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Spatial autoregressive combined (SAC) models have been widely studied in the literature
for the analysis of spatial data in various areas such as geography, economics, demography,
regional sciences. This is a linear model with scalar response and scalar explanatory variables
which allows for spatial interactions in the dependent variables and the disturbances. In this
work we extend this modeling approach from scalar to functional covariate. The parameters of
the model are estimated via the maximum likelihood estimation method. A simulation study
is conducted to evaluate the performance of the proposed methodology. As an illustration, the
model is used to establish the relationship between unemployment and illiteracy in Senegal.

Key words: Functional linear models, Spatial dependence, Spatial weights.

1. Introduction
Spatially dependent data has become common in many fields such as regional sciences, economics,
agriculture and environmental sciences. Consequently, the development of statistical tools dedicated
to the modeling of these data has become essential. Spatial statistics is the branch of statistics that
deals with this modeling. Various spatial models and methods have been proposed in the literature.
Most of them are parametric and deal essentially with non-functional data.

Several types of functional linear models for independent data have been developed. They are
subdivided into three categories, depending on whether the responses or the regressors, or both, are
curves. The common model used in the literature is the functional linear model for scalar response,
originally introduced by Hastie and Mallows (1993). Estimation and prediction methods for this
model have been developed (Cardot et al., 1999; Preda and Saporta, 2005; Ramsay and Silverman,
2005; Cai and Hall, 2005). However, in many disciplines of applied sciences, there is a growing
need to model correlated functional data. This is the case when samples of functions are observed
over a discrete set of time points (temporally correlated functional data) or when these functions are
observed over different sites or areas of a region (spatially correlated functional data). In the context
of spatially correlated data, some research exists on functional geostatistics (Dabo-Niang and Yao,
2007; Giraldo et al., 2011; Caballero et al., 2013), functional point processes (Comas et al., 2011,
2013) and functional areal data (Zhang et al., 2016; Ahmed, 2017; Pinedarios et al., 2019; Aw and
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Cabral, 2020; Huang et al., 2020), highlighting the interest in considering spatial functional linear
models.

This paper deals with spatial functional linear models on lattices. One of the well-known spatial
lattice models is the SAC model, which extends regression in time series to spatial data. The methods
used to identify and estimate the SAC model are essentially the maximum likelihood (ML) and the
generalized method of moments (GMM) (Anselin, 1988; Kelejian and Prucha, 1998).

Specifically, the paper considers an estimation of a spatial functional linear model with a random
functional covariate and a real-valued response using spatial autoregression both on the response
and the error based on weight matrices. In Section 2, we give a short review about the SAC
model. Section 3 defines its extension to the functional context. The maximum likelihood estimation
procedure for the functional SAC model is given in Section 4. To check the performance of the
ML estimator, numerical results are reported in Section 5. We end the article by a conclusion in
Section 6.

2. SAC model
Let {(𝑦𝑠 , 𝑋𝑠), 𝑠 ∈ D ⊂ R𝑑} be a bivariate stochastic process observed over a discrete fixed subset of
D consisting of 𝑠1, 𝑠2, . . . , 𝑠𝑛 spatial units and where, for every 𝑠 ∈ D, 𝑦𝑠 and 𝑋𝑠 are two real-valued
random variables. For more flexibility, we will denote the spatial unit 𝑠𝑖 by 𝑖.

The SAC model is defined (Anselin, 1988) by

𝑦𝑖 = 𝜌
𝑛∑︁
𝑗=1
𝜔𝑖 𝑗 𝑦 𝑗 +

𝑝∑︁
𝑗=1
𝑥𝑖 𝑗 𝛽 𝑗 + 𝑢𝑖 ,

𝑢𝑖 = 𝜆
𝑛∑︁
𝑗=1
𝑚𝑖 𝑗𝑢 𝑗 + 𝜖𝑖 , 𝑖 = 1, 2, . . . , 𝑛,

or more compactly,

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑢,
𝑢 = 𝜆𝑀𝑢 + 𝜖, (1)

where

• 𝑦 is an 𝑛 × 1 vector that collects the dependent variable for each spatial unit;

