TIME-VARIANT NONPARAMETRIC EXTREME QUANTILE ESTIMATION WITH APPLICATION TO US TEMPERATURE DATA

Mohammed Chowdhury¹

School of Data Science, Kennesaw State University, USA e-mail: mchowd10@kennesaw.edu

Bogdan Gadidov

School of Data Science, Kennesaw State University, USA

Linh Le

School of Data Science, Kennesaw State University, USA

Yan Wang

School of Data Science, Kennesaw State University, USA

Lewis VanBrackle

School of Data Science, Kennesaw State University, USA

Statistical modelling for several years of daily temperature data is somewhat challenging due to remarkable variations of negative and positive temperatures throughout the year. A scatter plot of day and daily temperature shows the high magnitude of variations among data points as dots fall only in the first and fourth quadrants. One parametric modelling approach to this data is to use quantile regression to obtain regression lines on different quantiles. However, these quantile lines cannot make reliable predictions on extreme quantiles when time-variant quantiles differ significantly. In this paper, we develop several two-step nonparametric smoothing estimators and show their superiority over quantile regression for smoothing estimation of nonparametric quantiles with a novel application to temperature data. Narrower bootstrap confidence bands, smaller Minimum Absolute Distance (MAD), smaller bias and MSE, and higher coverage from the application and simulation results show that smoothing curves obtained from these smoothing estimators outperform the quantile regression line.

Keywords: Bandwidth, Kernel, Local Polynomials, Quantile Regression, Spline.

1. Introduction

Kernel smoothing, local polynomial smoothing and spline smoothing are very popular techniques for smoothing a smaller to moderate sized data set under the settings of nonparametric regression. However, these smoothing techniques become meaningless and yield very unstable results when (i) the size of the data is very large, (ii) the data itself shows spiky time-variant behaviour, and

¹Corresponding author.

MSC2020 subject classifications. 62G08.

(iii) one-step smoothing is used to accommodate (i) and (ii). Data having attributes (i) and (ii) are usually smoothed on the first difference or second difference of the response variable to avoid over-smoothing and under-smoothing of the raw data, and statistical interpretations and prediction are made on the original scale by back transformation. On the other hand, when the purpose is to estimate and predict time-variant quantiles (e.g., minimum and maximum temperature of yearly data or other extreme quantiles), a small data set might not have enough time-variant quantiles with substantial variations among them. In this paper, we propose and develop three two-step nonparametric smoothing estimators for smoothing estimation of the time-variant extreme quantiles (empirical or nonparametric quantiles) with attributes (i) and (ii). Two-step smoothing estimators can easily accommodate big data in its estimation procedures if the purpose is to estimate time-variant unknown constants. More specifically, if the purpose is to estimate time variant smoothing quantiles or parameters from multiple years of data, then one-step smoothing (kernel log likelihood smoothing method) is not possible if the parametric structure of the response variable is not specified. A Kernel log likelihood smoothing estimate is obtained from the likelihood function multiplied by the kernel weighting function. Another one-step method, quantile regression, will not be able to make good approximations of the extreme quantiles when time-variant quantiles vary significantly. To overcome these estimation problems, two-step estimation procedure has been incorporated in the estimation procedure. Two-step estimation procedure consists of obtaining raw estimates of unknown quantiles by an empirical approach from the original data in the first step. These raw estimates of the timevariant quantiles are treated as the data points of the response variable and in the second step, the raw estimates are smoothed by applying smoothing estimators such as local polynomial, kernel or spline as derived in Section 3.

Nadaraya–Watson (Nadaraya, 1964; Watson, 1964) first developed and used kernel smoothing estimation, and since then it has been used in many applications, such as kernel density estimation (Silverman, 1986; Scott, 1992), kernel smoothing estimation of unknown functions (Hart and Wehrly, 1986), kernel smoothing estimation of distribution functions (Chowdhury et al., 2017, 2018), kernel smoothing estimation of time-variant parametric models (Chowdhury, 2017), two-step estimation of time-variant parameters and quantiles (Chowdhury et al., 2017), and estimation of time-varying coefficient models by a kernel estimator (Hoover et al., 1998). Local polynomial smoothing was first studied by Stone (1977, 1980, 1982) and Cleveland (1979) and then by Fan (1992, 1993), Fan and Gijbels (1992, 1996) and Ruppert and Wand (1994), among others. Smoothing splines have been studied by many authors, such as Schoenberg (1964), Reinsch (1967), Wahba (1975), and Silverman (1985), to name a few. See Eubank (1999) for a good review of spline methods and Wahba (1990) for a complete theoretical treatment.

