
A GENERIC TEST FOR THE SIMILARITY OF
SPATIAL DATA

R. Kirsten
Department of Statistics, University of Pretoria

I. N. Fabris-Rotelli1
Department of Statistics, University of Pretoria

e-mail: inger.fabris-rotelli@up.ac.za

Two spatial data sets are considered to be similar if they originate from the same stochastic
process in terms of their spatial structure. Many tests have been developed over recent years to
test the similarity of certain types of spatial data, such as spatial point patterns, geostatistical
data and images. This research proposes a generic spatial similarity test able to handle various
types of spatial data, for example images (modelled spatially), point patterns, marked point
patterns, geostatistical data and lattice patterns. A simulation study is done in order to test
the method for each spatial data set. After the simulation study, it was concluded that the
proposed spatial similarity test is not sensitive to the user-defined resolution of the pixel image
representation. From the simulation study, the proposed spatial similarity test performs well on
lattice data, some of the unmarked point patterns and the marked point patterns with discrete
marks. We illustrate this test on property prices in the City of Cape Town and the City of
Johannesburg, South Africa.
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1. Introduction
Spatial data can take on three main forms, namely geostatistical data, lattice data and point patterns
(Cressie, 1993). Geostatistical data is measured at fixed locations and is a partial realisation of the
spatial process. Then an interpolation method, usually Kriging, is used to predict values where
measurements are not taken (Cressie, 1993). Lattice data is when the observational region is divided
into predefined subregions (either a regular grid or an irregular grid) (Sain and Cressie, 2007). The
spatial data can be observed at the individual subregions and can either be continuous or discrete.
Spatial point patterns consist of the locations of certain events (Baddeley et al., 2015). In the case
where only the locations of one event type is present, we call it an unmarked point pattern. Extra
information can be presented within the point pattern by associating a value (mark) to each point.
This is then called a marked point pattern. This mark can either be discrete or continuous. Spatial
data thus takes many forms.

As far as the authors can determine, there are no spatial similarity tests that are able to handle
more than one type of spatial data, that is, are generalisable. Tests for the spatial similarity focus on
whether the two spatial data sets originate from the same stochastic process in terms of their spatial
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structure (Borrajo et al., 2019). The currently available tests only cover the more popular spatial data
which is images (Brunet et al., 2012; Congalton et al., 1983; Gilruth et al., 1995; Kulkarn and Joshi,
2002; Wang and Bovik, 2002; Wang et al., 2004), unmarked spatial point patterns (Andresen, 2009;
Bailey and Gatrell, 1995; Borrajo et al., 2019; Diggle, 1985; Diggle et al., 1991; Fuentes-Santos
et al., 2017; Hahn, 2012; Duong et al., 2012; Alba-Fernández et al., 2016; Wheeler et al., 2018) and
geostatistical data (Fouedjio, 2016; Pham, 2010) but in different manners.

In this paper we propose a test for spatial similarity that is generalised to handle any type of spatial
data, namely geostatistical data, lattice data, point patterns, marked point patterns as well as images.
The test consists of three steps where the first step involves creating a pixel image representation of
both the spatial data sets considered. The pixel image representation is obtained differently for each
spatial data type. In the second step, the SSIM is used to create a local similarity map when the
pixel values are continuous. An SSIM value is calculated for each pixel. In the case of discrete pixel
values, the local similarity map is created by direct comparison of the pixel values. The calculation
of the final similarity measure is done in the third step of the test as either the mean or the proportion
of the values in the local similarity map.

The methodology of the proposed spatial similarity test is discussed in Section 2. The method is
tested on a simulation study in Section 3 with an application of the method on property prices in
Section 4. We conclude in Section 5.

2. Methodology
The two data sets to be compared are called 𝑋1 and 𝑋2. The goal of the first step is to represent each
of the spatial data types in the same way. This is what makes the test generic. We create a pixel
image representation of 𝑋1 and 𝑋2 and denote this as 𝑌1 and 𝑌2. The resolution (that is, the number
of pixels) of the pixel image should be decided by the user before-hand. In the second step, we create
a local similarity map indicating a local similarity value for each pixel from 𝑌1 and 𝑌2. The final step
involves the calculation of a similarity percentage from the pixel values in the local similarity map.

The test starts off by creating a pixel image representation of 𝑋1 and 𝑋2. The pixel image
representation is obtained differently for each spatial data type. The spatial domain should be divided
into an 𝑚 × 𝑚 grid as in Figure 1. Each grid cell represents a pixel. We then need to define spatial
locations at the centroids of each of the 𝑀 = 𝑚2 pixels as u = (u1,u2, . . . ,uM ). The most intuitive
way to obtain the pixels and the locations of the centres, is to enclose the spatial domain with the
smallest rectangular window. The enclosed rectangular window is then divided into pixels. If the
centre of the pixel falls outside of the domain, the pixel has an empty value (or an NA value) for the
pixel image representation and is excluded in the calculations.

