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Herrey (1965) argued that when slight deviations from normality occur due to non-statistical
reasons in data arising out of physical experiments, it is not unusual to assume normality. In this
context, Chattopadhyay and Mukhopadhyay (2013) introduced a modified two-stage procedure for
constructing fixed-width confidence interval for the normal population mean using mean absolute
deviation (MAD) which enjoys only first order efficiency property. In this supplementary material,
we provide an illustration of our modified two-stage procedure and a simulation study for constructing
a fixed-width confidence interval for the mean of normal distribution under suspect outliers using
Mean Absolute Deviation (MAD) as an estimator of population standard deviation. Please note that
in this case, conditions (a)–(f) of the main paper are satisfied.

1. MAD-Based modified two-stage procedure
Suppose 𝑋1, ....., 𝑋𝑚 are i.i.d. normal random variables with population mean 𝜇 and standard
deviation 𝜎. Here

(
𝜇, 𝜎2) ∈

(
<×<2) . Let the sample mean based on 𝑋1, . . . , 𝑋𝑚, 𝑋̄𝑚 and

𝑇𝑚 = 𝑇𝑚 (𝑋1, ..., 𝑋𝑚) be unbiased estimators of 𝜇 and 𝜎 respectively. Here, 𝑇𝑚 is an unbiased
estimator of population standard deviation based on MAD such that

𝑇𝑚 = 𝑐−1
𝑚 𝑀𝐴𝐷𝑚, where, 𝑀𝐴𝐷𝑚 = (𝑚)−1

∑︁
1≤𝑖≤𝑚

���𝑋𝑖 − 𝑋

��� (1.1)
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and

𝑐𝑚 =

√︂
2
𝜋

√︂
𝑚 − 1
𝑚

. (1.2)

Now, let 𝑊𝑚 be the MAD-based standardized sample mean. Suppose that 𝜎 > 𝜎𝐿 (> 0) and 𝜎𝐿 is
known. Now, we know that 𝐶 > 𝑎2𝜎2

𝐿
/𝑑2, a known lower bound. Along the lines of Mukhopadhyay

and Duggan (1997), for 𝑚0 ≥ 2 we define:

𝑚 ≡ 𝑚(𝑑) = max
{
𝑚0,

〈
𝑧2
𝛼/2𝜎

2
𝐿/𝑑2

〉
+ 1

}
, (1.3)

We begin with pilot observations 𝑋1, ..., 𝑋𝑚 and define the final sample size:

𝑄𝑀𝐴𝐷 ≡ 𝑄𝑀𝐴𝐷 (𝑑) = max
{
𝑚,

〈
𝑏2
𝑚,𝛼/2𝑇

2
𝑚/𝑑2

〉
+ 1

}
. (1.4)

If 𝑄𝑀𝐴𝐷 = 𝑚, no further observations are collected beyond the pilot set, but if 𝑄𝑀𝐴𝐷 > 𝑚, then
we collect 𝑄𝑀𝐴𝐷 − 𝑚 additional observations in the second stage. Finally, based on the combined
data 𝑋1, ..., 𝑋𝑄 from both stages, we construct the following fixed-width confidence interval

𝐽𝑄𝑀𝐴𝐷
=

[
𝑋𝑄𝑀𝐴𝐷

± 𝑑

]
(1.5)

for 𝜇. In the next section, we consider the properties enjoyed by our two-stage procedure from (1.4)
and (1.5).

2. Characteristics
Before we consider the properties enjoyed by our two-stage procedure, we look at the lemma 1 which
gives the approximate expression of the percentile point 𝑏𝑚,𝛼/2 in terms of 𝑧𝛼/2 (upper 100(𝛼/2)%
points of the distribution of 𝑁 (0, 1)) and 𝑚 (Pilot sample size).