• 𝑊 and 𝑀 are 𝑛 × 𝑛 spatial-weighting matrices;

• 𝑋 is an 𝑛 × 𝑝 matrix of independent variables;

• 𝜌 and 𝜆 are spatial autoregressive parameters that measure the degree of spatial correlation in
the dependent variable 𝑦 and the disturbance term 𝑢 respectively;

• 𝛽 is an 𝑝 × 1 vector of parameters;

• 𝜖 is an 𝑛 × 1 vector of error terms.
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When 𝜌 = 𝜆 = 0, the SAC model in (1) reduces to the classical linear regression model. When 𝜌 = 0
and 𝜆 ≠ 0, it reduces to the SEM model and finaly when 𝜌 ≠ 0 and 𝜆 = 0, the SAC model becomes
the spatial lag model.

In practice, the spatial-weighting matrices 𝑊 and 𝑀 are row-normalized such that
∑𝑛
𝑗=1 𝜔𝑖 𝑗 = 1

and
∑𝑛
𝑗=1 𝑚𝑖 𝑗 = 1. In this case, the matrices 𝐼𝑛 − 𝜌𝑊 and 𝐼𝑛 − 𝜆𝑀 are non-singular if |𝜌 | < 1 and

|𝜆 | < 1. We then obtain the reduced form of the SAC model as

𝑦 = (𝐼𝑛 − 𝜌𝑊)−1𝑋𝛽 + (𝐼𝑛 − 𝜌𝑊)−1 (𝐼𝑛 − 𝜆𝑀)−1𝜖 .

The parameters of the SAC model can be obtained by maximum likelihhod estimation method
(Anselin, 1988) or generalized spatial two-stage least squares estimation procedure (Kelejian and
Prucha, 1998).

3. Functional SAC model
Consider again 𝑛 spatial units located in a fixed and countable region D ⊂ R𝑑 , 𝑑 ∈ N∗. In each
spatial unit, we observe a real response variable 𝑦𝑖 and a functional explanatory variable 𝑋𝑖 (𝑡), 𝑡 ∈ T ,
where 𝑋𝑖 ∈ 𝐿2 (T ) and T is a compact interval of the real line R. We define the functional SAC
model by the following structural equations

𝑦𝑖 = 𝜌
𝑛∑︁
𝑗=1
𝜔𝑖 𝑗 𝑦 𝑗 +

∫
T
𝑋𝑖 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝑢𝑖 ,

𝑢𝑖 = 𝜆
𝑛∑︁
𝑗=1
𝑚𝑖 𝑗𝑢 𝑗 + 𝜖𝑖 , 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝜌, 𝜆, 𝜔𝑖 𝑗 , 𝑚𝑖 𝑗 , 𝑢𝑖 and 𝜖𝑖 are defined as in the SAC model in (1) and 𝛽(·) is an unknown
functional parameter in 𝐿2 (T ).

When 𝜆 = 0, the functional SAC model in (2) reduces to the functional spatial lag model (Ahmed,
2017) given by

𝑦𝑖 = 𝜌
𝑛∑︁
𝑗=1
𝜔𝑖 𝑗 𝑦 𝑗 +

∫
T
𝑋𝑖 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝜖𝑖 , 𝑖 = 1, 2, . . . , 𝑛.

When 𝜌 = 0, it becomes the functional SEM model (Pinedarios et al., 2019) defined by

𝑦𝑖 =
∫
T
𝑋𝑖 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝑢𝑖

𝑢𝑖 = 𝜆
𝑛∑︁
𝑗=1
𝑚𝑖 𝑗𝑢 𝑗 + 𝜖𝑖 , 𝑖 = 1, 2, . . . , 𝑛.

