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We present the results of a simulation study performed to compare the accuracy of a lasso-
type penalization method and gradient boosting in estimating the baseline hazard function
and covariate parameters in discrete survival models. The mean square error results reveal
that the lasso-type algorithm performs better in recovering the baseline hazard and covariate
parameters. In particular, gradient boosting underestimates the sizes of the parameters and
also has a high false positive rate. Similar results are obtained in an application to real-life
data.
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1. Introduction
The discrete survival model expresses the hazard at time 𝑡 as a function of the covariate vector X
through an equation of the form

_(𝑡 |X𝑖) = 𝐹 (γ0𝑡 +X>
𝑖 β),

where 𝐹 is an inverse link function and γ0𝑡 is a function which captures the effect of time on the
hazard; commonly referred to as the baseline hazard function.
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In most applications of the discrete survival model, the number of potential explanatory variables
is large, making it necessary to select a few relevant ones thereby obtaining parsimonious models
which are easier to interpret. Variable selection becomes even more critical in those situations where
the number of predictors exceeds the number of observations. In such cases, maximum likelihood
estimates for the full model do not exist.

Traditionally, variable selection has been performed through stepwise methods. These consist of
backward elimination, forward selection and stepwise selection which is a combination of forward
selection and backward elimination. The results of stepwise selection procedures can be affected by
very small perturbations in the data, leading to poor performance (Tutz and Schmid, 2016).

An alternative to traditional stepwise variable selection procedures are regularization methods.
Among the prominent regularization techniques are penalty methods, in which variables are selected
by optimizing a penalized likelihood, and boosting. The most prominent penalized likelihood variable
selection method is the least absolute shrinkage and selection operator (lasso) (Tibshirani, 1996). In
this method a weighted penalty that contains the sum over the absolute values of all the parameters
is added to the log-likelihood function. Depending on the weight of the penalty, all or some of the
coefficients of the variables are shrunk to zero. This property implies variable selection.

Boosting produces a prediction model by iteratively applying simple models (learners) and com-
bining their solutions to produce a better prediction result. The most basic learner is the simple
linear regression model. At each iteration the best performing learner is added to the model. This
implies variable selection. The main weapon for variable selection in the boosting algorithm is
the stopping iteration because early stopping prevents overfitting. The idea of boosting originated
from the machine learning community (Freund and Schapire, 1996; Mayr et al., 2014) but was later
propagated to the field of statistical modelling through the work of Friedman and others (Friedman
et al., 2000; Friedman, 2001). The success of statistical boosting is attributed to an ability to incor-
porate automated variable selection in the fitting process, stability in high-dimensional settings with
candidate predictors possibly exceeding available observations, and flexibility in terms of predictor
effects that can be included in the final model (Mayr et al., 2014).

A specific feature of the discrete survival model is the baseline hazard estimates which are usually
very unstable especially when the event of interest is observed at many time points. Variable selection
algorithms for discrete survival models should therefore possess functionality for stabilizing baseline
hazard parameters. The most convenient approach is to use ridge-type penalties because they do
not result in parameters being shrunk to zero. If the baseline hazard is expanded as a sum of basis
functions (for example using B-splines), a penalty based on differences between adjacent baseline
hazard coefficients can be employed.

Groll and Tutz (2017) proposed a penalized likelihood method that performs efficient variable
selection in discrete survival models with and without unobserved heterogeneity. The method uses a
lasso-type penalty for variable selection and a ridge-type penalty for stabilization of baseline hazard
parameters. An implementation of their method is available through the glmmLasso function of the
R-package glmmLasso (Groll, 2011). In a simulation study the glmmLasso algorithm was compared
with forward selection algorithms as implemented through the glmer function of the lme4 package
(Bates et al., 2015), the function gamm4 in the R-package gamm4 (Wood and Scheipl, 2013), and the
gam function in the mgcv package (Wood, 2006). Comparison was also made with other lasso-based
approaches as implemented in the packages glmnet (Friedman et al., 2010) and penalized (Goeman,
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2010). The proposed method showed superior performance to all the alternatives. Gradient boosting
was not considered in this study. In the current work, we compare the performance of glmmLasso and
gradient boosting when used for variable selection in discrete survival models through a simulation
study. Our focus will be restricted to models without unobserved heterogeneity.