Figure 2 is a diagram showing the logic of the proposed spatial similarity test. In the rest of this
section, we explain the methods behind the proposed spatial similarity test as it is outlined in the
diagram.

2.1 Step 1: Create a pixel image representation
2.1.1 Point patterns
When dealing with point patterns, a kernel density estimation is used to obtain the pixel image
representation. For unmarked point patterns, Diggle’s corrected density estimate is used for the
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Figure 1. Illustration of how the spatial domain for lattice data is divided into pixels with 𝑚 = 7.
The dots represent the uj .

Figure 2. Diagram explaining the logic of the proposed spatial similarity test.
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calculation as it results in a lower mean squared error compared to similar estimators (Baddeley
et al., 2015)

_̃𝐷 (uj) =
𝑛∑︁
𝑖=1

1
𝑒(xi) ^(uj − xi), (1)

where the kernel ^(·) is taken to be a bivariate Gaussian density 𝑓 (d) = (2𝜋)−1 |Σ|− 1
2 exp

{− 1
2dΣ

−1d′}
with Σ = bandwidth × 𝐼2. The bandwidth is the standard deviation of the kernel and can be seen as
the smoothing parameter of the kernel. There are different methods of calculating the bandwidth. A
popular method is Diggle’s bandwith (Baddeley et al., 2015). Although the calculation of Diggle’s
bandwidth assumes a Cox process, this is the bandwidth used for the purpose of this paper as choosing
the optimal bandwidth is beyond the scope of the work.

Another advantage of Diggle’s corrected density estimate, is the edge correction factor (Baddeley
et al., 2015). The edge correction factor from (1) is

𝑒(xi) =
∫
𝐷
^(xi − vk)𝑑vk, (2)

which is estimated using numerical integration. This is done by dividing the spatial domain, 𝐷, into
a finer 𝑔 × 𝑔 grid. It is important to note that this is a separate calculation from the calculation of the
kernel density estimate. The approaches are similar but should be treated separately.

Again, the centroids of the𝑄 = 𝑔2 grid cells are used as the spatial locations v = (v1, v2, . . . , vQ).
Then, the calculation of (2) through numerical integration involves that for each observation in the
spatial point pattern, xi, 𝑖 = 1, . . . , 𝑛, we calculate the differences de = (d1,d2, . . . ,dQ), between
the coordinates of the point xi and the spatial locations vk, 𝑘 = 1, 2, . . . , 𝑄. The edge correction
factor is then calculated as

𝑒(xi) = area(𝐷)
𝑄

𝑄∑︁
𝑘=1

𝑓 (dk),

where 𝑓 (dk) is again the bivariate Gaussian density.
However, not all spatial point patterns will be unmarked. In the case of a marked spatial point

pattern we need a slightly different approach as the spatial data points have a mark that needs to be
taken into account. As mentioned before, these marks can either be continuous or discrete.

When the marked spatial point pattern has continuous marks, we estimate the intensity of the
marked spatial point process using the Nadaraya–Watson smoother with Diggle’s edge correction
factor (Baddeley et al., 2015)

�̃�𝐷 (uj) =

𝑛∑
𝑖=1
𝑚𝑖^(uj − xi)/𝑒(xi)
𝑛∑
𝑖=1
^(uj − xi)/𝑒(xi)

, (3)

where the kernel ^(·) is again the bivariate Gaussian density, 𝑚𝑖 denotes the real-valued mark of
point xi and 𝑒(xi) is the same edge-effect factor from Equation (2).

With a marked spatial point pattern that has discrete marks, the Nadaraya–Watson smoother in
Equation (3) will not be valid as the marks are now categorical instead of real-valued. The approach
to obtain a pixel image representation for a marked spatial point pattern with discrete marks will
involve a 𝑘 nearest neighbour classification.
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With 𝑘 nearest neighbour classification, we consider the distance (for simplicity, Euclidean dis-
tance) between each spatial data point xi and the spatial locations uj (Hastie et al., 2009). In the
case of the use of Euclidean distance, we use

𝑑𝑖 𝑗 = ‖xi − uj ‖.

The 𝑘 nearest spatial data points are considered at each spatial location. Each uj takes on the
modal value of the 𝑘 nearest spatial data points considered. The choice of 𝑘 is arbitrary and up to the
user. Care should be taken that the value for 𝑘 should be strictly less than the number of spatial data
points. Some work has been done in literature on guidelines on how to choose a value of 𝑘 using
misclassification error curves (Hall et al., 2008). As we are working with spatial data, a data-driven 𝑘
would be advised. For the purpose of this paper, the value of 𝑘 will be chosen as 10% of the number
of points in the pattern.