When 𝜌 = 𝜆 = 0, the functional SAC model reduces to the classical functional linear model (Cardot
et al., 1999) given by

𝑦𝑖 =
∫
T
𝑋𝑖 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝜖𝑖 , 𝑖 = 1, 2, . . . , 𝑛. (3)
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Let 𝑦 =
[
𝑦1 𝑦2 . . . 𝑦𝑛

]𝑇 , 𝑋 (𝑡) =
[
𝑋1 (𝑡) 𝑋2 (𝑡) . . . 𝑋𝑛 (𝑡)

]𝑇 , 𝑢 =
[
𝑢1 𝑢2 . . . 𝑢𝑛

]𝑇
and 𝜖 =

[
𝜖1 𝜖2 . . . 𝜖𝑛

]𝑇 , then the matrix form of the functional SAC model is given by

𝑦 = 𝜌𝑊𝑦 +
∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝑢

𝑢 = 𝜆𝑀𝑢 + 𝜖,
(4)

where
∫
T 𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 =

[∫
T 𝑋1 (𝑡)𝛽(𝑡)𝑑𝑡

∫
T 𝑋2 (𝑡)𝛽(𝑡)𝑑𝑡 . . .

∫
T 𝑋𝑛 (𝑡)𝛽(𝑡)𝑑𝑡

]𝑇
and where we

suppose that 𝜖 ∼ 𝑁 (0, 𝜎2𝐼𝑛).
Consider an orthonormal basis {𝜙 𝑗 , 𝑗 ∈ N} of 𝐿2 (T ). We can decompose 𝑋𝑖 (𝑡) and 𝛽(𝑡) in this

basis as follows

𝑋𝑖 (𝑡) =
∞∑︁
𝑗=1

𝑧𝑖 𝑗𝜙 𝑗 (𝑡) and 𝛽(𝑡) =
∞∑︁
𝑗=1

𝛽 𝑗𝜙 𝑗 (𝑡).

The real random variables 𝑧𝑖 𝑗 and the coefficients 𝛽 𝑗 are given by

𝑧𝑖 𝑗 =
∫
T
𝑋𝑖 (𝑡)𝜙 𝑗 (𝑡)𝑑𝑡 and 𝛽 𝑗 =

∫
T
𝛽(𝑡)𝜙 𝑗 (𝑡)𝑑𝑡.

From this decomposition, it follows that∫
T
𝑋𝑖 (𝑡)𝛽(𝑡)𝑑𝑡 =

∞∑︁
𝑗=1

𝑧𝑖 𝑗 𝛽 𝑗 . (5)

Denoting 𝑧 𝑗 =
[
𝑧1 𝑗 𝑧2 𝑗 . . . 𝑧𝑛 𝑗

]𝑇 , we can deduce from (5) that

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 =



∫
T 𝑋1 (𝑡)𝛽(𝑡)𝑑𝑡∫
T 𝑋2 (𝑡)𝛽(𝑡)𝑑𝑡

...∫
T 𝑋𝑛 (𝑡)𝛽(𝑡)𝑑𝑡


=

∞∑︁
𝑗=1

𝑧 𝑗 𝛽 𝑗 . (6)

The estimation of the functional parameter 𝛽(𝑡) requires a regularization procedure. Let us project
𝑋𝑖 (𝑡) and 𝛽(𝑡) onto a finite dimensional space spanned by 𝐾 basis functions 𝜙1 (𝑡), 𝜙2 (𝑡), . . . , 𝜙𝐾 (𝑡).
We can therefore rewrite (6) as follows

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 =

𝐾∑︁
𝑗=1

𝑧 𝑗 𝛽 𝑗 . (7)

The truncated equation (7) can be obtained by using the Fourier basis, the functional principal
components basis, the partial least squares basis or the wavelet basis (Ramsay and Silverman, 2005;
Cardot et al., 2003; Preda and Saporta, 2005; Zhao et al., 2012; Reiss et al., 2015). In the following,
we use the functional partial least squares (FPLS) basis functions. To form the FPLS basis functions,
we first neglect the autoregressive terms by considering model (3), which means building the basis
without considering any spatial correlation (see Huang et al., 2020). We then use the iterative process
introduced by Preda and Saporta (2005) to obtain the basis.