In order to obtain smoothing nonparametric quantiles on the entire time range, we have derived three two-step smoothing estimators by modelling the time-variant raw estimates of the nonparametric quantiles. These estimators could be used when the parametric form of the response variable is unknown, the size of the data is big, or the data have significant variation by time points. For the estimation method, we first obtain time-variant raw estimates of the extreme quantiles at a set of distinct time points, and then compute the final estimators at any time point by smoothing the available raw estimates using these nonparametric smoothing estimators. We compare the relative performance of these smoothing estimators among themselves and with the quantile regression line by computing the MAD values of the observed and smoothed quantiles for the temperature data from

seven US cities. We also construct their corresponding bootstrap confidence bands. All statistical computations and simulations are performed in R.

We describe time-varying nonparametric quantiles and parametric quantile regression in Section 2, and present our derivation of two-step smoothing estimators in Section 3. In Section 4, results from simulation studies are shown and an application of our procedures is presented in Section 5. Finally, we briefly discuss in Section 6 some further implications and extensions of the these procedures.

2. Quantiles and parametric quantile regression

Let $F_{Y_{t_ji}}(\cdot)$, j = 1, 2, ..., J, $i = 1, 2, ..., n_j$, be a time-variant distribution function. Y_{t_ji} stands for *i*th observation of the t_j th year. More specifically, if i = 79 and j = 11, then Y_{t_ji} stands for the 79th observation of the 11th year (there are up to 366 observations for each year). A value for the extreme quantile η for each t_j is estimated as

$$\tilde{\xi}_{\eta}(t_{j}) = \inf\{y_{t_{j}i} : F(y_{t_{j}i}) \ge \eta\} = F^{-1}(\eta), \tag{1}$$

where infimum is running over *i* and $\eta \in (0, 1)$. When $F(\cdot)$ does not belong to any parametric family, we can use the empirical version of $F(\cdot)$ to compute $\xi_{\eta}(t_j)$. We consider $\eta = 0.95$ and $\eta = 0.05$ in our application to US temperature data. The quantile regression estimator for quantile η minimises the objective function

$$Q(\beta_q) = \sum_{i:y_i \ge x'_i\beta} \eta |y_i - x'_i\beta_q| + \sum_{i:y_i \ge x'_i\beta} (1 - \eta) |y_i - x'_i\beta_q|.$$
(2)

This nondifferentiable function is minimised via the simplex method, which is guaranteed to yield a solution in a finite number of iterations. Interested readers can refer to the well-known paper of Koenker and Bassett (1978) for more on quantile regression.

3. Three nonparametric regressions

3.1 Estimation method

Our estimation is based on a two-step procedure in which we first split the sample space by a variable such as time or age, which is regarded as the explanatory variable in the nonparametric regression setting. For each split data, unknown statistical constants of interest, known as parameters, are estimated (method of moments, MLE, Bayesian methods or empirical methods) for each time point by engaging the response variable. These point-wise unrefined estimates are sometimes regarded as the raw estimates. In the second step, these unrefined estimates are smoothed by nonparametric regressions to obtain a predicted or smoothed value at any point on the entire time range. More specifically, suppose S is our sample space, which we split in J disjoint sets S_i by time variable t_i such that $\sum_{j=1}^{J} S_j = S$. By using the subjects in S_j at time $t_j \in \mathbf{t}$, we first estimate point-wise quantiles $\tilde{\xi}_{\eta}(t_j)$ of $\xi_{\eta}(t_j)$, and then derive the smoothing estimates of $\xi_{\eta}(t)$ for any $t \in \tau$ by applying the nonparametric regression over the corresponding $\xi_n(t_i)$ at each t_i . This two-step smoothing approach is computationally simple and can be used for both longitudinal data and time-variant cross-sectional data. For cross-sectional data, this procedure does not need correlation assumptions across different time points and for longitudinal data the correlation would be negligible if the repeated measurements appear in a manner of random long distant time points. By following this estimation method, we will derive the following three two-step nonparametric smoothing methods.