2.1.2 Lattice data
Compared to spatial point patterns, there is no intensity to be estimated with lattice data. To obtain a
pixel image representation of lattice data, we again divide the spatial domain into a grid. Each grid
cell takes on the value of the region in which its centroid falls.

2.1.3 Geostatistical data
With geostatistical data, it is observed at sampled locations, however the location of measurement
is considered fixed and the value observed a random variable (Cressie, 1993). With geostatistical
data in general, we are interested in creating a continuous map throughout the entire spatial domain,
which is obtained with a method called Kriging by predicting the unobserved values (Cressie, 1993).

For the pixel image representation of a geostatistical data set, we can divide the spatial domain
into pixels. We then Krige at each uj .

2.2 Step 2: Create a local similarity map
In the second step of our proposed similarity test, we obtain a similarity map between 𝑌1 and 𝑌2.
In the case of continuous pixel values, the SSIM algorithm is used (Wang and Bovik, 2002). This
algorithm was first developed as a quality index for images and later on used as a similarity index
between images (Wang and Bovik, 2002; Wang et al., 2004). It uses a sliding window approach to
move across the image pixel by pixel simultaneously for the two images. For each sliding window,
an SSIM value is calculated for the centre pixel. In our approach, we always use an odd number of
pixels as the length and width. This is so that the pixel considered is right at the centre of the sliding
window.

The SSIM index can be calculated as

𝑆𝑆𝐼𝑀 (y1𝒋 , y2𝒋) =
[
ℓ(y1𝒋 , y2𝒋)

] 𝛼 [
𝑐(y1𝒋 , y2𝒋)

]𝛽 [
𝑠(y1𝒋 , y2𝒋)

]𝛾
,

where 𝛼 > 0, 𝛽 > 0 and 𝛾 > 0 and y𝒊 𝒋 are the values contained in sliding window 𝑗 of data set 𝑖.
Usually in literature, 𝛼 = 𝛽 = 𝛾 = 1, which assigns an equal importance to each term (Wang et al.,
2004). Equation (6) is calculated for each sliding window 𝑗 .

The components are calculated separately as follows and then multiplied together for the SSIM
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value:

Luminance: ℓ(y1𝒋 , y2𝒋) =
2`𝑦1 𝑗 `𝑦2 𝑗 + 𝐶1

`2
𝑦1 𝑗 `

2
𝑦2 𝑗 + 𝐶1

.

Contrast: 𝑐(y1𝒋 , y2𝒋) =
2𝜎𝑦1 𝑗𝜎𝑦2 𝑗 + 𝐶2

𝜎2
𝑦1 𝑗𝜎

2
𝑦2 𝑗 + 𝐶2

.

Structure: 𝑠(y1𝒋 , y2𝒋) =
2𝜎𝑦1 𝑗 ,𝑦2 𝑗 + 𝐶3

𝜎𝑦1 𝑗𝜎𝑦2 𝑗 + 𝐶3
.

The last values needed to calculate the Luminance, Contrast and Structure terms are the constants.
The constants are used in order to avoid inconsistency (Wang et al., 2004). The constants are
𝐶1 = (𝐾1𝐿)2, 𝐶2 = (𝐾2𝐿)2 and 𝐶3 = 𝐶2/2 where we will choose 𝐾1 = 0.01 and 𝐾2 = 0.03 (Wang
et al., 2004). Also, 𝐿 is the range of pixel values in the image. It is the difference between the
maximum pixel value from the two images and the minimum pixel value.

In the case of discrete, especially categorical, pixel values, the SSIM will not be sensible to
compare the images. In such a case, we compare the pixel values directly. This means that if the
pixel in position (𝑖, 𝑗) from the first image is the same as the corresponding pixel from the second
image, then the pixel in the same position in the similarity map has a value of 1. If the two pixels are
not the same, the pixel in the similarity map has a value of 0.

2.3 Step 3: Calculate global similarity index
From the local similarity map in the second step, we calculate a global similarity index that is the
result of the test. In the case of continuous pixel values in the local similarity map, the global
similarity is calculated similarly as Andresen’s 𝑆-Index (Andresen, 2009):

𝐺𝑆 =
1
𝑀

𝑀∑︁
𝑗=1
𝑆𝑆𝐼𝑀 (𝑢 𝑗 ),

where 𝑆𝑆𝐼𝑀 (𝑢 𝑗 ) is the SSIM value for the pixel with centroid uj and 𝑀 the number of pixels in
the pixel image. 𝑆𝑆𝐼𝑀 (𝑢 𝑗 ) can also be seen as a non-binary input for Andresen’s 𝑆-Index. This
is expected to improve the accuracy of the test by providing a mean similarity value instead of a
proportion of similar areas within the domain.