The main steps for constructing a number 𝐾 of FPLS basis functions are given below.
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Step 1. Begin from 𝑘 = 1 and set 𝑋𝑘 (𝑡) = 𝑋 (𝑡), 𝑦𝑘 = 𝑦.
Step 2. Find a square integrable weight function 𝜔𝑘 (𝑡) that maximizes the following covariance

Cov‖𝜔𝑘 (𝑡) ‖=1 (𝑦𝑘 ,
∫
T 𝑋𝑘 (𝑡)𝜔𝑘 (𝑡)𝑑𝑡). We obtain𝜔𝑘 (𝑡) = E(𝑦𝑘𝑋𝑘 (𝑡))/‖ E(𝑦𝑘𝑋𝑘 (𝑡))‖, where

‖.‖ denotes the usual norm of 𝐿2 (T ), i.e, ‖𝜔𝑘 (𝑡)‖ =
√︃∫

T 𝜔
2
𝑘 (𝑡)𝑑𝑡.

Step 3. Define 𝑧𝑘 =
∫
T 𝑋𝑘 (𝑡)𝜔𝑘 (𝑡)𝑑𝑡 and perform the regressions 𝑋𝑘 (𝑡) = 𝑎𝑘 (𝑡)𝑧𝑘 + 𝜖𝑋𝑘 (𝑡) and

𝑦𝑘 = 𝑏𝑘 𝑧𝑘 + 𝜖 𝑦𝑘 . We obtain 𝑎𝑘 (𝑡) = E(𝑋𝑘 (𝑡)𝑧𝑘 )/‖𝑧2𝑘 ‖ and 𝑏𝑘 = E(𝑦𝑘 𝑧𝑘 )/‖𝑧2𝑘 ‖.
Step 4. Stop when k=K. Otherwise, take 𝑋𝑘+1 (𝑡) = 𝜖𝑋𝑘 (𝑡) and 𝑦𝑘+1 = 𝜖

𝑦
𝑘 and go back to step 2.

The weight functions 𝜔1 (𝑡), 𝜔2 (𝑡), . . . , 𝜔𝐾 (𝑡) produced by the above iterative procedure
are the functional partial least squares basis functions. In practice, we take the empirical
versions of the quantities involved in the iterative procedure described above. We then take
𝜙𝑘 (𝑡) = 𝜔̂𝑘 (𝑡) and 𝑧𝑘 =

∫
T 𝑋𝑘 (𝑡)𝜙𝑘 (𝑡))𝑑𝑡 for 𝑘 = 1, 2, . . . , 𝐾 .

Let Z𝐾 =
[
𝑧1 𝑧2 . . . 𝑧𝐾

]𝑇 and β𝐾 =
[
𝛽1 𝛽2 . . . 𝛽𝐾

]𝑇 , then the truncated equation
(7) is written as ∫

T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 = Z𝐾β𝐾 . (8)

4. Maximum likelihood estimation
From (4), we have

(𝐼𝑛 − 𝜌𝑊)𝑦 =
∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝑢,

(𝐼𝑛 − 𝜆𝑀)𝑢 = 𝜖 .

Noting 𝐴 = 𝐼𝑛 − 𝜌𝑊 and 𝐵 = 𝐼𝑛 − 𝜆𝑀 and solving for 𝜖 , we obtain

𝜖 = 𝐵

(
𝐴𝑦 −

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)
. (9)

Using the transformation theorem, the probability density function of 𝑦 is given by

𝑓 (𝑦 |𝛽(𝑡), 𝜎2, 𝜌, 𝜆, 𝑋 (𝑡)) = 𝑓 (𝜖 |𝛽(𝑡), 𝜎2, 𝜌, 𝜆, 𝑋 (𝑡))
���� 𝜕𝜖𝜕𝑦

���� ,
where 𝜕𝜖

𝜕𝑦 is the Jacobian matrix. Since 𝜖 ∼ 𝑁 (0, 𝜎2𝐼𝑛), the probability density of 𝜖 is expressed as

