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In the present paper, we define and study one of the most popular indices which measures
the inequality of capital incomes, known as the Gini index. We construct a semiparametric
estimator for the Gini index in case of heavy-tailed income distributions and we establish its
asymptotic distribution and derive bounds of confidence. We explore the performance of the
confidence bounds in a simulation study and draw conclusions about capital incomes in some
income distributions.
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1. Introduction and Motivation
The last decade has seen considerable use and development of statistical theory for inferring the
dominance of one distribution (of income, wealth, wages, etc.) over another. The results thus provide
the statistical framework within which to assess the progressivity of taxes and benefits, and the
changes in inequality of income, or in the ranking of individuals with respect to income, which they
may cause. The results can also be applied to the impact of a tax and benefit system (or of other
socio-economic phenomena) on poverty indices when such poverty indices depend on estimated
population quantiles. They furthermore encompass as special cases most of the previous statistical
inference results for the measurement of inequality and social welfare.

There are many ways of measuring inequality, all of which have some intuitive or mathematical
appeal (Cowell, 1985). However, many apparently sensible measures behave in perverse fashions.
Numerous indices exist for measuring the degree of inequality in the distribution of income and wealth.
They range from simple measures like the share of aggregate earnings received by each quintile to
more complex measures such as the Gini, Theil (1967), Atkinson and generalized entropy indices
(see Atkinson, 1970). All have different mathematical constructions, which can lead to different
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Figure 1. Egalitarian line 𝑦 = 𝑢, Lorenz curve 𝑦 = 𝐿 (𝑢), and Gini index.

assessments concerning the degree of inequality. In our study, the main measure of inequality used
as a proxy to show the distribution of income is the Gini coefficient.

The Gini index is the most popular and important inequality measure. This index has a long
history, dating back to Gini (1914), if not earlier. In particular, the Gini index has been widely used
by economists and sociologists to measure economic inequality. Measures inspired by the index
have been employed to assess the equality of opportunity and estimate income mobility. Naturally,
numerous modifications and extensions of the classical Gini index have been proposed during the
past 100 years, depending on one’s needs and/or point of view.

The Gini index is based on the area between the egalitarian line and the Lorenz curve. This
quantity is multiplied by 2, in order to have a range of values in the interval [0, 1]. The Gini index
was developed by the Italian statistician, demographer and sociologist Corrado Gini (Gini, 1914).

Note that the Lorenz curve can be considered to be a cumulative distribution function on [0, 1]
(Lorenz, 1905; Gastwirth, 1972; Kovacevic and Binder, 1997; Cowell, 1977; Langel and Tillé, 2013).
We can exploit this fact and employ the moments of the Lorenz curve to develop new measures of
inequality.

The Gini index has several possible interpretations and alternative ways in which it can be expressed.
Perhaps the most popular description of this measure is one related to the area between the population
Lorenz curve and the egalitarian line.

Figure 1 represents the egalitarian line 𝑦 = 𝑢, the Lorenz curve 𝑦 = 𝐿 (𝑢), and the Gini index for
a hypothetical distribution. Consequently, if the Gini index is 𝐺 = 0 we have perfect equality (all
incomes identical) and 𝐺 = 1 corresponds to perfect inequality.

The existing literature has intensively studied various estimators of 𝐺 and the associate inference
theory. We cite here (Davidson, 2009; Qin et al., 2010; Yitzhaki, 1983; Kpanzou et al., 2013, 2017).
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More specifically, let 𝑋 ≥ 0 denote the income variable with distribution function 𝐹 (𝑥), and the
corresponding quantile function Q (𝑡) for 0 < 𝑡 < 1, with Lorenz curve 𝐿𝑋 . A formula for its Gini
index, 𝐺 (𝑋) or simply 𝐺 if the random variable is known from the context, is

𝐺 = 2
∫ 1

0
[𝑢 − 𝐿𝑋 (𝑢)] 𝑑𝑢 = 1 − 2

∫ 1

0
𝐿𝑋 (𝑢)𝑑𝑢, (1)

where 𝑢 = 𝐹 (𝑥) is a cumulative distribution function (CDF) of a non-negative income with positive
expectation 𝜇 = 𝐸 (𝑋) and 𝐿𝑋 (𝑝) is Lorenz function defined by

𝐿𝑋 (𝑝) :=
1
𝜇

∫ 𝑝

0
Q (𝑡) 𝑑𝑡. (2)

Using (1) and (2), it follows that we can also rewrite the Gini index as

𝐺 = 1 − 2
𝜇

∫ 1

0

∫ 𝑝

0
Q (𝑡) 𝑑𝑡𝑑𝑝.

Inequality measures are often underestimated using sample data. It has been noted that the sample
Lorenz curve often exhibits less inequality than does the population Lorenz curve. This fact suggests
that the sample curve is a positively biased estimate of the population curve. If we have a sample
𝑋1, 𝑋2, ..., 𝑋𝑛 of size 𝑛 from a distribution 𝐹𝑋 (𝑥), recall that the corresponding sample Lorenz curve
is defined to be a linear interpolation of the points (0, 0) and ( 𝑗/𝑛,∑ 𝑗

𝑖=1 𝑋𝑖/
∑𝑛
𝑖=1 𝑋𝑖), 𝑗 = 1, 2, ..., 𝑛.