In the case of the similarity map containing discrete values, the global similarity is calculated as a
proportion of similar values as indicated by the local similarity map.

3. Simulation study
A simulation study is conducted to test this method on the various spatial data types. This is a
popular method to test a statistical method (Morris et al., 2019). It involves the creation of data with
the main reason that the user knows what the outcome of the method should be. In our simulation
study, we simulate several data sets for each of the spatial data types considered. Each data type will
be handled separately to see how this method reacts in each case.

Seeing that we developed a method to test the similarity of spatial data, we want to simulate spatial
data sets to compare that are known to be either 80% or 90% identical. To do this, we simulate
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several spatial data sets to be used as 𝑋1. For 𝑋2, a certain percentage of the data points are replaced
with some other data points. After this, we expect the comparison between each pair of data sets
should yield an answer of about 80% or 90%.

In our simulation, we are also interested to explore the influence of the resolution of the pixel
image on the outcome of the test, as it is user-defined. For this reason we repeat the test for each
comparison for three different resolutions. We use a 10 × 10 image, 20 × 20 image and a 50 × 50
image.

3.1 Geostatistical simulations
For the geostatistical simulations, a built-in R data set is used. This data set is contained within the
sp package (Bivand et al., 2013; Pebesma and Bivand, 2005) and is called meuse. The data set
consists of 155 spatial locations with six different measurements taken at each point. Measurements
were taken of metals in the topsoil alongside the Meuse river flowing through France, Belgium and
Netherlands.

The two data sets to compare are obtained by taking the spatial locations and each of the mea-
surements (separately) as the data sets used as 𝑋1 in the test. Then, the 𝑋2 data set is obtained by
randomly removing and replacing either 10% or 20% of the locations, attributes or both. In the case
where the spatial locations are replaced, either 10% or 20% of the locations within the data set are
replaced with other simulated spatial points. The attributes remain unchanged. When the attributes
are changed, the spatial locations remain the same but new measurements are simulated as random
uniform numbers. These values are simulated to be between the minimum and maximum of the
original values. When both the locations and the attributes are changed, the above-mentioned is done
simultaneously.

3.2 Lattice data
To simulate lattice data sets, we use the South African borders as the spatial domain and the spatial
locations as the municipalities in South Africa. The values for each spatial location are simulated as
random uniform numbers. For these values, there are three groups where the range of values differ.
The first group of data sets has simulated values between 0 and 50, the second between 0 and 100
and the third between 0 and 1000. To obtain the testing data sets, either 10 % or 20 % of the values
will be removed and replaced with other random uniform numbers within the same range.

3.3 Point patterns
When simulating spatial point patterns, it is important to cover many possible scenarios. Therefore,
we simulate regular as well as clustered spatial point patterns on both a rectangular and polygonal
window. The spatial point patterns were simulated with different intensities (constant and non-
constant). Also, for three different pattern sizes: Small (±100 points), Medium (±500 points) and
Large (±1000 points).

The simulations of the spatial point patterns are done by using built-in R functions. The function
that we use to simulate the regular spatial point patterns is the rSSI function (Baddeley et al., 2015)
while the clustered spatial point patterns are simulated with the rMatClust function (Baddeley et al.,
2015).

To add more variety to the simulation study, we use three approaches for the simulations. The
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first approach creates noisy patterns. In this approach, the regular and clustered point patterns are
simulated with the above functions. When we replace some of the data points to create the test
pattern, the spatial data points are replaced with any other simulated points. In the case of clustered
spatial point patterns, it creates visible noise within the pattern.

The goal of the second simulation approach is to create spatial point patterns with strong clusters.
For this approach, the centres are simulated as a regular spatial point pattern with a large inhibition
distance. The clusters are then simulated as discs around these points. The replaced data points are
then simulated to be contained within these strong clusters. With the third approach, we create a
comparison with uneven patterns. This happens by only removing either 10% or 20% of the spatial
data points from 𝑋1 to create 𝑋2.

3.3.1 Unmarked point patterns
For the unmarked spatial point patterns, the above simulations are used as is. The method is applied
to each of the 𝑋1 and 𝑋2 pairs.

3.3.2 Continuous marked point patterns
The simulation of the marked point patterns is done by taking the unmarked point patterns from the
first method of simulations and simply adding a continuous value for the mark. This continuous
value is simulated as random uniform numbers. For these values, there are three groups where each
group has a different range of values. For the first group, the random uniform numbers range from 0
to 20. For the second group, they range from 0 to 50. For the last group, they range from 0 to 100.