𝑓 (𝜖 |𝛽(𝑡), 𝜎2, 𝜌, 𝜆, 𝑋 (𝑡)) = (2𝜋)− 𝑛2 (𝜎2)− 𝑛2 exp
[
− 1

2𝜎2 𝜖
𝑇 𝜖

]
,

where 𝜖𝑇 𝜖 =
(
𝐴𝑦 −

∫
T 𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)𝑇
𝐵𝑇 𝐵

(
𝐴𝑦 −

∫
T 𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)
and 𝐵𝑇 𝐵 = Ω(𝜆) = (𝐼𝑛−𝜆𝑀)𝑇 (𝐼𝑛−

𝜆𝑀).
The Jacobian matrix is derived, from (9), by

���� 𝜕𝜖𝜕𝑦
���� =

�������
𝜕𝐵

(
𝐴𝑦 −

∫
T 𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)
𝜕𝑦

������� = |𝐵𝐴| = |𝐵 | |𝐴|.
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Consequently, the likelihood function is given by

𝐿 = (2𝜋)− 𝑛2 (𝜎2)− 𝑛2 exp

[
− 1

2𝜎2

(
𝐴𝑦 −

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)𝑇
Ω(𝜆)

(
𝐴𝑦 −

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)]
|𝐵 | |𝐴|.

The log-likelihood function 𝑙 = log(𝐿) has the following expression:

𝑙 = −𝑛
2

log(2𝜋) − 𝑛

2
log(𝜎2) − 1

2𝜎2

(
𝐴𝑦 −

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)𝑇
Ω(𝜆)

(
𝐴𝑦 −

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡

)

+ log( |𝐴|) + log( |𝐵 |).
Using the truncation equation (8), we can then define the truncated log-likelihood function 𝑙𝐾 as
follows:

𝑙𝐾 = −𝑛
2

log(2𝜋) − 𝑛

2
log(𝜎2) − 1

2𝜎2 (𝐴𝑦 − Z𝐾β𝐾 )𝑇 Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 ) + log( |𝐴|) + log( |𝐵 |).
(10)

Taking the derivative of 𝑙𝐾 with respect to β𝐾 yields

𝜕𝑙𝐾
𝜕β𝐾

= − 1
2𝜎2

𝜕

𝜕β𝐾
(𝐴𝑦 − Z𝐾β𝐾 )𝑇 Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 )

= − 1
2𝜎2

[
2
𝜕 (𝐴𝑦 − Z𝐾β𝐾 )𝑇

𝜕β𝐾
Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 )

]

= − 1
𝜎2

𝜕 (−Z𝐾β𝐾 )𝑇
𝜕β𝐾

Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 )

=
1
𝜎2 Z𝑇𝐾Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 ) .

The ML estimator of β𝐾 is obtained by solving the equation 𝜕𝑙𝐾
𝜕β𝐾

= 0, which gives

𝛽𝑀𝐿 (𝜌, 𝜆) = [Z𝑇𝐾Ω(𝜆)Z𝐾 ]−1Z𝑇𝐾Ω(𝜆)𝐴𝑦. (11)

The derivative of 𝑙𝐾 with respect to 𝜎2 is given by

𝜕𝑙𝐾
𝜕𝜎2 = −𝑛

2
𝜕 log(𝜎2)
𝜕𝜎2 − 1

2
𝜕

𝜕𝜎2 (𝐴𝑦 − Z𝐾β𝐾 )𝑇 Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 )

= − 𝑛

2𝜎2 + 1
2𝜎4 (𝐴𝑦 − Z𝐾β𝐾 )𝑇 Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 )

=
−𝑛𝜎2 + (𝐴𝑦 − Z𝐾β𝐾 )𝑇 Ω(𝜆) (𝐴𝑦 − Z𝐾β𝐾 )

2𝜎4 .