Lemma 1. Suppose that 𝑏𝑚,𝛼/2 and 𝑧𝛼/2 are the upper 100(𝛼/2)% points of the distribution of𝑊𝑚

and standard normal distribution respectively. Then the approximate expression of the percentile
point 𝑏𝑚,𝛼/2 in terms of 𝑧𝛼/2 and the sample size 𝑚 is:

𝑏𝑚,𝛼/2 = 𝑧𝛼/2 +
𝑏1

𝑚1
+𝑂 (𝑚−2

1 ), 𝑏1 = 𝐵01 − 𝐵11 (2.6)

Proof. The proof is given in the Appendix. �

Theorem 1. For theMAD-based two-stage procedure from (1.4)-(1.5), (𝜇, 𝜎)∈ <×<+, 0 < 𝜎𝐿 < 𝜎

and 𝛼, we have:
(i) 𝑃𝜇,𝜎

{
𝜇 ∈ 𝐽𝑄𝑀𝐴𝐷

}
≥ 1 − 𝛼 , for any fixed 𝑑 [Exact Consistency];

(ii) 𝑄𝑀𝐴𝐷/𝐶
𝑃→ 1 as d → 0;

(iii) 𝑃𝜇,𝜎

{
𝜇 ∈ 𝐽𝑄𝑀𝐴𝐷

}
→ 1 − 𝛼 as d → 0 [Asymptotic Consistency];

(iv) 𝐸𝜇,𝜎 [𝑄𝑀𝐴𝐷/𝐶] → 1 as d → 0 [First-Order Efficiency];
(v) 𝐸𝜇,𝜎 [𝑄𝑀𝐴𝐷 − 𝐶] is bounded as d → 0 [Second-Order Efficiency].
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Proof. Parts (i)–(iv) is restating of Theorem 3.1 of Chattopadhyay and Mukhopadhyay (2013). So,
we now prove part (v). Using (1.4), we write the following basic inequality:

𝑏2
𝑚,𝛼/2𝑇

2
𝑚

𝑑2 ≤ 𝑄𝑀𝐴𝐷 ≤ 𝑚𝐼 (𝑄𝑀𝐴𝐷 = 𝑚) +
𝑏2
𝑚,𝛼/2𝑇

2
𝑚

𝑑2 + 1. (2.7)

Thus, we can write(
𝑏2
𝑚,𝛼/2 − 𝑧2

𝛼/2

)
𝐸 (𝑇2

𝑚)𝑑−2 ≤ 𝐸𝜇,𝜎 [𝑄𝑀𝐴𝐷 − 𝐶] ≤ 𝑚𝑃𝜇,𝜎 (𝑄𝑀𝐴𝐷 = 𝑚)

+
(
𝑏2
𝑚,𝛼/2 − 𝑧2

𝛼/2

)
𝐸 (𝑇2

𝑚)𝑑−2 + 1. (2.8)

Before we proceed, let us consider lemma 2 which is related to the first term in the right hand side of
the inequality defined in (2.8).

Lemma 2. For the MAD-based two-stage procedure from (1.4)-(1.5), for all (𝜇, 𝜎)∈ < × <+,

0 < 𝜎𝐿 < 𝜎 and 0 < 𝛼 < 1, we have:

𝑃𝜇,𝜎 (𝑄𝑀𝐴𝐷 = 𝑚) = 32
𝑚

(
𝜎

𝜎 − 𝜎𝐿

)4
+𝑂 (𝑚−2). (2.9)

Proof. Here, we proceed along the lines of Mukhopadhyay and Duggan (1997). For a small 𝑑 (> 0)
note that:

𝑃𝜇,𝜎 (𝑄𝑀𝐴𝐷 = 𝑚) = 𝑃𝜇,𝜎

(
𝑇2
𝑚 < 𝑚𝑑2/𝑏2

𝑚,𝛼/2

)
= 𝑃𝜇,𝜎

(
𝑇𝑚

𝜎
− 1 < ℎ𝑚

)
, (2.10)

where ℎ𝑚 = 𝑚1/2𝑑
𝜎𝑏𝑚,𝛼/2

− 1. But, we observe:

𝑚1/2𝑑 = 𝑧𝛼/2𝜎𝐿 + 𝑜(1)
𝑏𝑚,𝛼/2 = 𝑧𝛼/2 + 𝑜(1) (2.11)

so that we can claim:

ℎ𝑚 =

(
𝜎𝐿𝜎

−1 − 1
)
+ 𝑜(1). (2.12)

Thus, for sufficiently large𝑚, that is for sufficiently small 𝑑 (> 0), we may claim ℎ𝑚 < 1
2
(
𝜎𝐿𝜎

−1 − 1
)

and this upper bound is negative. Using the expression of the moments of 𝑇𝑚, we have,

𝐸𝜇,𝜎

(
𝑇𝑚

𝜎
− 1

)4
=𝐸

(
𝑇𝑚

𝜎

)4
− 4𝐸

(
𝑇𝑚

𝜎

)3
+ 6𝐸

(
𝑇𝑚

𝜎

)2
− 3

=
2
𝑚

+𝑂 (𝑚−2) (2.13)

Recall that the upper bound for ℎ𝑚 is negative. Hence, from (2.10)-(2.13) we can conclude that for
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large 𝑚:

𝑃𝜇,𝜎 (𝑄𝑀𝐴𝐷 = 𝑚) =𝑃𝜇,𝜎

(
𝑇𝑚

𝜎
− 1 < ℎ𝑚

)
≤ 𝑃𝜇,𝜎

(����𝑇𝑚𝜎 − 1
���� > 1

2

(
1 − 𝜎𝐿

𝜎

))
≤

{
1
2

(
1 − 𝜎𝐿

𝜎

)}−4
𝐸𝜇,𝜎

(����𝑇𝑚𝜎 − 1
����4) =

32
𝑚

(
𝜎

𝜎 − 𝜎𝐿

)4
+𝑂 (𝑚−2).

This proves lemma 2. �

Also, from lemma 1, we have:

𝑏2
𝑚,𝛼/2𝑧

−2
𝛼/2 = 1 + 2𝑏1 (𝑧𝛼/2𝑚)−1 +𝑂

(
𝑚−2

)
. (2.14)

Finally, we combine (2.8), (2.9) and (2.14) and the expression of 𝐸 (𝑇2
𝑚) to get:

2𝑧𝛼/2𝑏1𝜎
2𝜎−2

𝐿 + 𝑜 (𝑑) ≤ 𝐸𝜇,𝜎 [𝑄𝑀𝐴𝐷 − 𝐶] ≤ 2𝑧𝛼/2𝑏1𝜎
2𝜎−2

𝐿 + 32
(

𝜎

𝜎 − 𝜎𝐿

)4
+ 1 + 𝑜 (𝑑) .

(2.15)

Part (v) follows trivially from (2.15). �

3. Real data illustration
This example indicates that the MAD-based test is more robust than the usual t-test. The data used in
this article was first used in Welch (1987). This data came from an experiment conducted to test fault
reduction method on telephone lines. The data consists of inverse test and control fault rates in 14
matched pairs of areas. To test if the inverse fault rate differences for telephone lines are negligible,
Welch (1987) assumed that the data was a random sample drawn from a normal population with
unknown mean 𝜇 and variance 𝜎2.

Table 1 shows the inverse fault-rate differences for telephone lines in 14 pairs of areas. The
mean 𝑋̄14, standard deviation 𝑠14 and the estimate of the unbiased estimator based on MAD, 𝑇14 are
respectively given as 𝑋̄14 = 38.78571, 𝑠14 = 321.8328, 𝑇14 = 291.3516. Now suppose, we assume
that the population standard deviation of the inverse fault-rate differences for telephone lines is atleast
1.137282, that is, we treat these observations as our pilot data set with m =14.

