1.179) in favour
of a full-time job for recipients. This result does not answer our question, it merely compares
the ratio of cause-specific hazards conditional on failure for benefit recipients and nonrecipients.
Regarding β̂, since β̂ui < 0, it means that holding rr and dr at their respective average values,
the odds of re-employment to full-time or part-time employment are lower for ui recipients than
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0.0

0.2

0.4

0.6

0 5 10 15

Time (bi-weekly)

C
um

ul
at

iv
e 

In
ci

de
nc

e 
F

un
ct

io
n

full-time+rr+dr

full-time+ui+rr+dr

part-time+rr+dr

part-time+ui+rr+dr

Figure 2: The cumulative incidence function of exit to full-time and part-time employment
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Figure 1. The total hazards of exit to employment with the effect of ui.

for non-recipients by about 69% (1 − exp(−1.185) = 0.69). Overall, ui recipients tend to search
for work less intensively than nonrecipients and as result, fewer individuals land jobs (full-time or
part-time) amongst ui recipients than amongst nonrecipients. In Figure 1 we have plotted the total
hazards and it can be seen that both total hazards decrease until around week 20 (𝑇 = 10) and then
pick up somewhat thereafter. In the US, most of the states provide unemployment benefits for the
first 26 weeks. That might be the explanation for the upward movement in the total hazard for the ui
recipients. A possible explanation for similar movement in the total hazard curve for nonrecipients
could be that the recently jobless individuals would be nearing exhausting their reserves and are,
therefore, expected to double up their efforts to find employment also around that period. Thus, we
were able to determine from β̂ui < 0 that unemployment benefits tend to reduce the prospects of re-
employment across failure causes (the type of employment). From Model II, the values α̂1ui < 0 and
α̂2ui < 0 also indicate that unemployment benefits do not improve the chances of re-employment in
agreement with β̂ui < 0. Now, suppose that the cause-specific hazard parameters from Model II had
opposite signs, say, α̂1ui < 0 and α̂2ui > 0, what then? In a study conducted by McCall (1996) using
similar data, the author found that increasing the disregard rate had the effect of reducing full-time
employment and increasing part-time employment for recipients of employment benefits. Now, is
the gain in part-time employment large enough to offset the reduction in full-time employment such
that the total effect is an increase in employment or otherwise? That is where the advantage of the
proposed model lies perhaps because it looks at the total effect of a covariate across failure causes.
The government might be interested in that information, that is, the total effect of unemployment
benefits. Maybe that is also the disadvantage of the proposed model because the government could
be interested in the effect of ui on full-time employment only as this type of employment is more
meaningful and lasting. These are the differences between the proposed model and Model II insofar
as the interpretation of the coefficients is concerned. We can supplement these preliminary findings
by, for example, examining the effect of ui on the cumulative incidence function.

Towards that end, we computed the cumulative incidence function estimates from (2) and (4). As
expected, we found that the cumulative incidence function estimates for Model I and Model II were
almost identical, and therefore only show Model I estimates in Figure 2. The cumulative incidence
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Figure 2. The cumulative incidence function of exit to full-time and part-time employment with the
effect of ui via the Discrete Time Vertical Model and the Multinomial Model.