Solving 𝜕𝑙𝐾
𝜕𝜎2 = 0, we find the ML estimator of 𝜎2 given by

𝜎̂2
𝑀𝐿 (𝜌, 𝜆) =

(
𝐴𝑦 − Z𝐾 𝛽𝑀𝐿 (𝜌, 𝜆)

)𝑇
Ω(𝜆) (

𝐴𝑦 − Z𝐾 𝛽𝑀𝐿 (𝜌, 𝜆)
)

𝑛
. (12)

Then, plugging (11) and (12) into the truncated log-likelihood (10), we obtain the truncated concen-
trated log-likelihood function given below

𝑙𝑐 = −𝑛
2
− 𝑛

2
log(2𝜋) − 𝑛

2
log(𝜎̂2

𝑀𝐿 (𝜌, 𝜆)) + log( |𝐼𝑛 − 𝜌𝑊 |) + log( |𝐼𝑛 − 𝜆𝑀 |). (13)
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The ML estimators of the autoregressive parameters 𝜌 and 𝜆 are obtained by maximizing the
function 𝑙𝑐 , which is highly nonlinear. Numerical optimization methods are used to solve (13). After
obtaining 𝜌̂ and 𝜆̂, the estimators of β𝐾 and 𝜎2 are recalculated by setting 𝛽𝑀𝐿 = 𝛽𝑀𝐿 ( 𝜌̂, 𝜆̂) and
𝜎̂2
𝑀𝐿 = 𝜎̂2

𝑀𝐿 ( 𝜌̂, 𝜆̂).
The estimator of the functional parameter 𝛽(𝑡) is given by

𝛽𝑀𝐿 (𝑡) = 𝛽𝑇𝑀𝐿Φ(𝑡), (14)

where Φ(𝑡) = (𝜙1 (𝑡), . . . , 𝜙𝐾 (𝑡))𝑇 is the vector of the 𝐾 functional partial least squares basis
functions. Since

𝐴𝑦 =
∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝑢,

𝐵𝑢 = 𝜖,

we have
𝑦 = 𝐴−1

∫
T
𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 + 𝐴−1𝐵−1𝜖 = 𝐴−1Z𝐾β𝐾 + 𝐴−1𝐵−1𝜖 . (15)

Using (15), we obtain

E(𝑦) = 𝐴−1Z𝐾β𝐾 (16)
Var(𝑦) = 𝜎2𝐴−1Ω−1 (𝜆) (𝐴𝑇 )−1. (17)

Now, let us assume that 𝜌 and 𝜆 are known and 𝐾 is fixed. Set Σ𝐾 = Z𝑇𝐾Ω(𝜆)Z𝐾 . We can then write

𝛽𝑀𝐿 = Σ−1
𝐾 Z𝑇𝐾Ω(𝜆)𝐴𝑦. (18)

We deduce, from (16) and (18), that

E(𝛽𝑀𝐿) = Σ−1
𝐾 Z𝑇𝐾Ω(𝜆)𝐴E(𝑦)

= Σ−1
𝐾 Z𝑇𝐾Ω(𝜆)𝐴𝐴−1Z𝐾β𝐾

= Σ−1
𝐾 Z𝑇𝐾Ω(𝜆)Z𝐾β𝐾

= Σ−1
𝐾 Σ𝐾β𝐾

= β𝐾 .

Hence, 𝛽𝑀𝐿 is an unbiased estimator of β𝐾 . We can also deduce, from (17) and (18), that

Var(𝛽𝑀𝐿) = Σ−1
𝐾 Z𝑇𝐾Ω(𝜆)𝐴Var(𝑦)𝐴𝑇Ω(𝜆)Z𝐾Σ−1

𝐾

= 𝜎2Σ−1
𝐾 Z𝑇𝐾Ω(𝜆)𝐴𝐴−1Ω−1 (𝜆) (𝐴𝑇 )−1𝐴𝑇Ω(𝜆)Z𝐾Σ−1

𝐾

= 𝜎2Σ−1
𝐾 Z𝑇𝐾Ω(𝜆)Z𝐾Σ−1

𝐾

= 𝜎2Σ−1
𝐾 Σ𝐾Σ

−1
𝐾

= 𝜎2Σ−1
𝐾 .