3.3.3 Discrete marked point patterns
The simulation of the marked point patterns was done by taking the unmarked point patterns from
the first method of simulations and simply adding a discrete value for the mark. This value was
simulated so that the pattern has either two, three or four different categories.

3.4 Results
Figure 3 and Figure 4 represent the results from applying the proposed spatial similarity test to the
simulated spatial data.

We test the hypothesis of equal means across the three groups for pixel image resolutions to the
alternative hypothesis of at least one of the means being unequal to the rest of them. The Kruskal–
Wallis test was applied to the results of the newly proposed similarity test to test whether the means
of the different pixel image resolutions are equal. As the assumption of normality is rejected in all
the cases at a 5% level of significance, the Kruskal-Wallis test was applied instead of an ANOVA
test. Table 1 shows the p-values of the Kruskal–Wallis test.

From Table 1, it can clearly be seen that the hypothesis of equal means cannot be rejected in all
the cases except for the geostatistical simulations that are 90% identical. From doing a pairwise
Wilcoxon test it can be concluded that the means for the 10 × 10 pixel image resolution differ from
the other two means at a 5% level of significance, while the other two groups (20 × 20 and 50 × 50)
do not differ significantly from one another at a 5% level of significance.

It can be concluded that the proposed spatial similarity test is not sensitive to the user-defined
choice of the resolution of the pixel image representation. Seeing that the mean from smaller
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Figure 3. Results from applying the proposed spatial similarity test to the simulated spatial data
being 80% identical. The dotted horizontal line indicates 0.8.

Figure 4. Results from applying the proposed spatial similarity test to the simulated spatial data
being 90% identical. The dotted horizontal line indicates 0.9.
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Table 1. p-values of the Kruskal–Wallis test to test the hypothesis of equal means across the
three groups for the pixel image representations. This shows that the test is not sensitive to
the user-defined resolution of the pixel image representation.

Normality assumption p-value (80%) p-value (90%)

Geostatistical data
Locations changed Rejected 0.9076 < 0.0001
Attributes changed Rejected 0.8991 < 0.0001
Both changed Rejected 0.971 < 0.0001

Lattice data Rejected 0.9805 0.6028

Unmarked point patterns
Method one Rejected 0.9047 0.832
Method two Rejected 0.923 0.9153
Method three Rejected 0.935 0.9456

Continuous marked
Location changed Rejected 0.8263 0.7601
Attributes changed Rejected 0.8005 0.7765

Discrete marked
Location changed Rejected 0.9997 0.9457
Attributes changed Rejected 0.9789 0.9688

resolution for the geostatistical data differs from the rest of the means, while the finer resolutions did
not differ from each other, it is advisable to rather use a finer pixel image resolution when working
with geostatistical data.

3.5 Discussion
For a deeper look into the results from the proposed spatial similarity test for the different spatial data
sets, we consider some summary statistics such as the mean, median and standard deviation. These
values are given in Table 2. The method can be classified as accurate if the mean or the median is
close to the known similarity of the data sets with a rather small standard deviation.

When looking at the geostatistical summary statistics in Table 2, it can be seen that the means
and medians of the results do tend to theoretical similarity of the data sets with the values for the
80% similar spatial data pairs lower than for the 90% similar data. However, the standard deviations
are still large with the lowest of the standard deviations equal to 0.1281. For the geostatistical data
where the locations are changed, the means are equal to 0.722 and 0.8202 while the medians are
equal to 0.7645 and 0.8577. When changing the attributes, the means are 0.661 and 0.7523. The
medians are then 0.7047 and 0.8144. When both the locations and attributes are changed, the means
are 0.6302 and 0.7302 while the medians are 0.6691 and 0.774. The inaccuracy of this data type can
be accounted to the method of Kriging that may be too general for the type of data used. A more
optimal variogram model for the Kriging may yield better results (Li and Heap, 2008).

The proposed spatial similarity test seems to compare the similarity between two lattice data sets
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Table 2. Summary statistics of the results from the proposed spatial similarity test.