Here, we want to construct a 95% confidence interval for the inverse fault-rate differences for
telephone lines of width 4 units. While observing the data, one may be tempted to discard one or two
possible outlying observations. However, one should refrain from doing so without consulting the
experimenter, as they may add valuable information and also there is huge sampling cost involved
in these experiments. Thus, in total we have 14 observations in our pilot sample. When 𝑚 = 14,
95 percentile point of the distribution of 𝑊𝑚 =

√
𝑚𝑋𝑚/𝑇𝑚 and the t distribution are respectively

given as 𝑏14,0.05 = 2.433584 and 𝑡14,0.05 = 2.160369. Thus, based on all these 14 differences
of table 1, the corresponding 95% fixed-width (50 units, say) confidence interval using modified
Stein’s two-stage procedure given by Mukhopadhyay and Duggan (1997) would require at least 760
additional observations while based on MAD given in (1.4)–(1.5), we would need at least 586 more
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Table 1. Inverse fault-rate differences for telephone lines ((Test-Control)×105).

Pair Difference Pair Difference
1 −988 8 −135
2 309 9 110
3 269 10 93
4 228 11 83
5 204 12 −78
6 197 13 59
7 189 14 3

observations. Clearly, there is a gain in using MAD based two-stage procedure instead of a modified
Stein’s two-stage procedure in case of suspect outliers.

4. Appendix

4.1 Expansion of the 𝐸 (𝑇2
𝑚)

The following expressions were obtained from Geary (1936):

𝐸 (𝑀𝐴𝐷2
𝑚) = 𝑎2 ©­«1 +

5∑︁
𝑗=1

𝑎′2 𝑗

𝑚
𝑗

1

ª®¬ +𝑂 (𝑚−6), 𝑎′2 𝑗 =
𝑎′′2 𝑗

𝑎2 and 𝑚1 = 𝑚 − 1,

where 𝑎 =
√︁

2/𝜋 and

𝑎′′21 = 1 − 𝑎2, 𝑎′′22 = 1.5𝑎2 − 1, 𝑎′′23 = 1 − 1.5𝑎2, 𝑎′′24 =
37
24

𝑎2 − 1, 𝑎′′25 = 1 − 37
24

𝑎2.

Note that 𝑇𝑚 = 𝑐−1
𝑚 𝑀𝐴𝐷𝑚. So,

𝐸 (𝑇2
𝑚) =

𝜋

2

(
1 + 1

𝑚1

)
𝑎2 ©­«1 +

5∑︁
𝑗=1

𝑎′2 𝑗

𝑚1 𝑗

ª®¬ +𝑂 (𝑚−6) = ©­«1 +
5∑︁
𝑗=1

𝑎2 𝑗

𝑚1 𝑗

ª®¬ +𝑂 (𝑚−6),

where
𝑎21 = 1 + 𝑎′21, 𝑎2 𝑗 = 𝑎′2 𝑗 + 𝑎′

2 𝑗−1
, for 𝑗 = 2, 3, 4, 5. (4.16)

4.2 Expansion of the E(𝑇3
𝑚)

The following expressions were obtained from Geary (1936):

𝐸 (𝑀𝐴𝐷3
𝑚) = 𝑎3 ©­«1 +

5∑︁
𝑗=1

𝑎′3 𝑗

𝑚1 𝑗
+𝑂 (𝑚−6

1 )ª®¬ , 𝑎′3 𝑗 =
𝑎′′3 𝑗

𝑎3 ,

where
𝑎′′31 𝑎′′32 𝑎′′33 𝑎′′34 𝑎′′35

3𝑎 − 3𝑎3 6.5𝑎3 − 4𝑎 8𝑎 − 12.5𝑎3 151
8 𝑎3 − 12𝑎 16𝑎 − 201

8 𝑎3 (4.17)
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So, the third raw moment is,