2. Methods
2.1 The discrete survival model
Here we assume that the time takes the discrete values {1, 2, . . . , 𝑞}. The discreteness may be due to
time being intrinsically measured on a discrete scale or be a result of grouping continuous time into
intervals. Predictions of the time to event 𝑇 are assumed to be given in terms of a risk score ^(X)
where X = (𝑋1, 𝑋2, . . . , 𝑋𝑝) is a vector of predictor variables.

The censoring time is denoted by 𝐶 ∈ {1, 2, . . . , 𝑞} and is assumed to be independent of 𝑇
conditional on ^, i.e. censoring at random. For data which is right-censored, the duration of
observation is 𝑇 = min(𝑇, 𝐶). The random variable 𝛿 := 𝐼 (𝑇 ≤ 𝐶) indicates whether 𝑇 is right-
censored (𝛿 = 0) or not (𝛿 = 1).

We focus on modelling the discrete hazard function

_(𝑡 |^) = 𝑃(𝑇 = 𝑡 | 𝑇 ≥ 𝑡, ^), (1)

which gives the conditional probability of an event at time 𝑡 given that the subject has survived up to
time 𝑡. The corresponding survival function

𝑆(𝑡 |^) = 𝑃(𝑇 > 𝑡 | 𝑇 ≥ 𝑡, ^) =
𝑛∏
𝑖=1

(1 − _(𝑡 |^(X𝑖)))

gives the probability that the event occurs later than time 𝑡.
We are particularly interested in expressing the hazard as a function of covariates through an

equation of the form
_(𝑡 |X𝑖) = 𝐹 (γ0𝑡 +X𝑇

𝑖 β),
where 𝐹 is an inverse link function and γ0𝑡 is a function which captures the effect of time on the
hazard; commonly referred to as the baseline hazard function.

The risk score, κ𝑖𝑡 = γ0𝒕 +X>
𝑖 β is made up of intercepts 𝛾0𝑡 , 𝑡 = 1, 2, . . . , 𝑞 − 1, and a vector of

regression coefficients β = (𝛽1, 𝛽2, . . . , 𝛽𝑝)> which is independent of 𝑡. The hazard function in (1)
is adequately determined by 𝐹 (·) and the coefficients 𝛾01, 𝛾02, . . . , 𝛾0,𝑞−1,β

>, hence there is no need
for an intercept at 𝑡 = 𝑞. In this study, the cumulative distribution function of the logistic distribution
was used for 𝐹 (·). This gives a logistic discrete hazard model of the form

_(𝑡 | X𝑖) =
exp(γ0𝑡 +X>

𝑖 β)
1 + exp(γ0𝑡 +X>

𝑖 β)
.

Alternatives to the CDF of the logistic distribution include the CDFs of the Gompertz and standard
normal distributions (Tutz and Schmid, 2016).
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2.2 Penalized likelihood variable selection
Under random censoring, the probability of observing (𝑡𝑖 , 𝑑𝑖) is given by

𝐿𝑖 = 𝑃(𝑇𝑖 = 𝑡𝑖) 𝛿𝑖𝑃(𝑇𝑖 > 𝑡𝑖)1−𝛿𝑖𝑃(𝐶𝑖 ≥ 𝑡𝑖) 𝛿𝑖𝑃(𝐶𝑖 = 𝑡𝑖)1−𝛿𝑖 .