As usual, denote the sample Lorenz curve by 𝐿𝑛 (𝑢).
Replacing the population quantile function Q(𝑠) by its empirical counterpart Q𝑛 (𝑠), which is

equal to the 𝑖th order statistic 𝑋𝑖,𝑛 for all 𝑠 ∈ ((𝑖 − 1)/𝑛, 𝑖/𝑛], and for all 𝑖 = 1, . . . , 𝑛, where
𝑋1,𝑛 ≤ 𝑋2,𝑛 ≤ .... ≤ 𝑋𝑛,𝑛 are the order statistics based on the sample 𝑋1, 𝑋2, ..., 𝑋𝑛. Also, the
empirical estimator of the mean is 𝜇𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 . We arrive at the ‘traditional’ Gini estimator

𝐺̂𝑛 =
2

𝑛2𝜇𝑛

𝑛∑︁
𝑖=1

(
𝑖 − 1

2

)
𝑋𝑖,𝑛 − 1. (3)

Of course, the empirical Gini index 𝐺̂𝑛 can be rewritten in many other ways, such as the ratio of two
L-statistics or the ratio of two U-statistics, which are perhaps more familiar to the reader, but formula
(3) is best suited in the context of the present discussion.

The asymptotic theory for the empirical Gini index has been known at least since Hoeffding’s paper
(Hoeffding, 1948) on U-statistics. Indeed, the Gini index has been one of the most popular examples
for illustrating the classes of L- and U-statistics. For this reason, Beach and Davidson (1983) have
developed an asymptotic theory for the traditional Gini estimator, assuming that the underlying i.i.d.
random variables 𝑋1, 𝑋2, ..., 𝑋𝑛 have finite (2 + 𝜖)th moments for some 𝜖 > 0 as small as desired.

The latter moment assumption plays a crucial role. To illustrate the performance of 𝐺𝑛, we draw
samples from the Pareto distribution

1 − 𝐹 (𝑥) = 𝑥−1/𝛾 , 𝑥 > 1,

for some 𝛾 > 0, which is called the tail index. When 𝛾 > 1, then 𝐺 is not defined. When 𝛾 < 0.5,
then 𝐸 [𝑋2+𝜖 ] < ∞ for some 𝜖 > 0, and so we can use the available estimator of 𝐺.
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Therefore, from now on we restrict ourselves to only those 𝛾 that are in the interval (0.5, 1).
The present research has been motivated by the need for a better understanding of the distribution

and inequality of capital incomes, which in many cases appear to be heavy-tailed. Since there are
many individuals with no capital income, we restrict our attention to only those with positive capital
incomes.

In mathematical terms, a heavy-tailed income distribution of a random variable 𝑋 is regularly
varying at infinity with index (−1/𝛾) < 0 if

1 − 𝐹 (𝑥) = 𝑥−1/𝛾L(𝑥), for every 𝑥 > 0, (4)

for some 𝛾 > 0 and a slowly varying function L : (0,∞) → (0,∞), i.e., L (𝜆𝑥) /L(𝑥) →1 as
𝑥 → ∞, for all 𝜆 > 0. The parameter 𝛾 is referred to as the tail index of 𝐹. Its estimation is of
fundamental importance to the applications of extreme value theory (see for example the monographs
by Hill, 1975; Beirlant and Teugels, 1989; Matthys and Beirlant, 2003; Beirlant et al., 2004; de Haan
and Ferreira, 2006; and the references therein). This class includes a number of popular income
distributions such as the Pareto, generalized Pareto, Burr, Fréchet and Student t, which are known to
be appropriate models for fitting large incomes. In the remainder of this paper, we restrict ourselves
to this class of distributions. Moreover, we focus our paper on the case 𝛾 ∈ (1/2, 1) to ensure that
the Gini index is finite, and in that case the results of Beach and Davidson (1983) cannot be applied,
the second moment of 𝑋 being infinite.

The rest of this paper is organized as follows. In Section 2, we construct an alternative estimator of
the Gini index and we construct confidence bounds using this estimator. In Section 3 we illustrate the
performance of the new estimator and compare it with the empirical estimator for some heavy-tailed
models. The proof of the main results are postponed to Section 4.