function plots from the proposed model and Model II compare favourably; in fact, the plots are
almost indistinguishable from each other. Here, we can determine the effect of ui on any failure
cause individually or the total effect of ui across failure causes with ease. Evidently, ui has the
same effect on full-time and part-time employment, i.e., dampening the prospects of exiting the
state of unemployment to full-time or part-time employment, but the effect is more pronounced for
full-time employment — a drop from 𝐹rr+dr1 (19) = 71.47% to 𝐹ui+rr+dr1 (19) = 50.18% compared
to a drop from 𝐹rr+dr2 (19) = 24.11% to 𝐹ui+rr+dr2 (19) = 14.33%. The individuals who find full-time
employment for nonrecipients is 74.47% compared to 50.28% for recipients. Likewise, the individuals
who land part-time employment is 24.11% amongst nonrecipients and 14.33% amongst recipients.
The total effect across the failure causes can be found from 𝐹rr+dr1 +𝐹rr+dr2 and 𝐹ui+rr+dr1 +𝐹ui+rr+dr2 .
Thus, 95.58% of unemployed individuals find employment amongst nonrecipients, whereas 64.51%
of unemployed individuals find employment amongst the recipients. It is well known that the
cumulative incidence function expression that is constructed from cause-specific hazards as given
in (2) complicates the evaluation of covariate effects. The expression for the cumulative incidence
function derived under the proposed model as given in (4) also does not allow for a one-to-one
relationship between the cumulative incidence function and covariates. The expression in (4) is
the sum of the terms 𝑓 𝑗 (𝑠 |x, θ̂) = 𝑆(𝑠 − 1|x, β̂)𝜆(𝑠 |x, β̂)�̂� 𝑗 (𝑠 |x, γ̂). If we were to consider the
effect of 𝛽ui and �̂�ui on 𝑓 𝑗 (𝑠 |x, θ̂) = 𝑆(𝑠 − 1|x, β̂)𝜆(𝑠 |x, β̂)�̂� 𝑗 (𝑠 |x, γ̂), the values of 𝛽ui and
�̂�ui imply that moving from nonrecipients to recipients, �̂� 𝑗 (𝑠 |x, γ̂) increases, the total hazards
𝜆(𝑠 |x, β̂) (𝑠 = 1, 2, . . . , 𝑠− 1, 𝑠, . . . , 𝑞) drop which leads to an increase in 𝑆(𝑠− 1|x, β̂) and the total
effect is an inexplicable reduction in 𝑓 𝑗 (𝑠 |x, θ̂). Likewise, the �̂�jui in Model II lead to a decrease
in �̂� 𝑗 (𝑠 |x, γ) (𝑠 = 1, 2, . . . , 𝑠 − 1, 𝑠) and an increase in 𝑆(𝑠 − 1|x, α̂), but which eventually causes a
reduction in 𝑓 𝑗 (𝑠 |x, γ̂). In continuous time, the complication in relation to the evaluation of covariate
effects on the expression given in (2) has lead to the development of other regression models for
the cumulative incidence function, such as the transformation models (Fine and Gray, 1999; Klein
and Anderson, 2005; Scheike and Gerds, 2008), where the cumulative incidence function is directly
modelled on covariates. The model proposed by Berger et al. (2020) is an extension of the model
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advanced by Fine and Gray (1999) to a discrete time model. The model proposes the following
expression for the cumulative incidence function

𝐹𝑗 (𝑡 |x) = 1 −
𝑡∏
𝑠=1

(1 − ℎ 𝑗 (𝑡 |x) = 1 − 𝑆 𝑗 (𝑡 |x),

where ℎ 𝑗 (𝑡 |x) is referred to as the subdistribution hazard. Note, here, that there is a direct relationship
between x and 𝐹𝑗 (𝑡 |x)). For example, if x engenders an increase in ℎ 𝑗 (𝑡 |x), it leads to an increase in
1−𝑆 𝑗 (𝑡 |x) = 𝐹𝑗 (𝑡 |x) as well. The difference between the cause-specific hazards and subdistribution
hazards lies in their respective risk sets. The risk set for the cause-specific hazard at time 𝑡 consists
of all the subjects that have survived to time 𝑡. On the other hand, for the subdistribution hazard,
ℎ 𝑗 (𝑡 |x), the risk set at time 𝑡 consists of subjects that have not failed due to failure cause 𝑗 and those
that have failed due to other failure causes, i.e.,

ℎ 𝑗 (𝑡 |x) = 𝑃(𝑇 = 𝑡, 𝐷 = 𝑗 | (𝑇 ≥ 𝑡) ∪ (𝑇 ≤ 𝑡 − 1, 𝐷 ≠ 𝑗),x)

The subdistribution hazard is also modelled on covariates within the GLM framework:

𝑔(ℎ 𝑗 (𝑡 |x,ϕ 𝑗 )) = 𝜙0 𝑗𝑡 + x𝑇ϕ1 𝑗 ,

where 𝜙0 𝑗𝑡 is a duration coefficient and ϕ1 𝑗 is a vector of regression coefficients. The authors
proceed to argue that ϕ 𝑗 = (𝜙0 𝑗𝑡 ,ϕ

𝑇
1 𝑗 )𝑇 , for 𝑗 = 1, 2 . . . 𝐽 can be estimated via an application of a

binomial distribution with weights. That is, the solution of L(ϕ 𝑗 ) can be found by fitting a binomial
distribution with 𝛿𝑖𝑠 as responses and 𝑤𝑖𝑠 as weights such that

L(ϕ 𝑗 ) =
𝑛∑︁
𝑖=1

𝑞−1∑︁
𝑠=1

𝑤𝑖𝑠
{
𝛿𝑖𝑠 log ℎ 𝑗 (𝑠 |x𝑖 ,ϕ 𝑗 )) + (1 − 𝛿𝑖𝑠) log(1 − ℎ 𝑗 (𝑠 |x𝑖 ,ϕ 𝑗 ))