Assuming non-informative censoring, i.e. the𝐶𝑖 are independent of the parameters that determine
the risk of an event at any given time, we can separate the factor 𝑐𝑖 = 𝑃(𝐶𝑖 ≥ 𝑡𝑖) 𝛿𝑖𝑃(𝐶𝑖 = 𝑡𝑖)1−𝛿𝑖 to
get the simpler equation

𝐿𝑖 = 𝑐𝑖𝑃(𝑇𝑖 = 𝑡𝑖) 𝛿𝑖𝑃(𝑇𝑖 > 𝑡𝑖)1−𝛿𝑖 .

If we define the sequence (𝑦𝑖1, . . . , 𝑦𝑖𝑡 ) = (0, . . . , 0, 1) for a non-censored observation (𝛿 = 1)
and (𝑦𝑖1, . . . , 𝑦𝑖𝑡 ) = (0, . . . , 0, 0) for a censored observation, the likelihood (omitting 𝑐𝑖) can be
expressed as

𝐿𝑖 =
𝑡𝑖∏
𝑠=1

_(𝑠 |X𝑖)𝑦𝑖𝑠 (1 − _(𝑠 |X𝑖)1−𝑦𝑖𝑠 .

Consequently, the log-likelihood for the whole sample is proportional to

𝑙 =
𝑛∑︁
𝑖=1

𝑡𝑖∑︁
𝑠=1

𝑦𝑖𝑠log_(𝑠 |X𝑖) + (1 − 𝑦𝑖𝑠)log(1 − _(𝑠 |X𝑖)). (2)

which is the log-likelihood of binary observations (𝑦11, . . . , 𝑦1,𝑡1 , 𝑦21, . . . , 𝑦𝑛,𝑡𝑛 ) from the model
𝑃(𝑦𝑖 𝑗 = 1/X𝑖) = 𝐹 (X>

𝑖 β).
Variable selection can then be obtained by penalizing the log-likelihood. The most famous

implementation of this is the lasso where a penalty of the form 𝜗
∑𝑝
𝑗=1 |𝛽 𝑗 | is added to equation

(2) (Tibshirani, 1996). The penalty term enforces variable selection. The strength of the selection
is determined by the magnitude of 𝜗. When 𝜗 = 0 all the variables are permitted into the model
whereas as 𝜗 → ∞, all the coefficients are shrunk to zero.

Estimation of parameters in the discrete survival model is complicated by the presence of the
baseline hazard parameters in γ0𝑡 . Estimates of these tend to be very unstable even for small sample
sizes. This necessitates the addition of a second penalty term of the form𝐾 (𝛾0𝑡 ) to the log-likelihood.
The penalized approximate log-likelihood used has the form

𝑙 =
𝑛∑︁
𝑖=1

𝑡𝑖∑︁
𝑠=1

𝑦𝑖𝑠log_(𝑠 | X𝑖) + (1 − 𝑦𝑖𝑠)log(1 − _(𝑠 |X𝑖)) − 𝜗
𝑝∑︁
𝑗=1

|𝛽 𝑗 | − 𝜗𝑏𝐾 (𝛾0𝑡 ). (3)

The additional tuning parameter helps to stabilize estimates of the baseline hazard parameters. A
ridge-type penalty of the form

𝐾 (𝛾0𝑡 ) =
𝑞∑︁
𝑡=1

𝛾2
0𝑡

is used if the baseline is expressed as a sum of dummy variables representing time periods at which
observations are made. Alternatively if the baseline hazard is expressed as a sum of basis functions
(Efron, 1988; Fahrmeir, 1994; Möst et al., 2016), a difference penalty can be used. The latter
approach is considered in this study.
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To obtain a smooth baseline hazard use was made of a B-spline basis of order three and a second
order difference penalty of the form

𝐾𝛼 =
𝑞∑︁

𝑗=𝛼+1
(Δ𝛼𝛾0 𝑗 )2.

Here Δ is the difference operator on adjacent B-spline coefficients, i.e. Δ𝛾𝑜 𝑗 = 𝛾0 𝑗 − 𝛾0, 𝑗−1,Δ2𝛾0 𝑗 =
Δ(𝛾0 𝑗 − 𝛾0, 𝑗−1) = 𝛾0 𝑗 − 2𝛾0, 𝑗−1 + 𝛾0, 𝑗+2.