2. Main results
The idea behind the new estimator of 𝐺 is to estimate the quantile function Q in the definition of
the Gini index by the empirical quantile function for 𝑠 < 1 − 𝑘/𝑛, and by an extrapolated quantile
function from the heavy-tail assumption for 𝑠 ≥ 1 − 𝑘/𝑛. We next define an alternative estimator for
the mean of a heavy-tailed distribution. Indeed, recall that, the mean 𝜇 can be rewritten as

𝜇 =
∫ 1

0
Q(𝑠)𝑑𝑠 =

∫ 1−𝑘/𝑛

0
Q(𝑠)𝑑𝑠 +

∫ 𝑘/𝑛

0
Q(1 − 𝑠)𝑑𝑠 = 𝜇1 + 𝜇2.

We formulate the mean estimator for a heavy-tailed income distribution satisfying (4) as follows:

𝜇̂𝑛,𝑘 =
∫ 1−𝑘/𝑛

0
Q𝑛 (𝑠)𝑑𝑠 +

(
𝑘

𝑛

)
𝑋𝑛−𝑘 ,𝑛

1 − 𝛾̂𝐻𝑛,𝑘
,

where 𝛾̂𝐻𝑛,𝑘 is the Hill estimator of the tail index 𝛾 (Hill, 1975):

𝛾̂𝐻𝑛,𝑘 =
1
𝑘

𝑘∑︁
𝑖=1

𝑖
(
log 𝑋𝑛−𝑖+1,𝑛 − log 𝑋𝑛−𝑖,𝑛

)
.

Note that to estimate 𝜇2 we use a Weissman-type estimator for Q, (Weissman, 1978):

Q̂ (1 − 𝑠) := 𝑋𝑛−𝑘,𝑛 (𝑘/𝑛)𝛾
𝐻
𝑛,𝑘 𝑠−𝛾

𝐻
𝑛,𝑘 , 𝑠 → 0.
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The Hill estimator has been extensively studied in the literature for an intermediate sequence 𝑘 , i.e.
a sequence such that 𝑘 → ∞ and 𝑘/𝑛→ 0 as 𝑛→ ∞.

Finally, we obtain a semi-parametric estimator of the Gini index for a heavy-tailed income distri-
bution:

𝐺̂𝑛,𝑘 = 1 − 2
𝜇̂𝑛,𝑘

∫ 1

0

∫ 𝑡

0
Q𝑛 (𝑠)𝑑𝑠𝑑𝑡.

Asymptotic normality for 𝐺̂𝑛,𝑘 is obviously related to that of 𝛾̂𝐻𝑛,𝑘 . As usual in the extreme value
framework, to prove such a type of result, we need a second-order condition on the tail quantile
function U, defined as

U(𝑧) = inf {𝑦 : 𝐹 (𝑦) ≥ 1 − 1/𝑧} , 𝑧 > 1.

We say that the function U satisfies the second-order regular variation condition with second-order
parameter 𝜌 ≤ 0 if there exists a function 𝐴(𝑡) which does not change its sign in a neighborhood of
infinity, and is such that, for every 𝑥 > 0,

lim
𝑡→∞

logU(𝑡𝑥) − logU(𝑡) − 𝛾 log(𝑥)
𝐴(𝑡) =

𝑥𝜌 − 1
𝜌

. (5)

When 𝜌 = 0, the ratio on the right-hand side of (5) should be interpreted as log(𝑥). As an example
of heavy-tailed income distributions satisfying the second-order condition, we have the so-called and
frequently used Hall’s model (see Hall, 1982; Hall and Welsh, 1985), which is a class of cdfs such
that

U (𝑡) = 𝑐𝑡𝛾 (1 + 𝑑𝐴(𝑡)/𝜌 + 𝑜 (𝑡𝜌)) as 𝑡 → ∞,
where 𝛾 > 0, 𝜌 ≤ 0, 𝑐 > 0, and 𝑑 ∈ R∗. For statistical inference concerning the second-order
parameter 𝜌 we refer, for example, to de Haan and Stadtmüller (1996), Peng and Qi (2004), Gomes
et al. (2005), and Gomes and Pestana (2007).

First, the family includes many of the most popular distributions used in the analysis of income, see
for example Arnold and Sarabia (2018), wealth and risk analysis, as special or limiting cases. This
subclass of heavy-tailed distributions contains the Pareto, Burr, Fréchet, and Student t distributions.
This family has several advantages for practical use.