Therefore, a confidence band of 100(1 − 𝛼)% of the functional parameter 𝛽(𝑡) is given by[
𝛽𝑀𝐿 (𝑡) − 𝑧1− 𝛼2 𝜎̂𝑀𝐿

√︃
Φ𝑇 (𝑡)Σ−1

𝐾 Φ(𝑡), 𝛽𝑀𝐿 (𝑡) + 𝑧1− 𝛼2 𝜎̂𝑀𝐿
√︃
Φ𝑇 (𝑡)Σ−1

𝐾 Φ(𝑡)
]
. (19)

In practice, 𝜌 and 𝜆 are unknown. We replace them by their ML estimators 𝜌̂ and 𝜆̂ respectively. We
can then use 𝜆̂ to estimate Σ𝐾 and as a result obtain the confidence band (19).
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Figure 1. Spatial layout of communes of Senegal (left panel) and centroids of these communes (right
panel).

5. Numerical results
In this section, we study the performance of the proposed model based on numerical results. We
use the partial least squares functions obtained from the iterative procedure described in Section 3 to
construct the expansion basis. For the choice of the optimal number 𝐾 of functions included in the
truncation strategy, we use the Bayesian information criterion to select it.

5.1 Simulation results
To carry out the simulations, we use the spatial layout of 121 communes of Senegal represented in
Figure 1. We consider several scenarios of simulations according to the values of the autoregressive
parameters 𝜌 and 𝜆. Specifically, we use the following steps:

1. Calculate a spatial 121 × 121 row-standardized weight matrix W using the first order Rook
contiguity relations of the 121 communes in right panel of Figure 1 above;

2. In each commune, simulate 𝑋𝑖 (𝑡), 𝑖 = 1, 2, . . . , 121 as the trajectories of the Brownian motion.
All the curves 𝑋𝑖 (𝑡) are discretized on the same grid generated from 101 equispaced points
𝑡 ∈ [0, 1].

3. Define the functional parameter as 𝛽(𝑡) = 𝑡 sin(𝜋𝑡)2;

4. Generate a 121 × 1 Gaussian vector 𝜖 ∼ 𝑁 (0, 𝐼𝑛);
5. Calculate 𝑦 = (𝐼𝑛− 𝜌𝑊)−1

∫
T 𝑋 (𝑡)𝛽(𝑡)𝑑𝑡 + (𝐼𝑛− 𝜌𝑊)−1 (𝐼𝑛−𝜆𝑊)−1𝜖 by considering the pairs

(𝜌, 𝜆) = (0.1, 0.9), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3), (0.9, 0.1);
6. Estimate the parameters 𝛽(𝑡), 𝜎2, 𝜌 and 𝜆 using the maximum likelihood estimation procedure

described in Section 3;

7. Repeat the steps 4, 5 and 6 500 times. In each case, calculate 𝛽 𝑗 (𝑡), 𝜎̂2
𝑗 , 𝜌̂ 𝑗 , 𝜆̂ 𝑗 and the

integrated squared error of 𝛽 𝑗 (𝑡) defined by 𝐼𝑆𝐸 =
∫
T (𝛽 𝑗 (𝑡) − 𝛽(𝑡))2𝑑𝑡;
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Table 1. Summary statistics of estimations
for the spatial autoregressive parameters 𝜌
and 𝜆, the variance 𝜎2 and the mean of inte-
grated squared error (MISE).

𝜌 𝜆 𝜌̂ 𝜆̂ 𝜎̂2 MISE
0.1 0.9 0.08 0.87 0.99 0.17
0.3 0.7 0.31 0.68 0.94 0.14
0.5 0.5 0.51 0.49 0.94 0.16
0.7 0.3 0.68 0.27 0.93 0.15
0.9 0.1 0.88 0.09 0.93 0.13

8. Finaly, calculate 𝜎̂2 = 1
500

∑500
𝑗=1 𝜎̂

2
𝑗 , 𝜌̂ = 1

500
∑500
𝑗=1 𝜌̂ 𝑗 , 𝜆̂ = 1

500
∑500
𝑗=1 𝜆̂ 𝑗 and the mean of

integrated squared error (MISE).

The results of the procedure described above are shown in Table 1. The results obtained in Table 1
indicate that the maximum likelihood estimation procedure allows to accurately estimate the spatial
autoregressive parameters 𝜌 and 𝜆. We can also notice, with a 𝐾 small number of partial least squares
basis functions , are obtained estimations slightly biased of 𝜎2 and 𝛽(𝑡). We can then conclude from
a practical point of view that the methodology proposed has a good performance.