𝐸 (𝑇3
𝑚) =

©­«1 +
5∑︁
𝑗=1

𝑎3 𝑗

𝑚1 𝑗

ª®¬ +𝑂 (𝑚−6),

where

𝑎31 =

(
𝑎′31 +

3
2

)
,

𝑎32 =

(
3
2
𝑎′31 + 𝑎′32 +

3
8

)
,

𝑎33 =

(
3
8
𝑎′31 +

3
2
𝑎′32 + 𝑎′33 −

1
16

)
,

𝑎34 =

(
3
8
𝑎′32 −

1
16

𝑎′31 +
3
2
𝑎′33 + 𝑎′34 +

3
128

)
,

𝑎35 =

(
3

128
𝑎′31 −

1
16

𝑎′32 +
3
8
𝑎′33 +

3
2
𝑎′34 + 𝑎′35 −

3
256

)
.

4.3 Expansion of the E(𝑇4
𝑚)

The following expressions were obtained from Geary (1936):

𝐸 (𝑀𝐴𝐷4
𝑚) = 𝑎4 ©­«1 +

5∑︁
𝑗=1

𝑎′4 𝑗

𝑚
𝑗

1

ª®¬ +𝑂 (𝑚−6
1 ), 𝑎′4 𝑗 =

𝑎′′4 𝑗

𝑎4 ,

where
𝑎′′41 𝑎′′42 𝑎′′43

6𝑎2 − 6𝑎4 3 − 16𝑎2 + 20𝑎4 −6 + 45𝑎2 − 56𝑎4 (4.18)

𝑎′′44 𝑎′′45
15 − 108𝑎2 + 133𝑎4 −30 + 845

4 𝑎2 − 258𝑎4 (4.19)

So, the fourth raw moment is given by

𝐸 (𝑇4
𝑚) =

©­«1 +
5∑︁
𝑗=1

𝑎4 𝑗

𝑚1 𝑗

ª®¬ +𝑂 (𝑚−6),
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where

𝑎41 =
(
2 + 𝑎′41

)
,

𝑎42 =
(
1 + 2𝑎′41 + 𝑎′42

)
,

𝑎43 =
(
𝑎′41 + 2𝑎′42 + 𝑎′43

)
,

𝑎44 =
(
𝑎′42 + 2𝑎′43 + 𝑎′44

)
,

𝑎45 =𝑎′43 + 2𝑎′44 + 𝑎′45.

4.4 Proof of Lemma 1
Proceeding in the same way as Mukhopadhyay and Chattopadhyay (2012), we have

Φ
(
𝑏𝑚,𝛼/2𝑡

)
≈Φ

(
𝑧𝛼/2𝑡

)
+ (𝑏𝑚,𝛼/2 − 𝑧𝛼/2)

𝜕Φ (𝑥𝑡)
𝜕𝑥

]
𝑥=𝑧𝛼/2

=Φ
(
𝑧𝛼/2𝑡

)
+ (𝑏𝑚,𝛼/2 − 𝑧𝛼/2)𝑡𝜙(𝑧𝛼/2𝑡)

=𝐼 + (𝑏𝑚,𝛼/2 − 𝑧𝛼/2)𝑡 𝐼 𝐼 . (4.20)

We now focus on the terms 𝐼 and 𝐼 𝐼 successively and as each term is a function of 𝑡, we expand
them around 𝑡 = 1 to write

𝐼 = Φ
(
𝑧𝛼/2𝑡

)
≈ Φ

(
𝑧𝛼/2

)
+ (𝑡 − 1)𝑧𝛼/2𝜙(𝑧𝛼/2) −

1
2
(𝑡 − 1)2𝑧3

𝛼/2𝜙(𝑧𝛼/2)