Theorem 1. Assume that the cdf 𝐹 satisfies condition (5) with 𝛾 ∈ (1/2, 1). Then for any sequence
of integers 𝑘 = 𝑘𝑛 → ∞ such that 𝑘/𝑛 → 0 and 𝑘1/2𝐴(𝑛/𝑘) → 0 when 𝑛 → ∞, on a suitable
probability space, and with Brownian bridges B𝑛 (𝑠) appropriately constructed, we have that

√
𝑛(𝐺̂𝑛,𝑘 − 𝐺)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

= −
∫ 1−𝑘/𝑛

0

𝑣(𝑠)B𝑛 (𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑Q(𝑠)

+ 𝛾
2𝑣(1 − 𝑘/𝑛)
(1 − 𝛾)2

√︂
𝑛

𝑘
B𝑛

(
1 − 𝑘

𝑛

)
− 𝛾𝑣(1 − 𝑘/𝑛)

(1 − 𝛾)2

√︂
𝑛

𝑘

∫ 1

1−𝑘/𝑛

B𝑛 (𝑠)
1 − 𝑠 𝑑𝑠 + 𝑜𝑝 (1) (6)

as 𝑛→ ∞, where
𝑣(𝑠) = 2

𝜇2

∫ 𝑠

0

∫ 𝑡

0
Q(𝑠)𝑑𝑠.

The proof of Theorem 1 is complex and deferred to Section 4. From the statistical inference point
of view, the following corollary is our main result.
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Corollary 1. Under the conditions of Theorem 1, we have
√
𝑛(𝐺̂𝑛,𝑘 − 𝐺)

𝜎 (𝛾)
√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

L−→ N (0, 1) ,

as 𝑛 −→ ∞, where
𝜎2 (𝛾) = 𝑣2 (1)𝛾4

(1 − 𝛾)4 (2𝛾 − 1) .

3. Simulation study
To discuss practical implementation of Theorem 1, we first fix a significance level 𝛼 ∈ (0, 1) and
use the classical notation 𝑧𝛼/2 for the (1 − 𝛼/2)-level quantile of the standard normal distribution
N(0, 1). Given a realization of the random variables 𝑋1, . . . , 𝑋𝑛 (e.g. claim amounts), which follow
a cdf 𝐹 satisfying the conditions of Theorem 1, we construct a (1 − 𝛼)-level confidence interval for
G as follows. First, we need to choose an appropriate number 𝑘 of extreme values. Since Hill’s
estimator has in general a substantial variance for small 𝑘 and a considerable bias for large 𝑘 , we
search for a 𝑘 that balances between the two shortcomings, which is indeed a well-known hurdle
when estimating the tail index.

To resolve this issue, several procedures have been suggested in the literature, and we refer to, e.g.,
Dekkers and de Haan (1993), Drees and Kaufmann (1998), Danielsson et al. (2001), Cheng and Peng
(2001), Neves and Fraga Alves (2004), Gomes et al. (2009), and the references therein.

In our current study we employ the method of Cheng-Peng for deciding on an appropriate value 𝑘∗

of 𝑘 . We note that, the optimal value of 𝑘 that minimizes the absolute value of the leading coverage
error term of Hill estimator, this fraction 𝑘 depends on the sign of second-order regular variation,
for more detail, see Cheng and Peng (2001). Having computed Hill’s estimator and consequently
determined 𝑋𝑛−𝑘∗:𝑛, we then compute the corresponding values of 𝐺̂𝑛,𝑘 and 𝜎2 (𝛾̂𝑛), and denote
them by 𝐺̂𝑛,𝑘∗ and 𝜎2∗ (𝛾̂𝑛), respectively. Finally, using Theorem 1 we arrive at the following
(1 − 𝛼)-confidence interval for 𝐺:

𝐺̂𝑛,𝑘∗ ± 𝑧𝛼/2
(𝑘∗/𝑛)1/2 𝑋𝑛−𝑘∗:𝑛𝜎∗ (𝛾̂𝑛)√

𝑛
.

To illustrate the performance of this confidence interval, we carried out a small scale simulation study
based on the Pareto cdf 𝐹 (𝑥) = 1 − 𝑥−1/𝛾 , 𝑥 ≥ 1, and the Fréchet cdf 𝐹 (𝑥) = exp(−𝑥−1/𝛾), 𝑥 ≥ 0
with the tail index 𝛾 set to 2/3 and 3/4, in which case we have fewer than two finite moments.

For the first part, we generated 500 independent replicates from the selected parent distribution of
three samples of sizes 𝑛 = 500, 1000, and 2000. For every simulated sample, we obtained estimates
𝐺̂𝑛,𝑘 . Then we calculated the arithmetic averages over the values from the 500 repetitions, with the
absolute error and root mean squared error (rmse) of the new estimator 𝐺̂𝑛,𝑘 reported in Table 1 for
the Pareto model, and in Table 2 for the Fréchet model.

In the tables we also report 95%-confidence intervals with their lower (lcb) and upper bounds
(ucb), coverage probabilities (covpr), and lengths.

The major observations from our simulations results presented in Table 1 and Table 2 are summa-
rized as follows: (1) The error and rmse decrease as the sample size is increased for all cases. (2)
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Table 1. Simulation and confidence bounds of the estimator of the Gini index for the Pareto
distribution.