We give in Figure 2 the estimations of the functional parameter 𝛽(𝑡) when 𝜌 = 𝜆 = 0.5 and 𝜎2 = 1,
which confirms the good performance of the methodology proposed.

5.2 Relationship Between Unemployment and Illiteracy
We now apply the proposed methodology to real data. The data relate to unemployment rates and
illiteracy rates observed in the various departments of Senegal. More precisely, in each of the 45
departments of Senegal, we observe the unemployment rate in the first quarter of 2019 as well as
the illiteracy rates ranging from the second quarter of 2016 to the first quarter of 2019. The data
come from the National Agency of Statistics and Demography of Senegal (ANSD, by its acronym
in French). Our goal is to establish the relationship between these variables as a contribution to
explain the regional variation of unemployment in Senegal. The unemployment rate is taken to be
our scalar response and the illiteracy rate as the functional covariate. As a first step, we proceed to
the description of the behavior of the variables of interest.

We show in Figure 3 the choropleth map of the unemployment rates in the 45 departments of
Senegal. It is easy to see in this figure that the spatial distribution of the unemployment rate is not
due to mere chance. Indeed, nearby departments tend to have similar unemployment rates. This
phenomenon is known in the literature as spatial autocorrelation.

The presence of spatial autocorrelation in the distribution of the unemployment rate was confirmed
by the Moran test given in Table 2.

Since the illiteracy rates are recorded discretely, we smooth them using a 7 B-spline basis functions
in order to obtain the curves as functional covariates. This number of basis is selected by using cross-
validation criterion (Ramsay and Silverman, 2005).

Figure 4 shows the curves of the illiteracy rates observed in the 45 departments of Senegal over
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Figure 2. Functional parameter 𝛽(𝑡) (black line) and 500 estimations of this one (gray lines) obtained
with 𝜌 = 𝜆 = 0.5 and 𝜎2 = 1.

Figure 3. Choropleth map of unemployment in Senegal.
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Figure 4. Curves of illiteracy observed in the 45 departments of Senegal.

Figure 5. Estimation of 𝛽(𝑡) (solid line) and 95% confidence bands (dashed lines).
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Table 2. Results of the Moran I test.

Moran I test under Moran I statistic p-value
Normality 0.48 4.779𝑒−7

Randomization 0.48 3.862𝑒−7

the observation period. There is a decrease in the illiteracy curves over the entire observation period.
This shows the great efforts made by the Government of Senegal to reduce the illiteracy rate by
formulating targeted literacy programs.
We use the FSAC model to establish the relationship between unemployment and illiteracy. We focus
on the estimation of the functional parameter 𝛽(𝑡). This can be interpreted as the impact of illiteracy
on the unemployment of the first quarter of 2019. In fact, changes in the illiteracy rate have no effect
on the unemployment rate over regions where 𝛽(𝑡) = 0. Alternatively, changes in the illiteracy rate
have a greater effect on the unemployment rate over regions where |𝛽(𝑡) | is large. We give in Figure 5
the estimation of 𝛽(𝑡) and its 95% confidence bands.

According to the estimation in Figure 5, we conclude that illiteracy has a varied impact on
unemployment during the study period. The impact is greater in the first 4 quarters. Then, it
decreases as we advance in the other quarters.

6. Conclusion
In this article, we defined the functional SAC model for areal data and developed a methodology
to make inference. The proposed model can be seen as an extension of the real-valued SAC
model to a functional model. The proposed maximum likelihood estimation approach based on a
truncation technique is particularly well adapted to spatial regression estimation for functional data
in the presence of spatial dependence. The application of the methodology to real data shows that
illiteracy has a real impact on unemployment in Senegal. This work offers interesting perspectives
for investigation. For example, an adaptation of this method to issues using different covariates
(functional and non-functional) could be developed. Also, the application of this methodology to
other types of data and other areas of activity could be considered.
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