− 1
6
(𝑡 − 1)3𝑧3

𝛼/2 (1 − 𝑧2
𝛼/2)𝜙(𝑧𝛼/2) +

1
24

(𝑡 − 1)4𝑧5
𝛼/2 (3 − 𝑧2

𝛼/2)𝜙(𝑧𝛼/2) (4.21)

and

𝐼 𝐼 = 𝜙(𝑧𝛼/2𝑡) ≈ 𝜙
(
𝑧𝛼/2

)
− (𝑡 − 1)𝑧2

𝛼/2𝜙
(
𝑧𝛼/2

)
+ 1

2
(𝑡 − 1)2

×
(
𝑧4
𝛼/2 − 𝑧2

𝛼/2

)
𝜙

(
𝑧𝛼/2

)
+ 1

6
(𝑡 − 1)3

(
−𝑧6

𝛼/2 + 3𝑧4
𝛼/2

)
𝜙

(
𝑧𝛼/2

)
. (4.22)

The following are provided for brevity and precision:

𝜕Φ (𝑥𝑡)
𝜕𝑡

= 𝑥𝜙 (𝑥𝑡)

𝜕2Φ (𝑥𝑡)
𝜕𝑡2

= −𝑥3𝑡𝜙 (𝑥𝑡)

𝜕3Φ (𝑥𝑡)
𝜕𝑡3

= −𝑥3𝜙 (𝑥𝑡)
(
1 − 𝑥2𝑡2

)
𝜕4Φ (𝑥𝑡)

𝜕𝑡4
= −𝑥5𝜙 (𝑥𝑡)

(
−3𝑡 + 𝑥2𝑡3

)
.

We exploit these expressions as needed. Next, by combining the terms 𝐼, (𝑏𝑚,𝛼/2 − 𝑧𝛼/2)𝑡 𝐼 𝐼, we
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obtain

Φ
(
𝑏𝑚,𝛼/2𝑡

)
≈ Φ

(
𝑧𝛼/2

)
+ 𝜙(𝑧𝛼/2)

[
𝑧𝛼/2 (𝑡 − 1) − 1

2
(𝑡 − 1)2 𝑧3

𝛼/2 +
1
6
(𝑡 − 1)3

(
𝑧5
𝛼/2 − 𝑧3

𝛼/2

)
+ 1

24
(𝑡 − 1)4

(
3𝑧5

𝛼/2 − 𝑧7
𝛼/2

)
+ 𝑡 (𝑏𝑚,𝛼/2 − 𝑧𝛼/2)

{
1 − (𝑡 − 1) 𝑧2

𝛼/2

+ 1
2
(𝑡 − 1)2

(
𝑧4
𝛼/2 − 𝑧2

𝛼/2

)
+ 1

6
(𝑡 − 1)3

(
−𝑧6

𝛼/2 + 3𝑧4
𝛼/2

)}]
, (4.23)

for all 𝑡 > 0. Then, replacing 𝑡 with the statistic 𝑇𝑚 and then taking expectations throughout, we
obtain

𝐸
[
Φ

(
𝑏𝑚,𝛼/2𝑇𝑚

) ]
≈ Φ

(
𝑧𝛼/2

)
+ 𝜙(𝑧𝛼/2)𝐸

[
𝑧𝛼/2 (𝑇𝑚 − 1) − 1

2
(𝑇𝑚 − 1)2 𝑧3

𝛼/2 +
1
6
(𝑇𝑚 − 1)3

(
𝑧5
𝛼/2 − 𝑧3

𝛼

)
+ 1

24
(𝑇𝑚 − 1)4

(
3𝑧5

𝛼/2 − 𝑧7
𝛼/2

)
+ 𝑇𝑚 (𝑏𝑚,𝛼/2 − 𝑧𝛼/2)

(
1 − (𝑇𝑚 − 1) 𝑧2

𝛼/2

+1
2
(𝑇𝑚 − 1)2

(
𝑧4
𝛼/2 − 𝑧2

𝛼/2

)
+ 1

6
(𝑇𝑚 − 1)3

(
−𝑧6

𝛼/2 + 3𝑧4
𝛼/2

))]
. (4.24)