𝛾 = 2
3 , 𝐺 = 0.500003

𝑛 𝑘∗ 𝐺̂𝑛,𝑘 error rmse lcb ucb covpr length
500 26 0.47928 0.02074 0.01927 0.23462 0.76538 0.91782 0.53076
1000 70 0.48718 0.01288 0.01542 0.25881 0.74116 0.93526 0.48231
2000 103 0.50969 0.00969 0.01002 0.29499 0.70501 0.95236 0.41002

𝛾 = 3
4 , 𝐺 = 0.6000003

𝑛 𝑘∗ 𝐺̂𝑛,𝑘 error rmse lcb ucb covpr length
500 27 0.58429 0.01572 0.01723 0.20304 0.99696 0.92671 0.79392
1000 51 0.58975 0.01025 0.01358 0.26944 0.92145 0.93056 0.66112
2000 102 0.59183 0.00817 0.000904 0.336381 0.83621 0.94748 0.47241

Table 2. Simulation and confidence bounds of the estimator of the Gini index for the Fréchet
distribution.

𝛾 = 2
3 , 𝐺 = 0.58693

𝑛 𝑘∗ 𝐺̂𝑛,𝑘 error rmse lcb ucb covpr length
500 26 0.5711 0.01481 0.11025 0.21351 0.97412 0.84811 0.76061
1000 52 0.59892 0.01198 0.07581 0.23069 0.96715 0.90124 0.73646
2000 103 0.58028 0.00665 0.03159 0.26062 0.89995 0.94201 0.63934

𝛾 = 3
4 , 𝐺 = 0.67979

𝑛 𝑘∗ 𝐺̂𝑛,𝑘 error rmse lcb ucb covpr length
500 26 0.66812 0.01167 0.10231 0.35501 0.98124 0.86220 0.65623
1000 55 0.68541 0.00892 0.07814 0.374 79 0.996 03 0.89532 0.62124
2000 104 0.68101 0.00128 0.04215 0.378 75 0.98327 0.91202 0.60452

Table 3. Results of comparison bias and mse between 𝐺̂𝑛 and 𝐺̂𝑛,𝑘 for Pareto model.

𝛾 = 2
3 𝛾 = 3

4

𝐺̂𝑛 𝐺̂𝑛,𝑘 𝐺̂ 𝐺̂𝑛,𝑘

𝑛 bias mse bias mse bias mse bias mse
500 0.2370 0.0642 0.0556 0.0263 0.2066 0.0509 0.0670 0.00141
1000 0.1898 0.0368 0.0356 0.0123 0.1668 0.0291 0.0049 0.00077
2000 0.1257 0.0225 0.0328 0.0016 0.1393 0.0199 0.0026 0.00043
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Table 4. Results of comparison bias and rmse between 𝐺̂𝑛 and 𝐺̂𝑛,𝑘 for Fréchet model.

𝛾 = 2
3 𝛾 = 3

4

𝐺̂𝑛 𝐺̂𝑛,𝑘 𝐺̂ 𝐺̂𝑛,𝑘

𝑛 bias mse bias mse bias mse bias mse
500 0.0387 0.0154 0.0197 0.00165 0.0455 0.0072 0.0111 0.00061
1000 0.0295 0.0148 0.0106 0.00138 0.0448 0.0028 0.0041 0.00014
2000 0.0168 0.0129 0.0102 0.00108 0.0331 0.0014 0.0027 0.000049

In terms of coverage probability, we find acceptable results. These results show that the coverage
probability increases as the sample size is increased. (3) In terms of average length of confidence
intervals, that of our interval estimators decreases when the sample size is increased.

The second part of our simulation study consists of a numerical comparison between the absolute
bias and the mean square error (mse) of 𝐺̂𝑛 and 𝐺̂𝑛,𝑘 , for two models (Pareto and Fréchet) with two
values of tail index (𝛾 = 2/3 and 𝛾 = 3/4). We vary the common size 𝑛 of the sample. For each
size, we generated 500 independent replicates. Our overall results are taken as the empirical means
of the results obtained through the 500 repetitions. To determine the optimal number of upper order
statistics (which we denote by 𝑘∗) used in the computation of 𝛾̂𝐻𝑛,𝑘 , we apply the algorithm of Cheng
and Peng (2001). The simulation results are summarised in Table 3 for the Pareto model and in Table
4 for the Fréchet model (where abs bias and mse respectively stand for the absolute value of the bias
and the mean squared error of the estimation).

The results presented in Table 3 and Table 4, which represents the comparison between our
proposed estimator 𝐺̂𝑛,𝑘 and the traditional estimator 𝐺̂𝑛 in terms of bias and mse, show the
performance of our estimator. The bias and mse of our estimator are smaller in all cases in comparison
with the bias and mse of the traditional estimator. Furthermore, the values of the bias and mse decrease
as the size of the sample is increased. In light of these results, we see that, from the point of view of
the bias and the mse, the estimation accuracy increases when the size of the sample is increased.