Identical Mean Median Standard deviation
Geostatistical data
Locations changed 80% 0.7220 0.7645 0.1310

90% 0.8202 0.8577 0.1281
Attributes changed 80% 0.6610 0.7047 0.1712

90% 0.7523 0.8143 0.1614
Both changed 80% 0.6302 0.6691 0.1495

90% 0.7302 0.7740 0.1531

Lattice data 80% 0.7740 0.7846 0.0751
90% 0.9043 0.9079 0.03941

Unmarked point patterns
Method one 80% 0.8195 0.8166 0.0667

90% 0.8992 0.9060 0.0536
Method two 80% 0.9654 0.9755 0.0329

90% 0.9763 0.9847 0.0266
Method three 80% 0.9408 0.9599 0.0591

90% 0.9732 0.9815 0.0252

Continuous marked
Locations changed 80% 0.5066 0.5736 0.2344

90% 0.6057 0.7178 0.2596
Attributes changed 80% 0.7571 0.7656 0.1074

90% 0.8771 0.8860 0.0760

Discrete marked
Locations changed 80% 0.6624 0.675 0.1187

90% 0.7514 0.77 0.1104
Attributes changed 80% 0.7550 0.76 0.0942

90% 0.8399 0.85 0.0785
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quite accurately with the means (0.774 and 0.904) and medians (0.7846 and 0.9079) of the results
close to the theoretical values. The standard deviations (0.0751 and 0.0394) are also small which is
also an indication that this method performs well in the case of lattice data.

For the unmarked point patterns, the method does perform well on the simulations from the first
method. This can be said since the means (0.8195 and 0.8992) and the medians (0.8166 and 0.906)
of the results are close to the theoretical values and the standard deviations (0.0667 and 0.0536) are
small. However, for the strong clustered patterns (second method of simulations) and the unequal
patterns (third method of simulations), this test yields large similarity values where the means are
equal to 0.965 and 0.976 and the medians 0.9755 and 0.9847. For the second method of simulations,
it may be the case that the way in which the pixel image representations are obtained may not be
designed to pick up such small differences in the pattern. Recall that the second method of simulations
was designed to keep the two patterns visually as similar as possible by simulating the original points
as well as the replaced points within the same clusters. This case is highly theoretical and will
possibly not occur in real life. In the third method of simulations, some of the points were removed
to obtain the test set. The reason the test may yield such high similarity values may be in the way in
which the pixel image representations are obtained. The means of the results from the third method
of simulations are 0.9409 and 0.9732 while the medians are 0.9598 and 0.9815.

This proposed spatial similarity test can still be improved to perform better on marked spatial
point patterns with continuous values. In the case where the locations of the points are changed, this
method does not perform well. The means of the results when the locations are changed are equal
to 0.5066 and 0.6057 while the medians are equal to 0.5736 and 0.7178. This may be again due to
the way in which the pixel image representations were obtained. When the attributes of some of the
points are changed, this method performs better again in terms of the means (0.7571 and 0.8771)
and medians (0.7656 and 0.886) of the results. However, in reality it will happen more often that we
have a scenario in which the attributes are changed rather than the locations.

In the case of marked spatial point patterns with discrete values, the method performs better when
the attributes are changed (with means equal to 0.755 and 0.8399 and medians equal to 0.76 and
0.85) than when we change the locations (with means equal to 0.6624 and 0.7514 and medians equal
to 0.675 and 0.77).

The size of the data sets to be compared should be intuitively dealt with to some extent. Data sets
differing significantly in size would not be considered for comparison in practice. The methodology
presented here, however, allows for comparison of data sets of different size by aggregating at the
pixel image representation step as well as standardising in the kernel density step.

4. Application
A data set provided by Lightstone2 ,3 consists of the evaluation prices of 1018 properties in the City of
Cape Town and City of Johannesburg metros. In both these metros, there are two blocks of properties
and each property has three evaluation prices, one for each of 2017, 2018 and 2019. We apply the
proposed spatial similarity test to each block within the two metros.

2 https://lightstone.co.za/
3Data was provided by Lightstone. The right to use this data was approved by the University of Pretoria NAS ethics committee
NAS078/2020.
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(a) (b) (c) (d)
Figure 5. The four separate blocks of property locations that will be considered in this application
section. (a) and (b): Two blocks in the City of Johannesburg metro; and (c) and (d): Two blocks in
the City of Cape Town metro.

Figure 5(a)–(d) are separate spatial point patterns for the four blocks of properties. The prices of
these properties are of interest over the three years. The price of each property is considered as the
continuous mark in a marked spatial point pattern. Figure 5(a) and (b) are the two blocks in the City
of Johannesburg metro and Figure 5(c) and (d) are the two blocks in the City of Cape Town metro.

Figure 6(a)–(d) show density plots of the property prices over the different years within the four
blocks of properties. Figure 6(a) is the density plot of the property prices in the first block of
properties in the City of Johannesburg metro and Figure 6(b) is the second block of properties. These
blocks consist of 423 and 120 properties, respectively. Figure 6(c) is the density of the property
prices in the first block of properties in the City of Cape Town metro. This block consists of 168
properties. Figure 6(d) is the property prices in the second block of 307 properties.