So, alternatively,

𝐸
[
Φ

(
𝑏𝑚,𝛼/2𝑇𝑚

) ]
≈ Φ

(
𝑧𝛼/2

)
+ 𝜙(𝑧𝛼/2)𝐸

[(
1
8
𝑧5
𝛼/2 −

1
24

𝑧7
𝛼/2

)
𝑇4
𝑚 +

(
−1

3
𝑧5
𝛼/2 −

1
6
𝑧3
𝛼/2 +

1
6
𝑧7
𝛼/2

)
𝑇3
𝑚

+
(
1
4
𝑧5
𝛼/2 −

1
4
𝑧7
𝛼/2

)
𝑇2
𝑚 +

(
1
2
𝑧3
𝛼/2 + 𝑧𝛼/2 +

1
6
𝑧7
𝛼/2

)
𝑇𝑚 − 𝑧𝛼/2 −

1
24

𝑧5
𝛼/2

−1
3
𝑧3
𝛼/2 −

1
24

𝑧7
𝛼/2 +

(
𝑏𝑚,𝛼/2 − 𝑧𝛼/2

) ((
−1

6
𝑧6
𝛼/2 +

1
2
𝑧4
𝛼/2

)
𝑇4
𝑚

+
(
−𝑧4

𝛼/2 −
1
2
𝑧2
𝛼/2 +

1
2
𝑧6
𝛼/2

)
𝑇3
𝑚 +

(
1 + 1

2
𝑧2
𝛼/2 +

1
2
𝑧6
𝛼/2

)
𝑇𝑚 +

(
−1

2
𝑧6
𝛼/2 +

1
2
𝑧4
𝛼/2

)
𝑇2
𝑚

)]
.

(4.25)

Now, we recall that 𝐸
[
Φ(𝑏𝑚,𝛼/2𝑇𝑚)

]
and Φ

(
𝑧𝛼/2

)
are both the same as to 1 − 𝛼/2. Thus, the

remaining terms from (4.25) may be approximated by zero which gives us the following equation:

𝐵0 + 𝐵1𝑏𝑚,𝛼/2 = 0,
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where the coefficients 𝐵0, 𝐵1, themselves involving 𝑚, can be expressed as

𝐵1 =

(
−1

6
𝑧6
𝛼/2 −

1
2
𝑧4
𝛼/2

)
𝐸

[
𝑇4
𝑚

]
+

(
1
2
𝑧6
𝛼/2 +

1
2
𝑧2
𝛼/2

)
𝐸

[
𝑇3
𝑚

]
+

(
1
2
𝑧4
𝛼/2 −

1
2
𝑧6
𝛼/2

)
𝐸

[
𝑇2
𝑚

]
+

(
1 + 1

2
𝑧2
𝛼/2 +

1
6
𝑧6
𝛼/2

)
;

𝐵0 =

(
1
8
𝑧7
𝛼/2 −

3
8
𝑧5
𝛼/2

)
𝐸

[
𝑇4
𝑚

]
+

(
−1

3
𝑧7
𝛼/2 +

2
3
𝑧5
𝛼/2 +

1
3
𝑧3
𝛼/2

)
𝐸

[
𝑇3
𝑚

]
+

(
1
4
𝑧7
𝛼/2 −

1
4
𝑧5
𝛼/2

)
𝐸

[
𝑇2
𝑚

]
− 3

8
𝑧7
𝛼/2 −

1
24

𝑧5
𝛼/2 −

1
3
𝑧3
𝛼/2 − 𝑧𝛼/2. (4.26)

Let us suppose that for each 𝑗 = 0, 1, we express (4.26) as 𝐵 𝑗 = 𝐵 𝑗0

(
1 + ∑5

𝑖=1
𝐵 𝑗𝑖

𝑚𝑖
1

)
, where

𝐵10 =
1
3
𝑧6
𝛼/2 + 1 and 𝐵00 = −𝑧𝛼/2

(
1
3
𝑧6
𝛼/2 + 1

)
. (4.27)