}
,

where 𝛿𝑖𝑠 = 0 for 𝑠 = 1, 2, . . . , 𝑡𝑖 − 1, 𝛿𝑖𝑡𝑖 = 1, 𝛿𝑖𝑠 = 0 for 𝑡1 < 𝑠 ≤ 𝑞 − 1 when subject 𝑖 failed at time
𝑡𝑖 at first due to cause 𝑗 . If the subject was censored at 𝑡𝑖 , then 𝛿𝑖𝑠 = 0 for 𝑠 = 1, 2, . . . , 𝑞 − 1. For
both subjects, 𝑤𝑖𝑠 = 1 for 𝑠 ≤ 𝑡𝑖 and 𝑤𝑖𝑠 = 0 for 𝑠 > 𝑡𝑖 . For a subject that experienced first failure
by a cause other than cause 𝑗 , 𝑤𝑖𝑠 = 1 for 𝑠 ≤ 𝑡𝑖 and 𝑤𝑖𝑠 = 𝐺 (𝑠 − 1)/𝐺 (𝑡𝑖 − 1) for 𝑡𝑖 ≤ 𝑠 < 𝑞 − 1,
where 𝐺 (𝑠) is an estimate of the censoring distribution. The preparation of data for the estimation of
the subdistribution hazards can easily be conducted via the R package discSurv (Welchowski and
Schmid, 2019). We have modelled the subdistribution hazards via the complementary log-log link
function

ℎ 𝑗 (𝑡 |x,ϕ) = 1 − exp(− exp(𝜙0 𝑗𝑡 + x𝑇ϕ1 𝑗 )),
for 𝑡 = 1, 2, . . . , 19, and 𝑗 = 1, 2. The results of the analysis are displayed in Table 3. From 𝜙jui < 0
for 𝑗 = 1, 2, it can be inferred that the effect of ui is to reduce the prospects of re-employment
for both part-time and full-time employment. The cumulative incidence function estimates from
the proposed model and the subdistribution hazard model are plotted in Figure 3. Evidently, the
proposed model and the subdistribution hazard model lead to the same conclusion. That is, the effect
of ui is to reduce employment prospects for both part-time and full-time employment.

All these findings are in agreement with the view that unemployment benefits tend to discourage
unemployed individuals from searching for work extensively as espoused by theory.
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Table 3. Maximum likelihood estimates (with stan-
dard errors) for the Discrete Time Subdistribution
Hazard Model (* denotes 𝑝 < 0.05).

Model III
Subdistribution Hazard Model

Coefficient ϕ1 ϕ2

T1 -1.541(0.063)∗ -2.303(0.114)∗
T2 -2.059(0.079)∗ -3.397(0.140)∗
T3 -2.307(0.096)∗ -3.719(0.171)∗
T4 -2.902(0.137)∗ -4.166(0.223)∗
T5 -2.151(0.103)∗ -3.561(0.176)∗
T6 -3.167(0.179)∗ -4.684(0.319)∗
T7 -2.059(0.114)∗ -3.716(0.210)∗
T8 -3.619(0.260)∗ -4.558(0.337)∗
T9 -2.746(0.178)∗ -4.740(0.381)∗
T10 -5.018(0.578)∗ -5.474(0.579)∗
T11 -2.767(0.199)∗ -4.890(0.450)∗
T12 -3.944(0.379)∗ -5.283(0.579)∗
T13 -2.586(0.203)∗ -4.233(0.357)∗
T14 -2.236(0.186)∗ -4.389(0.411)∗
T15 -2.465(0.232)∗ -4.896(0.579)∗
T16 -2.935(0.318)∗ -4.752(0.579)∗
T17 -2.980(0.355)∗ -5.711(0.999)∗
T18 -2.973(0.379)∗ -4.905(0.709)∗
T19 -1.703(0.218)∗ -3.319(0.337)∗
ui -0.904(0.062)∗ -0.853(0.111)∗
dr -1.792(0.500)∗ -0.294(0.790)
rr -0.843(0.292)∗ 1.083(0.509)∗

4. Conclusion
We set out to develop a discrete time vertical competing risks model. This is easily achieved
by concentrating on the marginal failure time distribution where the total hazards are modelled
on covariates via a link function within the GLM framework. This is a standard approach to
locate the failure time distribution in the discrete time realm. The choice of a link function is often
determined by the measurement units of time. Some authors, for example, prefer the logit link function
when time is intrinsically measured in discrete units or a complementary log-log link function for
grouped continuous survival times. The multinomial distribution becomes the most natural choice
for modelling the conditional failure type probabilities or relative hazards on covariates. In contrast
to continuous time, where tied events are an exception more than a rule, the number of tied events is
larger in discrete time, a situation that is most welcome because it improves the stability of parameter
estimation insofar as relative hazards are concerned. It was demonstrated that both the relative and
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Figure 3. The cumulative incidence function of exit to full-time and part-time employment with
the effect of ui via the Discrete Time Vertical Model and the Discrete Time Subdistribution Hazard
Model.