The tuning parameters 𝜗𝑏 and 𝜗 can be determined using information criteria such as AIC
and BIC. Alternatively cross-validation can be used. Through simulations, Groll and Tutz (2017)
however established that it is not necessary to select both parameters using either cross-validation or
information criteria. They recommend an approach where 𝜗 is carefully selected using information
criteria or cross-validation and a moderate value is used for 𝜗𝑏 . In line with Groll and Tutz (2017)
wherein small values of 𝜗𝑏 are recommended, 𝜗𝑏 was set at 15. The results do not differ substantially
when 𝜗𝑏 is set at 10 or 20. The BIC was used as criterion for selecting 𝜗. The process involved
creating a vector of possible values of 𝜗, fitting a model using each value and noting the value that
gives the minimum value of the BIC. To enhance fast convergence at each value of 𝜗, the parameter
estimates of the previous fit were used as starting values for the next fit. With this approach it is
essential to make sure that the 𝜗 sequence starts at a value big enough such that all covariates are
shrunk to zero.

Estimation of the model (3) can be done using appropriate binary logistic regression software
after constructing an appropriate design matrix depending on the formulation of the baseline hazard.
Details can be found in Tutz and Schmid (2016).

There are many R functions that can be used for penalized likelihood variable selection in discrete
survival models. Prominent choices are glmnet (Friedman et al., 2010), grplasso (Meier et al., 2008),
grpreg (Breheny and Jian, 2015), penalized (Goeman, 2010) and glmmLasso (Groll and Tutz, 2017).
The first three of these functions do not have capability for separate penalization of the baseline hazard
parameters. The first and the fourth have been shown to have weaker performance as compared to
glmmLasso (Groll and Tutz, 2017). The glmmLasso function was therefore selected for this study.
The glmmLasso algorithm is a gradient ascent algorithm which incorporates variable selection by
L1-penalized estimation. In a final re-estimation step a model that includes only the variables
corresponding to the non-zero fixed effects is fitted by simple Fisher scoring. In its implementation
the glmmLasso function permits for the inclusion of a second penalty to stabilize the baseline hazard
estimates. The glmmLasso function was primarily designed for variable selection in discrete survival
models including unobserved heterogeneity but was also shown to exhibit superior performance in
models without unobserved heterogeneity (Groll and Tutz, 2017).

2.3 Boosting
Gradient boosting is an example of an ensemble learning method wherein many models (weak
learners) are combined together to create a more powerful model (strong learner) which gives better
predictions. The models are fitted in series with the aim of reducing errors sequentially, i.e. each
sequential model tries to reduce the errors (residuals) that are observed after the fitting of the previous
model. Here again we assume we have a data set containing the values of an outcome variable 𝑦,
a vector of values of predictor variables x = (𝑥1, 𝑥2, . . . , 𝑥𝑝), and a loss function 𝜚(𝑦, ℎ(x)) that
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gives the magnitude of the deviation between the outcome variable and a prediction function ℎ(𝑥).
In gradient boosting the aim is to estimate the optimal prediction function ℎ∗ which minimizes the
expected loss

ℎ∗ = argminℎ𝐸𝑌 ,X [𝜚(𝑦, ℎ(x))] .
In practice, the theoretical mean 𝐸𝑌 ,X [𝜚(𝑦, ℎ(x))] is unknown. Instead one only has the data set
(𝑦𝑖 ,x𝑖 , 𝑖 = 1, . . . , 𝑛). For this reason, the optimal prediction function is obtained by minimising the
empirical risk

ℜ =
1
𝑛

𝑛∑︁
𝑖=1

𝜚(𝑦𝑖 , ℎ(x𝑖)).