For 𝑖 = 1, . . . , 5,

𝐵1𝑖 =
1
𝐵10

[(
−1

6
𝑧6
𝛼/2 +

1
2
𝑧4
𝛼/2

)
𝑎4𝑖 +

(
−𝑧4

𝛼/2 −
1
2
𝑧2
𝛼/2 +

1
2
𝑧6
𝛼/2

)
𝑎3𝑖 +

(
1
2
𝑧4
𝛼/2 −

1
2
𝑧6
𝛼/2

)
𝑎2𝑖

]
𝐵0𝑖 =

1
𝐵00

[(
1
8
𝑧7
𝛼/2 −

3
8
𝑧5
𝛼/2

)
𝑎4𝑖 +

(
−1

3
𝑧7
𝛼/2 +

2
3
𝑧5
𝛼/2 +

1
3
𝑧3
𝛼/2

)
𝑎3𝑖 +

(
1
4
𝑧7
𝛼/2 −

1
4
𝑧5
𝛼/2

)
𝑎2𝑖

]
.

(4.28)

Thus, to evaluate the terms 𝐵0, 𝐵1, we will need the first four moments of 𝑇𝑚. These are given by,

𝐸 (𝑇𝑚) = 1and 𝐸 (𝑇 𝑗
𝑚) = 1 +

5∑︁
𝑖=1

𝑎 𝑗𝑖

𝑚𝑖
1
+𝑂 (𝑚−6

1 ), 𝑗 = 2, 3, 4. (4.29)

where 𝑎1𝑖 , 𝑎3𝑖 , 𝑎4𝑖 , (𝑖 = 1, .., 5) are given in subsections 4.2, 4.3.
Using the moments in (4.29) and then using such updated expressions of 𝐵0 and 𝐵1, it is evident

that these depend upon arbitrary negative powers of 𝑚. Thus proceeding along the lines detailed in
section 1, the required percentile points of the distribution of 𝑊𝑚 are as follows:

𝑏𝑚,𝛼/2 = 𝑧𝛼/2 +
𝑏1

𝑚1
+ 𝑏2

𝑚2
1
+ 𝑏3

𝑚3
1
+ 𝑏4

𝑚4
1
+ 𝑏5

𝑚5
1
+𝑂 (𝑚−6

1 ) (4.30)
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with the requisite coefficients

𝑏1 =𝐵01 − 𝐵11

𝑏2 = − 𝐵01𝐵11 − 𝐵12 + 𝐵2
11 + 𝐵02

𝑏3 =𝐵01

(
−𝐵12 + 𝐵2

11

)
− 𝐵13 + 2𝐵12𝐵11 − 𝐵02𝐵11 + 𝐵03

𝑏4 =2𝐵13𝐵11 + 𝐵2
12 − 𝐵14 + 𝐵01 (−𝐵13 + 2𝐵12𝐵11) +

𝐵04 + 𝐵02

(
−𝐵12 + 𝐵2

11

)
− 𝐵03𝐵11

𝑏5 =𝐵01

(
2𝐵13𝐵11 + 𝐵2

12 − 𝐵14

)
+ 𝐵02 (−𝐵13 + 2𝐵12𝐵11) −

𝐵15 + 2𝐵14𝐵11 + 2𝐵13𝐵12 − 𝐵5
11 − 𝐵13𝐵

2
11 + 𝐵2

12𝐵11−

𝐵11

(
2𝐵13𝐵11 + 𝐵2

12

)
+ 𝐵05 − 𝐵04𝐵11 + 𝐵03

(
−𝐵12 + 𝐵2

11

)
(4.31)

This is an approximate expression of the percentile point 𝑏𝑚,𝛼/2 in terms of 𝑧𝛼/2 and the sample size
𝑚.
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