4. Proofs
Proof of Theorem 1. Let 𝑈𝑖 = 𝐹 (𝑋𝑖) for 𝑖 = 1, 2, ..., 𝑛. Then 𝑈1,𝑈2, ...,𝑈𝑛 is a sequence of i.i.d.
random variables following the uniform distribution on [0, 1]. The following result shows that the
empirical and quantile processes based on the sequence 𝑈1,𝑈2, ...,𝑈𝑛 can be approximated by a
series of Brownian bridges; see Csörgő et al. (1986). These Brownian bridges are the same as on the
right-hand side of equation (6) in Theorem 1. Let 𝛼𝑛 (𝑠) be the uniform empirical process defined by

𝛼𝑛 (𝑠) =
√
𝑛 (𝐻𝑛 (𝑠) − 𝑠) , 0 ≤ 𝑠 ≤ 1,

where 𝐻𝑛 (𝑠) = 1
𝑛

∑𝑛
𝑖=1 1{𝑈𝑖≤𝑠}, and let 𝛽𝑛 (𝑠) be the uniform quantile process defined by

𝛽𝑛 (𝑠) =
√
𝑛
(
𝐻−1
𝑛 (𝑠) − 𝑠

)
, 0 ≤ 𝑠 ≤ 1.
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Under a Skorokhod-type construction, there exists a sequence of Brownian bridges B1,B2, ... such
that, when 𝑛→ ∞, we have (cf. Csörgő et al., 1986)

sup
0≤𝑠≤1−1/𝑛

𝑛𝑣1
|𝛼𝑛 (𝑠) − 𝛽𝑛 (𝑠) |
(1 − 𝑠)1/2−𝑣1 = 𝑂𝑃 (1) for any 0 ≤ 𝑣1 ≤ 1

4
,

and
sup

0≤𝑠≤1−1/𝑛
𝑛𝑣2

|B𝑛 (𝑠) + 𝛽𝑛 (𝑠) |
(1 − 𝑠)1/2−𝑣2 = 𝑂𝑃 (1) for any 0 ≤ 𝑣1 ≤ 1

2
.

We start the proof of Theorem 1 by the calculation of the following difference

𝐺̂𝑛,𝑘 − 𝐺 =

(
1 − 2

𝜇̂𝑛

∫ 1

0

∫ 𝑡

0
Q𝑛 (𝑠)𝑑𝑠𝑑𝑡

)
−

(
1 − 2

𝜇

∫ 1

0

∫ 𝑡

0
Q(𝑠)𝑑𝑠𝑑𝑡

)

= − 2
𝜇̂𝑛

∫ 1

0

∫ 𝑡

0
Q𝑛 (𝑠)𝑑𝑠𝑑𝑡 + 2

𝜇

∫ 1

0

∫ 𝑡

0
Q(𝑠)𝑑𝑠𝑑𝑡

= − 2
𝜇̂𝑛

∫ 1

0

∫ 𝑡

0
Q𝑛 (𝑠)𝑑𝑠𝑑𝑡 + 2

𝜇̂𝑛

∫ 1

0

∫ 𝑡

0
Q(𝑠)𝑑𝑠𝑑𝑡

+ 2
𝜇

∫ 1

0

∫ 𝑡

0
Q(𝑠)𝑑𝑠𝑑𝑡 − 2

𝜇̂𝑛

∫ 1

0

∫ 𝑡

0
Q(𝑠)𝑑𝑠𝑑𝑡.

Then

√
𝑛(𝐺̂𝑛,𝑘 − 𝐺)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

= − 2
𝜇̂𝑛

(∫ 1

0

√
𝑛

∫ 𝑡
0 [Q𝑛 (𝑠) − Q(𝑠)] 𝑑𝑠𝑑𝑡√︁

𝑘/𝑛Q(1 − 𝑘/𝑛)

)

+ 2
𝜇𝜇̂𝑛

∫ 1

0

√
𝑛( 𝜇̂𝑛 − 𝜇)√︁

𝑘/𝑛Q(1 − 𝑘/𝑛)

∫ 𝑡

0
Q(𝑠)𝑑𝑠𝑑𝑡 = 𝐼1 + 𝐼2.

Since 𝐼1 is an integral over [0, 1], we split it into the sum of two terms, 𝐼11 and 𝐼12, which are the
same integrals but over the intervals [0, 1 − 𝑘/𝑛] and [1 − 𝑘/𝑛, 1], respectively. A similar split is
applied on 𝐼2, which results in 𝐼2 = 𝐼21 + 𝐼22. We shall prove that 𝐼12 = 𝑜𝑃 (1) and 𝐼22 = 𝑜𝑃 (1) when
𝑛 → ∞. We shall next show in several steps that 𝐼11 = 𝑇𝑛,1 + 𝑜𝑃 (1) and 𝐼21 = 𝑇𝑛,2 + 𝑇𝑛,3 + 𝑜𝑃 (1)
when 𝑛 → ∞. This will conclude the proof of Theorem 1. Hence, from now on we deal with the
process 𝐴𝑛, which may be rewritten as