total hazards can easily be estimated with standard software packages. This model was applied to
real discrete time competing risks data together with a multinomial model. It was found that the two
models compare favourably. Often, concerns are raised regarding the multinomial model and the
sizeable number of parameters that require estimation. The estimation burden is somewhat reduced
when the proposed model is applied because the number of parameters to be estimated are shared
as relative hazard parameters and total hazards parameters. Otherwise, there is nothing between the
models, they merely present different approaches for modelling discrete time competing risks data.
In terms of their potential, the proposed model has an edge over the multinomial model. As already
mentioned, it has been demonstrated in the continuous time settings that the vertical model can
handle missing failure causes without any structural modification. The model has also been upscaled
to handle data that come with cured subjects. The proposed model, therefore, presents a possibility
that can be further explored in relation to extending the model for handling these data complications.
The expression for the cumulative incidence function that is obtained under the multinomial model is
well known for complicating the interpretation of covariate effects. The expression for the cumulative
incidence function under the proposed model suffers similar shortcomings.

Appendix
In this section, we derive the expression for standard error of the cumulative incidence function
estimate via the delta method.

Let η𝑡 = (η𝑇1 , . . . ,η𝑇𝑡 )𝑇 , where η𝑠 = (𝜂1𝑠 , . . . , 𝜂𝐽−1𝑠)𝑇 and 𝜂𝑘𝑠 = 𝛾0𝑘𝑠 + x𝑇γ1𝑘 . Furthermore,
let ζ𝑡 = (𝜁1, . . . , 𝜁𝑡 )𝑇 where 𝜁𝑠 = 𝛽0𝑠 +x𝑇β1. The expression for the standard error is then given by

Var(𝐹𝑗 (𝑡 |x, θ) =
[
𝜕𝐹𝑗 (𝑡 |x,θ)

𝜕η𝑡
𝜕𝐹𝑗 (𝑡 |x,θ)

𝜕ζ𝑡

]𝑇 [
Var(η𝑡 ) 0

0 Var(ζ𝑡 )
] [

𝜕𝐹𝑗 (𝑡 |x,θ)
𝜕η𝑡

𝜕𝐹𝑗 (𝑡 |x,θ)
𝜕ζ𝑡

]

=

(
𝜕𝐹𝑗 (𝑡 |x, θ)

𝜕η𝑡

)𝑇
Var(η𝑡 )

(
𝜕𝐹𝑗 (𝑡 |x, θ)

𝜕η𝑡

)
+

(
𝜕𝐹𝑗 (𝑡 |x, θ)

𝜕ζ𝑡

)𝑇
Var(ζ𝑡 )

(
𝜕𝐹𝑗 (𝑡 |x, θ)

𝜕ζ𝑡

)
,
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since Cov
(
η𝑞 , ζ𝑞

)
= 0, because 𝜕2L(θ)/𝜕η𝑞𝜕ζ𝑞 = 0; see Yu et al. (2011).

The partial derivatives of 𝐹𝑗 (𝑡 |x, θ) w.r.t. 𝜁𝑠 and 𝜂 𝑗𝑠 are given by

𝜕𝐹𝑗 (𝑡 |x, θ)
𝜕𝜁𝑠

= 𝜆(𝑠 |x,β){𝑆(𝑠 |x,β)𝜋 𝑗 (𝑠 |x, γ) − (
𝐹𝑗 (𝑡 |x, θ) − 𝐹𝑗 (𝑠 |x, θ)

)}
,

𝜕𝐹𝑗 (𝑡)
𝜕𝜂 𝑗𝑠

= 𝜋 𝑗 (𝑠 |x, γ) (1 − 𝜋 𝑗 (𝑠 |x, γ)),

𝜕𝐹𝑗 (𝑡 |x, θ)
𝜕𝜂𝑘𝑠

= −𝜋 𝑗 (𝑠 |x, γ)𝜋𝑘 (𝑠 |x, γ), 𝑗 ≠ 𝑘.

The expression given in Ambrogi et al. (2009) for the cumulative incidence function is modified to
give

V(�̂�𝑗 (𝑡 |x, θ̂)) =
𝑡∑︁
𝑠=1

𝑡∑︁
𝑙=1

𝜕𝐹𝑗 (𝑡 |x, θ)
𝜕𝜁𝑠

𝜕𝐹𝑗 (𝑡 |x, θ)
𝜕𝜁𝑙

Cov(𝜁𝑠 , 𝜁𝑙)

+
𝐽−1∑︁
𝑗=1

𝐽−1∑︁
𝑘=1

𝑡∑︁
𝑠=1

𝑡∑︁
𝑙=1

𝜕𝐹𝑗 (𝑡 |x, θ)
𝜕𝜂 𝑗𝑠

𝜕𝐹𝑗 (𝑡 |x, θ)
𝜕𝜂𝑘𝑙

Cov(𝜂 𝑗𝑠 , 𝜂𝑘𝑙)
����
θ=θ̂

.
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