3.2 Two-step local polynomial smoothing regression

Suppose that $\xi_{\eta}(t)$ is (p+1) times continuously differentiable with respect to $t \in \tau$. Let $\xi_{\eta}^{(q)}(t)$ be the qth derivative of $\xi_{\eta}(t)$, $1 \le q \le p$, and $\delta_q(t) = \xi_{\eta}^{(q)}(t)/q!$. By the Taylor expansion of $\xi_{\eta}(t)$, we have $\xi_{\eta}(t) \approx \sum_{q=0}^{p} \delta_q(a_0)(t_j - a_0)^q$ for t in some neighbourhood of a_0 . We treat the raw estimates $\tilde{\xi}_{\eta}(t_j)$ as the "observations" of $\xi_{\eta}(t_j)$ at t_j , and obtain the pth local polynomial estimators by minimising $\sum_{j=1}^{J} \{\tilde{\xi}_{\eta}(t_j) - \sum_{q=0}^{p} \delta_q(t)(t_j - a_0)^q\}^2 K_h(t_j - a_0)$, where $K_h(t_j - a_0) = K[(t_j - a_0)/h]/h$, $K(\cdot)$ is a nonnegative kernel function, and h > 0 is a bandwidth. Using the matrix formulation, we define $\tilde{\xi}_{\eta}(t) = (\tilde{\xi}_{\eta}(t_1), \dots, \tilde{\xi}_{\eta}(t_J))^T$, $\delta(t) = (\delta_0(t), \dots, \delta_p(t))^T$, $G(t; h) = \text{diag}\{K_h(t_j - a_0)\}$ with jth column $G_j(t; h) = (0, \dots, K_h(t_j - a_0), \dots, 0)^T$, and $T_p(t)$ the $J \times (p+1)$ matrix with its jth row given by $T_{j,p}(t) = (1, t_j - a_0, \dots, (t_j - a_0)^p)$. The local polynomial estimators $\hat{\delta}_q(t)$ minimise $Q_G[\delta(t)] = [\tilde{\xi}_{\eta}(t) - T_p(t)\delta(t)]^T G(t; h)[\tilde{\xi}_{\eta}(t) - T_p(t)\delta(t)]$. The pth order local polynomial estimator of $\xi_{\eta}^{(q)}(t)$ based on $\tilde{\xi}_{\eta}(t_j)$, which minimises $Q_G[\delta(t)]$, is

$$\widehat{\xi}_{\eta}^{(q)}(t) = \sum_{j=1}^{J} \left\{ W_{q,p+1}(t_j,t;h) \,\widetilde{\xi}_{\eta}(t_j) \right\},\tag{3}$$

where $W_{q,p+1}(t_j,t;h) = q!e_{q+1,p+1}[T_p^T(t)G(t;h)T_p(t)]^{-1}[T_{j,p}^T(t)G_j(t;h)]$ is the "equivalent kernel function" (e.g., Fan and Zhang, 2000) and $e_{q+1,p+1}$ is the row vector of length p + 1 with 1 as its (q + 1)th entry and 0 elsewhere. By definition of $\delta(t)$, we have $\hat{\delta}(t) = (\hat{\delta}_0(t), \dots, \hat{\delta}_p(t))^T$ and $\hat{\xi}_{\eta}^{(q)}(t) = \hat{\delta}_q(t) q!$ is an estimator of $\xi_{\eta}^{(q)}(t), q = 0, 1, \dots, p$. For local polynomial fitting p - q should be taken to be odd as shown in Ruppert and Wand (1994) and Fan and Gijbels (1996). When p = 1, we get the local linear estimator $\hat{\xi}_{\eta_L}(t) = \hat{\delta}_0(t)$ of $\xi_{\eta}(t)$ based on (3) and the equivalent kernel function $W_{0,2}(t_j, t; h)$. So, the local linear estimator is