If the response variable is not normally distributed, 𝜚 is usually defined as the negative probability
density function of the response distribution. In that case, if the distribution of the response belongs to
the exponential family of distributions, the empirical risk is equivalent to the negative log-likelihood
function of the generalized linear model:

ℜ = −1
𝑛

𝑛∑︁
𝑖=1

𝜙(𝑦𝑖 , ℎ(x𝑖)),

where 𝜙 represents the probability density function of 𝑦. A convenient choice for ℜ for discrete
survival models is the negative of (2).

We begin with an 𝑛-dimensional vector of starting values (representing the starting values for the
predicted values of the 𝑛 observations in the data) and update this vector sequentially as set out in
the steps below.

1. Initialize the 𝑛-dimensional vector ĥ0 = ( ℎ̂ [0]1 , . . . , ℎ̂ [0]𝑛 )> with starting values.

2. Specify a set of base learners 𝑔1 (𝑥1), . . . , 𝑔𝑝 (𝑥𝑝). Set the iteration counter 𝑚 to 0.

3. Increase 𝑚 to 𝑚 + 1.

4. Obtain values of the negative gradient − 𝜕ℜ𝜕ℎ at
(
𝑦𝑖 , ℎ̂

[𝑚−1]
𝑖

)
, 𝑖 = 1, . . . , 𝑛 to obtain the negative

gradient vector

W [𝑚] =
(
𝑊 [𝑚]
𝑖

)
𝑖=1,...,𝑛

=

(
−𝜕ℜ
𝜕ℎ

)
𝑖=1,...,𝑛

.

5. Fit the negative gradient vector W [𝑚] seperately to every base learner:

W [𝑚] base learner−−−−−−−−→ �̂� [𝑚]
𝑗 (𝑥𝑙), 𝑙 = 1, . . . , 𝑝.

6. Select the component 𝑙∗ that best fits the negative gradient vector

𝑙∗ = argmin
1≤ 𝑗≤𝑝

𝑛∑︁
𝑖=1

(
𝑤 [𝑚]
𝑖 − �̂� [𝑚]

𝑗

)2
.
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7. Update the predictor ℎ̂ with this component

ℎ̂ [𝑚] (·) = ℎ̂ [𝑚−1] (·) + 𝜔.�̂� [𝑚]
𝑙∗ (𝑥𝑙∗ ),

where 𝜔 is a small step length.

8. Iterate steps (2) to (7) until 𝑚 = 𝑚𝑠𝑡𝑜𝑝 .

The most basic base learner is the simple linear regression model, but any classical linear least
squares regression model can be used as a base learner. Smoothing splines can also be used in cases
where the predictor variables have a non-linear effect on the response (Friedman, 2001). In every
boosting iteration the best performing component of X is included in the final model since only
the best-performing base-learner is added to the model. This leads to data-driven variable selection
during the model estimation.

The main tuning parameter of boosting algorithms is the stopping iteration 𝑚𝑠𝑡𝑜𝑝 . Early stopping
prevents overfitting and improves prediction accuracy. The shrinkage of estimates and variable
selection is controlled by 𝑚𝑠𝑡𝑜𝑝 . The selection of 𝑚𝑠𝑡𝑜𝑝 therefore provides the trade-off between
bias and variance. Large values lead to complex models with high variance and low bias, whereas
small values lead to more shrinkage and reduced variance (Mayr et al., 2012). In the current work,
the value of 𝑚𝑠𝑡𝑜𝑝 was selected using 25-fold cross-validation.

In R software the boosting algorithm can be implemented via the gamboost function from the
mboost package (Hothorn et al., 2018). The package also has functionality for stabilizing baseline
hazard parameter estimates.