𝐴𝑛 (𝑡) =
∫ 1−𝑘/𝑛

𝑡
[Q𝑛 (𝑠) − Q(𝑠)] 𝑑𝑠, (7)

which is an integral of the general quantile process Q𝑛 −Q. To reduce it to an integral of the general
empirical process 𝐹𝑛 − 𝐹, we employ the (general) Vervaat process (see, e.g., Zitikis, 1998)

𝑉𝑛 (𝑡) =
∫ 𝑡

0
(Q𝑛 (𝑠) − Q(𝑠))𝑑𝑠 +

∫ Q(𝑡)

−∞
(𝐹𝑛 (𝑥) − 𝐹 (𝑥))𝑑𝑥. (8)

The process 𝑉𝑛 (𝑡) satisfies the boundary conditions 𝑉𝑛 (0) = 0 and 𝑉𝑛 (1) = 0, is non-negative for all
𝑡 ∈ [0, 1], and such that √

𝑛𝑉𝑛 (𝑡) ≤ |𝑒𝑛 (𝑡) | |Q𝑛 (𝑡) − Q(𝑡) |. (9)
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Hence, upon recalling that 𝑒𝑛 (𝑡) =
√
𝑛(𝐹𝑛 (Q(𝑡)) − 𝑡), we conclude from (9) that the difference

between the quantities
√
𝑛

∫ 𝑡

0
(Q𝑛 (𝑠) − Q(𝑠))𝑑𝑠 (10)

and

− √
𝑛

∫ Q(𝑡)

−∞
(𝐹𝑛 (𝑥) − 𝐹 (𝑥))𝑑𝑥 (11)

tends to zero when 𝑛→ ∞ whenever Q𝑛 (𝑡) converges to Q(𝑡), which holds because 𝐹 is continuous
and strictly increasing. This is the main idea of employing the Vervaat process in the present proof,
as it allows us to replace quantity (10) by (11), which is much easier to tackle. We have the following
equation

𝐴𝑛 (𝑡) = −
∫ 𝑄 (1−𝑘/𝑛)

𝑄 (𝑡)
(𝐹𝑛 (𝑥) − 𝐹 (𝑥)) 𝑑𝑥 +𝑉𝑛 (1 − 𝑘/𝑛) −𝑉𝑛 (𝑡)

which we apply on the right-hand sides of (7) and (8). By changing the variable of integration, we
get

𝐴𝑛 (𝑡) = −
∫ 1−𝑘/𝑛

𝑡

𝑒𝑛 (𝑠)√
𝑛
𝑑Q(𝑠) +𝑉𝑛 (1 − 𝑘/𝑛) −𝑉𝑛 (𝑡)

and ∫ 𝑡

0
(Q𝑛 (𝑠) − Q(𝑠))𝑑𝑠 = −

∫ 𝑡

0

𝑒𝑛 (𝑠)√
𝑛
𝑑Q(𝑠) +𝑉𝑛 (𝑡).

Then

𝐼11 =
2
𝜇

∫ 1−𝑘/𝑛

0

∫ 𝑡
0 𝑒𝑛 (𝑠)𝑑Q(𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑𝑡 − 2
𝜇

∫ 1−𝑘/𝑛

0

√
𝑛𝑉𝑛 (𝑡)√︁

𝑘/𝑛Q(1 − 𝑘/𝑛)
𝑑𝑡.

Taking into account that ∫ 1−𝑘/𝑛

0

√
𝑛𝑉𝑛 (𝑡)√︁

𝑘/𝑛Q(1 − 𝑘/𝑛)
𝑑𝑡 = 𝑜𝑝 (1),

when 𝑛→ ∞, we have

𝐼11 =
2
𝜇

∫ 1−𝑘/𝑛

0

∫ 𝑡
0 𝑒𝑛 (𝑠)𝑑Q(𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑𝑡 + 𝑜𝑝 (1). (12)

Here we replace 𝑒𝑛 by B𝑛 in the expressions for (12). Namely, when 𝑛→ ∞, by the use of the Fubini
theorem, we obtain

𝐼11 =
∫ 1−𝑘/𝑛

0

B𝑛 (𝑠)𝑣(𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑Q(𝑠) + 𝑜𝑝 (1)𝑇𝑛,1 + 𝑜𝑝 (1).