Three comparisons are made for each of the four blocks. The first comparison is between the
property prices of 2017 and the property prices of 2018. The second comparison is between the
prices of 2018 and 2019, and the third comparison is between the prices of 2017 and 2019. After the
first step of obtaining the pixel image representations is done for the three comparisons of each of
the four blocks, we create a local similarity map in the second step of the proposed spatial similarity
test; see Figure 7. Figure 7 consists of the local similarity maps obtained by the proposed spatial
similarity test.

These local similarity maps are useful in the sense that they allow the user to see where the potential
differences lie between the two spatial data sets considered. They can also be used to identify the
areas in the spatial data sets that have a high similarity between them. The global similarity index,
from the third step, is calculated by simply taking the mean of the values from the local similarity
map.

For the purpose of this paper, the pixel image representations used have a resolution of 30 × 30.
The bandwidth used is Diggle’s bandwidth (Baddeley et al., 2015). The windows of the patterns
are the same as displayed in Figure 5(a)–(d) which are obtained by taking the enclosed convex hull
around the points. The sliding window in the SSIM calculation is chosen to be of size 11 × 11. This
choice is made with reference to Brunet et al. (2012); Wang et al. (2004).

The similarity maps show a high similarity between the property prices across years of three of the
blocks of properties (Johannesburg Block 1 and 2, Cape Town Block 2). Low similarity is observed
for the three comparisons of the first block of properties in the City of Cape Town metro.

The global similarity indices can be seen in Table 3. These values support the observations
from the similarity maps in Figure 7. It also indicates that something significant happened with the
property prices from the first block of the City of Cape Town metro.
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Figure 6. Density plots for the property prices for the different years within the four blocks of
properties. (a) The property prices for the first block in Johannesburg and (b) the second block. (c)
The property prices in the first block of properties in Cape Town and (d) the second block.
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Figure 7. Local similarity maps for each comparison done on the four blocks of property prices by
year.
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Table 3. Similarity indices from the newly proposed similarity test

City of Johannesburg City of Cape Town
Comparison Block 1 Block 2 Block 1 Block 2
2017 vs 2018 0.8696 0.9636 0.7371 0.9216
2018 vs 2019 0.9105 0.8773 0.4182 0.8407
2017 vs 2019 0.7969 0.8527 0.3183 0.8342

5. Conclusion
Up to now in literature, only a few spatial similarity tests have been developed. These tests test the
similarity between two spatial data sets for only a certain type of data. In this paper, a generic spatial
similarity test is proposed. This test can determine the spatial similarity between two spatial data
sets of any type.

The proposed spatial similarity test consists of three steps, the first being where the spatial data set
is represented as a pixel image. This is done differently for each type of spatial data. In the second
step, a local similarity map is created that shows where the two data sets are more similar and where
they differ. The final similarity measure is calculated in the third step of the test by using the values
from the local similarity map. The final result of this test should be interpreted as a percentage of
similarity between the two spatial data sets.

A simulation study was done to test the accuracy of the proposed test. For a future study, a larger
simulation study would be the suggestion. A larger simulation study will allow more variation to be
covered. The simulation can also be done by using real data and changing some of the data points to
mimic the similarity aspect. The simulations will then be less theoretical.

In the first step of the spatial similarity test for geostatistical data, investigation on the influence of
the specific Kriging method on the outcome of the test should be done (Li and Heap, 2008). This
will bring insight in choosing the optimal Kriging model when applying the test. For the lattice
data, the pixel image representation can be obtained by using a more refined method. Instead of only
assigning the value of the spatial location in which the centroid of the pixel falls to the specific pixel,
a weighted average across the spatial locations falling within the pixel to calculate the value of that
pixel could be more representative.

In the case of unmarked point patterns and marked point patterns with continuous marks, a
suggestion for a future study is to optimise the bandwidth selection (Baddeley et al., 2015). A study
can also be conducted to investigate the influence of the bandwidth on the outcome of the test. For
marked point patterns with discrete marks, the choice of 𝑘 can be investigated. Guidelines can also
be put in place on how to choose a data-driven value of 𝑘 . For example, the analysis of the strength
of the spatial dependency distance can also be used to choose a data-driven value of 𝑘 .

It is also possible to vary the 𝛼, 𝛽 and 𝛾 parameters within the SSIM calculation (Charrier et al.,
2012). This adjusts the importance of each component in the calculation. A study can be done on
the influence of the change in these parameters.

The proposed spatial similarity test was applied to property prices in Section 5. We considered
four blocks of properties with prices over three years. We use the test to compare the property prices
over different years within the same block of properties. The price drop for the properties in the first

TEST FOR SPATIAL SIMILARITY 69



block in the City of Cape Town metro could possibly be explained by other economic factors. To
further explain such differences, some economic factors can be considered for the time period.