3. Simulation study
3.1 The data generating mechanism
We follow the data generating scheme in (Groll and Tutz, 2017). The underlying process is given by
κ𝑖𝑡 = γ0𝒕 +X>

𝑖 β as described before. The baseline hazard is given by

γ0𝒕 = 2ℎΓ (𝑡 − 2) − 2.3,

where ℎΓ (𝑡) is the density of the gamma distribution. The shape and scale parameters were chosen
to be 5 and 1, respectively. The covariate effects were given by 𝛽1 = 5, 𝛽2 = 6, 𝛽3 = −3.5, 𝛽4 =
−3.5, 𝛽5 = −4 and 𝛽 𝑗 = 0 for 𝑗 = 6, . . . , 𝑝. We set the number of variables, 𝑝 at 𝑝 = 20, 50, 100. The
sample size 𝑛 was set at 100. We considered a case where the covariates were categorical (binary)
and a case where they were continuous. For the categorical case, binary data was generated with the
proportions of zeros (reference level) and ones being roughly equal. For the continuous case, samples
for each random variable were drawn from the uniform distribution within the [0, 1] interval. The
censoring probability 𝜋 was set at 0.05. For each subject 𝑖 = 1, . . . , 100, the following simulation
scheme was used. For each time point 𝑡 = 1, . . . , 𝑞,

1. Generate the Bernoulli response variable 𝑦𝑖𝑡 with success probability _(𝑡 | x𝑖);
2. (a) If 𝑦𝑖𝑡 = 1, stop and set the event time as 𝑇𝑖 = 𝑡;

(b) else generate a censoring variable 𝑆 from the Bernoulli distribution with success probability
𝜋. If 𝑆 = 1, stop and set 𝑇𝑖 = 𝑡, else set 𝑇𝑖 = 𝑡 + 1.
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Table 1. Results for MSEβ and MSEγ for glmmLasso and gradient
boosting (standard errors in brackets) with categorical covariates.

MSEβ MSEγ

𝑝 glmmLasso boosting glmmLasso boosting
20 10.49(22.97) 44.02(4.89) 14.54(21.38) 46.71(6.26)
50 14.47(22.56) 51.24(6.18) 22.91(35.06) 51.86(3.98)
100 13.58(9.73) 56.33(6.26) 37.04(35.13) 53.32(3.59)

Table 2. False negatives (F.N.) and false positives (F.P.) for
glmmLasso and gradient boosting using categorical covari-
ates.

F.N. F.P.
𝑝 glmmLasso boosting glmmLasso boosting
20 0.00 0.00 0.33 10.38
50 0.04 0.00 0.66 20.08
100 0.10 0.00 2.8 26.71

3.2 Performance evaluation measures
We use the squared errors for the parameter vector β and the baseline hazard γ0 =

(
𝛾0𝑡 , . . . , 𝛾0𝑞

)
to

compare the performance of the two methods. The corresponding squared errors, given by

MSEβ =
𝑝∑︁
𝑖=1

(𝛽𝑖 − 𝛽𝑖)2

and

MSEγ =
𝑞∑︁
𝑡=1

(𝛾0 𝑗 − �̂�0 𝑗 )2,

are averaged over 100 simulations. False positive rates (FPR) and False Negative Rates (FNR) are
also considered for each run. A false positive is a case where a parameter that is truly zero is estimated
as non-zero. Conversely, a false negative refers to a non-zero parameter being estimated as zero. The
false positive and false negative rates for each simulation run were also averaged over 100 simulation
runs. The results are given in Tables 1 to 4.

It is clear from the tables that glmmLasso recovers both the covariate parameters and the baseline
hazard function better than gradient boosting. It is also evident that gradient boosting gives more
false positives as compared to glmmLasso. The results are similar between models with continuous
covariates and those with discrete ones.
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Table 3. Results for MSEβ and MSEγ for glmmLasso and gradient
boosting (standard errors in brackets) with continuous covariates.

MSEβ MSEγ

𝑝 glmmLasso boosting glmmLasso boosting
20 6.38(7.06) 43.02(29.86) 18.04(27.98) 379.53(107.70)
50 13.45(21.27) 33.75(28.04) 30.99(57.45) 416.33(63.60)
100 13.45(21.27) 37.93(37.75) 30.99(57.45) 430.96(49.57)

Table 4. False negatives (F.N.) and false positives (F.P.) for
glmmLasso and gradient boosting using continuous covari-
ates.