In a similar way, first writing 𝐼21 in terms of the empirical and Vervaat processes,

𝐼21 =
2
𝜇𝜇̂𝑛

∫ 1−𝑘/𝑛

0

√
𝑛( 𝜇̂𝑛 − 𝜇)√︁

𝑘/𝑛Q(1 − 𝑘/𝑛)

∫ 𝑡

0
Q(𝑠)𝑑𝑠𝑑𝑡.
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With the results of Peng (2001), Necir et al. (2010), there exist a sequence of Brownian bridge
processes {B𝑛 (𝑠), 0 ≤ 𝑠 ≤ 1}𝑛≥1 such that, for any 𝑛 large enough, we have

√
𝑛( 𝜇̂𝑛 − 𝜇)√︁

𝑘/𝑛Q(1 − 𝑘/𝑛)
𝑑
= −

∫ 1−𝑘/𝑛

0

𝑒𝑛 (𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑Q(𝑠)

+ 𝛾2

(1 − 𝛾)2

{√︂
𝑛

𝑘
B𝑛

(
1 − 𝑘

𝑛

)}
− 𝛾

(1 − 𝛾)2

√︂
𝑛

𝑘

∫ 1

1−𝑘/𝑛

B𝑛 (𝑠)
1 − 𝑠 𝑑𝑠 + 𝑜𝑃 (1).

Then,

𝐼21
𝑑
=

∫ 1−𝑘/𝑛

0

𝑣(𝑠)𝑒𝑛 (𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑Q(𝑠) + 𝛾
2𝑣(1 − 𝑘/𝑛)
(1 − 𝛾)2

{√︂
𝑛

𝑘
B𝑛

(
1 − 𝑘

𝑛

)}

− 𝛾𝑣(1 − 𝑘/𝑛)
(1 − 𝛾)2

√︂
𝑛

𝑘

∫ 1

1−𝑘/𝑛

B𝑛 (𝑠)
1 − 𝑠 𝑑𝑠 + 𝑜𝑃 (1).

We can easily show that ∫ 1−𝑘/𝑛

0

𝑣(𝑠)𝑒𝑛 (𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑Q(𝑠) = 𝑜𝑃 (1).

Then,

𝐼21
𝑑
=
𝛾2𝑣(1 − 𝑘/𝑛)

(1 − 𝛾)2

{√︂
𝑛

𝑘
B𝑛

(
1 − 𝑘

𝑛

)}
− 𝛾𝑣(1 − 𝑘/𝑛)

(1 − 𝛾)2

√︂
𝑛

𝑘

∫ 1

1−𝑘/𝑛

𝐵𝑛 (𝑠)
1 − 𝑠 𝑑𝑠 + 𝑜𝑃 (1)

= 𝑇𝑛,2 + 𝑇𝑛,3.
Finally, √

𝑛(𝐺̂𝑛,𝑘 − 𝐺)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

=
3∑︁
𝑖=1
𝑇𝑛,𝑖 + 𝑜𝑝 (1),

where

𝑇𝑛,1 = −
∫ 1−𝑘/𝑛

0

B𝑛 (𝑠)𝑣(𝑠)√︁
𝑘/𝑛Q(1 − 𝑘/𝑛)

𝑑Q(𝑠),

𝑇𝑛,2 =
𝛾2𝑣(1 − 𝑘/𝑛)

(1 − 𝛾)2

√︂
𝑘

𝑛
B𝑛

(
1 − 𝑘

𝑛

)
,

𝑇𝑛,3 = −𝛾𝑣(1 − 𝑘/𝑛)
(1 − 𝛾)2

√︂
𝑘

𝑛

∫ 1

1−𝑘/𝑛

B𝑛 (𝑠)
1 − 𝑠 𝑑𝑠. �

Proof of corollary 1. Without the remainder term 𝑜𝑃 (1), the right-hand side of equation (6) is a
mean-zero normal random variable, whose variance converges to 𝜎2 (𝛾) when 𝑛 → ∞, as the
following

𝐸 [𝑇2
𝑛,1] →

2𝛾𝑣2 (1)
2𝛾 − 1

, 𝐸 [𝑇2
𝑛,2] →

𝛾4𝑣2 (1)
(1 − 𝛾)4 , 𝐸 [𝑇2

𝑛,3] →
𝛾2𝑣2 (1)
(1 − 𝛾)4 ,

𝐸 [𝑇𝑛,1𝑇𝑛,2] → 𝛾2𝑣2 (1)
(1 − 𝛾)2 , 𝐸 [𝑇𝑛,1𝑇𝑛,3] → 𝛾𝑣2 (1)

(1 − 𝛾)2 , 𝐸 [𝑇𝑛,2𝑇𝑛,3] → 𝛾3𝑣2 (1)
(1 − 𝛾)4 . �
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