Acknowledgements. The financial assistance of the National Research Foundation (NRF) towards
this research is hereby acknowledged. Opinions expressed and conclusions drawn are those of the
authors and are not necessarily to be attributed to the NRF.

References
Alba-Fernández, M., Ariza-López, F., Jiménez-Gamero, M., and Rodríguez-Avi, J. (2016). On

the similarity analysis of spatial patterns. Spatial Statistics, 18, 352–362.
Andresen, M. (2009). Testing for similarity in area-based spatial patterns: A nonparametric Monte

Carlo approach. Applied Geography, 29, 333–345.
Baddeley, A., Rubak, E., and Turner, R. (2015). Spatial Point Patterns: Methodology and
Applications with R. CRC Press, Boca Raton, FL.

Bailey, T. and Gatrell, A. (1995). Interactive Spatial Data Analysis. Longman Scientific &
Technical, London.

Bivand, R. S., Pebesma, E., and Gomez-Rubio, V. (2013). Applied Spatial Data Analysis with R.
2nd edition. Springer, New York, NY.

Borrajo, M., González-Manteiga, W., and Martínez-Miranda, M. (2019). Testing for signifi-
cant differences between two spatial patterns using covariates. Spatial Statistics, 40, 1–20.

Brunet, D., Vrscay, E., and Wang, Z. (2012). On the mathematical properties of the structural
similarity index. IEEE Transactions on Image Processing, 21, 1488–1499.

Charrier, C., Knoblauch, K., Maloney, L., Bovik, A., and Moorthy, A. (2012). Optimizing
multiscale SSIM for compression via MLDS. IEEE Transactions on Image Processing, 21, 4682–
4694.

Congalton, R., Oderwald, R., and Mead, R. (1983). Assessing Landsat classification accuracy
using discrete multivariate analysis statistical techniques. Photogrammetric Engineering and
Remote Sensing, 49, 1671–1678.

Cressie, N. (1993). Statistics for Spatial Data. Revised edition. Wiley & Sons, Hobokem, NJ.
Diggle, P. J. (1985). A kernel method for smoothing point process data. Journal of the Royal
Statistical Society: Series C, 34, 138–147.

Diggle, P. J., Lange, N., and Benes, F. M. (1991). Analysis of variance for replicated spatial point
patterns in clinical neuroanatomy. Journal of the American Statistical Association, 86, 618–625.

Duong, T., Goud, B., and K Schauer, K. (2012). Closed-form density-based framework for
automatic detection of cellular morphology changes. Proceedings of the National Academy of
Sciences, 109, 8382–8387.

Fouedjio, F. (2016). A hierarchical clustering method for multivariate geostatistical data. Spatial
Statistics, 18, 333–351.

Fuentes-Santos, I., González-Manteiga, W., and Mateu, J. (2017). A nonparametric test for the
comparison of first-order structures of spatial point processes. Spatial Statistics, 22, 240–260.

Gilruth, P., Marsh, S., and Itami, R. (1995). A dynamic spatial model of shifting cultivation in

70 KIRSTEN & FABRIS-ROTELLI



the highlands of Guinea, West Africa. Ecological Modelling, 79, 179–197.
Hahn, U. (2012). A studentized permutation test for the comparison of spatial point patterns. Journal
of the American Statistical Association, 107, 754–764.

Hall, P., Park, B. U., and Samworth, R. J. (2008). Choice of neighbor order in nearest-neighbor
classification. Annals of Statistics, 36, 2135–2152.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Science & Business Media, New York, NY.

Kulkarn, A. and Joshi, R. (2002). Content-based image retrieval by spatial similarity. Defence
Science Journal, 52, 285.

Li, J. and Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental
Scientists. Geoscience Australia, Canberra.

Morris, T. P., White, I. R., and Crowther, M. J. (2019). Using simulation studies to evaluate
statistical methods. Statistics in Medicine, 38, 2074–2102.

Pebesma, E. J. and Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5,
9–13.
URL: https://CRAN.R-project.org/doc/Rnews/

Pham, T. D. (2010). Geoentropy: A measure of complexity and similarity. Pattern Recognition, 43,
887–896.

Sain, S. and Cressie, N. (2007). A spatial model for multivariate lattice data. Journal of Econo-
metrics, 140, 226–259.

Wang, Z. and Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing
Letters, 9, 81–84.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncell, E. P. (2004). Image quality assessment:
From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600–612.

Wheeler, A., Steenbeek, W., and Andresen, M. (2018). Testing for similarity in area-based spatial
point patterns: Alternative methods to Andresen’s spatial point pattern test. Transactions in GIS,
22, 760–774.

TEST FOR SPATIAL SIMILARITY 71