F.N. F.P.
𝑝 glmmLasso boosting glmmLasso boosting
20 0.03 0 0.32 9.53
50 0.11 0 0.84 18.83
100 0.11 0.01 0.84 27.28

Figure 1 gives box plots which reveal the distribution of the parameter estimates obtained over 100
simulations from the glmmLasso and gradient boosting. From the figure, we can see that the gradient
boosting parameter estimates have smaller magnitude compared to the glmmLasso estimates. In the
next section we apply the two methods to a real life data set which was collected with the aim of
establishing the factors that determine the timing of first alcohol intake among students at tertiary
institutions.

4. Application
4.1 The data
The data were collected from students from two tertiary institutions in Thohoyandou, South Africa
in 2017. One is a university and the other is a vocational training college (VCT). A total of 745
students completed a self-administered questionnaire. The questionnaire sought information on
the demographic and socio-economic characteristics of respondents as reflected in Table 5. The
questions corresponding to items 7 to 17 in the table sought to determine if the respondent had ever
experienced the stated event between the ages from 1 to 15 years. The response variable was the age
at first alcohol intake. Respondents who had never consumed alcohol were censored at their age as
of the time of the survey.

Table 5 shows that the sample was evenly balanced in terms of gender and childhood place of
residence, but dominated by students from the university. The majority of the respondents had never
been married. Judging from the low family incomes, large numbers of siblings, and a fairly large
proportion of parents with no education, we can conclude that the socio-economic status of the
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Figure 1. Box plots of estimates of selected
parameters for the model with binary covariates,
𝑛 = 100, 𝑝 = 50.

Figure 2. Empirical baseline hazard function.

majority of respondents cannot be classified as high. The most common experiences between the
ages of one and 15 years were having drinking peers (43%), having a confiding relationship with one
adult (43%), stress (89%) having parents who abused alcohol/other drugs (47%) and being subjected
to parental discipline (59%). The use of other drugs/cigarettes was not very common (about 15%).

Figure 2 gives the raw life table baseline hazard estimate. We can see that the hazard of alcohol
consumption initiation peaks around the age of 18 years. There is a suggestion of a secondary peak
around the age of 28 years, probably due to those postgraduate respondents who started consuming
alcohol after completing the first degree and obtaining the first job around the age of 25 years.

4.2 Variable selection results
From Table 6, we can see that the six variables selected by the glmmLasso functions were also
selected by gamboost, albeit with much attenuated parameter estimates. Besides the six, gamboost
also selects other variables. Most of the corresponding parameter estimates are however very small,
indicating that these variables are not very influential in the model. The results are in agreement
with those obtained in the simulation. Figure 3 shows that the optimal value of 𝑚 for the boosting
algorithm was 𝑚𝑠𝑡𝑜𝑝 = 1289.

4.3 Model Evaluation
Discrete survival models can be evaluated using goodness-of-fit measures and/or measures of predic-
tive accuracy. The former methods provide information on how well the fitted values agree with the
corresponding observed proportions while the latter are used to assess how well the model performs
in predicting survival of future observations. The R-package discSurv (Welchowski and Schmid,
2019) was used to estimate the model evaluation measures considered in this work.

Adjusted deviance residuals (Tutz and Schmid, 2016) were used for evaluating goodness-of-fit. For
a well-fitting model, the adjusted deviance residuals should be approximately normally distributed.
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Table 5. Independent Variables considered for the analysis of time to
first alcohol intake.

Item Variable name Category Frequency(%)

1 Gender Male 396(53.15)
Female 349(46.85)

2 Ethnicity Black 729(97.90)
Other race 16(2.09)

3 Family monthly Income (rand) < 1000 134(17.99)
1000 − 4000 405(54.36)
> 4000 206(27.65)

4 Siblings 0 − 3 348(46.71)
4 − 6 354(47.52)
≥ 7 43(5.77)

5 Parent’s qualification None 314(42.15)
Matric 154(20.67)
Above matric 277(37.18)

6 Childhood residence Rural/farmland 404(54.23)
Urban 341(45.77)

7 Other drugs Yes 108(14.50)
No 637(85.50)

8 Drinking Peers Yes 318(42.68)
No 427(57.32)

9 Physical abuse Yes 60 (8.05)
No 685(91.95)

10 Sexual Abuse Yes 12(1.61)
No 733(98.39)

11 Negative life events Yes 217(29.13)
No 528(70.87)

12 Stress Yes 663(88.99)
No 82(11.00)

13 Parental drug/alcohol abuse Yes 344(46.17)
No 401(53.83)

14 Subjected to parental discipline? Yes 441(59.19)
No 304(40.81)

15 Family dependent on social welfare? Yes 480(64.43)
No 265(35.57)

16 Dysfunctional family Yes 254(34.09)
No 491(65.91)

17 Relation with adult Yes 423(56.78)
No 322(43.22)

A COMPARISON OF LASSO AND GRADIENT BOOSTING 39



Table 6. Parameter estimates obtained using glmmLasso and gamboost.

Item Variable name Category glmmLasso gamboost

1 Gender Female 0.00 0.00
Male 0.38 0.12

2 Ethnicity Black 0.00 0.00
Other Race - -

3 Family monthly Income (rand) < 1000 0.00 0.00
1000 − 4000 - -0.14
> 4000 - 0.00

4 Siblings 0 − 3 0.00 0.00
4 − 6 - -0.01
≥ 7 - 0.07

5 Parent’s qualification None 0.00 0.00
Matric - 0.01
Above matric - -0.16

6 Childhood residence Rural/farmland 0.00 0.00
Urban - 0.04

7 Other drugs No 0.00 0.00
Yes 0.67 0.34

8 Drinking Peers No 0.00 0.00
0.34 0.13

9 Physical abuse No 0.00 0.00
Yes 0.56 0.20

10 Sexual Abuse No 0.00 0.00
Yes - 0.10

11 Negative life events No 0.00 0.00
Yes - 0.08

12 Stress No 0.00
Yes -0.15

13 Parental drug/alcohol abuse No 0.00 0.00
Yes 0.35 0.12

14 Subjected to parental discipline? No 0.00 0.00
Yes - -0.13

15 Family dependent on social welfare? No 0.00 0.00
No - -

16 Dysfunctional family No 0.00 0.00
No - -

17 Relation with adult No 0.00 0.00
Yes - -0.07
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Number of boosting iterations
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Figure 3. Cross-validated predictive risk with 25-fold bootstrapping.
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Figure 4. QQ-plots of the deviance residuals for glmmLasso (left panel) and gamboost (right panel).
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Figure 5. Hazards of alcohol intake initiation estimated using glmmLasso.
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Figure 4 gives a quantile-quantile plot of the adjusted deviance residuals for the three models
considered here. The plots are largely straight lines though there is suggestion of deviations from
normality.

Predictive performance of the models was evaluated through the use of the C-index (Schmid et al.,
2018). The C index should exceed 0.5 if ^ predicts better than chance. The C indices for glmmLasso
and gamboost are 0.75 and 0.63, respectively, showing fairly high discriminating power for both
models.

Figure 5 shows the estimated hazards of alcohol initiation stratified by each of the six variables
selected using the glmmLasso algorithms. The graphs in the figure were obtained using glmmLasso
which exhibited the highest discriminating power. As expected from Table 6 the most influential
variable is the use of other drugs.

5. Conclusion
A simulation study has been conducted to compare the accuracy of lasso as implemented in glmm-
Lasso and gradient boosting in recovering the baseline hazard and covariate parameters in discrete
survival models. Categorical (binary) and continuous covariates were considered. The results show
that lasso gives smaller MSE’s for both the baseline hazard and covariate estimates. Gradient boost-
ing underestimates the parameter sizes and also gives a high false positive rate. Similar results are
obtained when the two methods are applied to a real-life data set.
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