$$\widehat{\xi}_{\eta_L}(t) = \widehat{\xi}_{\eta}^{(0)}(t|x). \tag{4}$$

3.3 Two-step kernel smoothing regression

Suppose the random bivariate observations $(t_1, \xi_\eta(t_1)), \ldots, (t_J, \xi_\eta(t_J))$ each has joint density $f(t, \xi_\eta(t))$. Let m(t) be an unknown function, which could be expressed by the nonparametric regression model:

$$\xi_{\eta}(t_j) = m(t_j) + \epsilon_j, \quad j = 1, \dots, J,$$
(5)

where ϵ_j satisfies $E(\epsilon_j) = 0$, $Var(\epsilon_j) = \sigma_{\epsilon}^2$ and $Cov(\epsilon_j, \epsilon_k) = 0$ for $j \neq k$. Thus, we have

$$m(t) = E[\xi_{\eta}(t)|T = t] = \int \xi_{\eta}(t) f[\xi_{\eta}(t)|t] d\xi_{\eta}(t) = \frac{\int \xi_{\eta}(t) f[t,\xi_{\eta}(t)] d\xi_{\eta}(t)}{\int f[t,\xi_{\eta}(t)] d\xi_{\eta}(t)} = \frac{N}{D}.$$
 (6)

m(t) is a ratio of two correlated random terms. A product kernel density estimator technique will be used to estimate N and D separately. Therefore, by using the symmetry of the kernel and transformation of variables, we have

$$\begin{split} \hat{f}\left[t,\xi_{\eta}(t)\right] &= \frac{1}{Jh_{t}h_{\xi_{\eta}}} \sum_{j=1}^{J} K\left(\frac{t-t_{j}}{h_{t}}\right) K\left(\frac{\xi_{\eta}(t)-\xi_{\eta}(t_{j})}{h_{\xi_{\eta}}}\right) = \frac{1}{J} \sum_{j=1}^{J} K_{h_{t}}\left(t-t_{j}\right) K_{h_{\xi_{\eta}}}\left(\xi_{\eta}(t)-\xi_{\eta}(t_{j})\right),\\ D &= \int \hat{f}\left[t,\xi_{\eta}(t)\right] d\xi_{\eta}(t) = \frac{1}{J} \sum_{j=1}^{J} K_{h_{t}}\left(t-t_{j}\right) \int K_{h_{\xi_{\eta}}}\left(\xi_{\eta}(t)-\xi_{\eta}(t_{j})\right) d\xi_{\eta}(t) = \frac{1}{J} \sum_{j=1}^{J} K_{h_{t}}\left(t-t_{j}\right) = \hat{f}(t), \end{split}$$

$$N = \int \xi_{\eta}(t) \hat{f}\left[t, \xi_{\eta}(t)\right] d\xi_{\eta} = \frac{1}{J} \int \xi_{\eta}(t) \sum_{j=1}^{J} K_{h_t}\left(t - t_j\right) K_{h_{\xi_{\eta}}}\left(\xi_{\eta}(t) - \xi_{\eta}(t_j)\right) = \frac{1}{J} \sum_{j=1}^{J} K_{h_t}\left(t - t_j\right) \xi_{\eta}(t_j).$$

Therefore, we have

$$\hat{m}(t) = \sum_{j=1}^{J} W_{h_t} (t - t_j) \xi_{\eta}(t_j),$$
(7)

where $K_{h_t}(.) = K(.)/h_t$, $W_{h_t}(t - t_j) = K_{h_t}(t - t_j)/\sum_{j=1}^J K_{h_t}(t - t_j)$, and $\sum_{j=1}^J W_{h_t}(t - t_j) = 1$. Estimator (7) is widely known as the Nadaraya–Watson kernel estimator. *h* is known as the bandwidth or smoothing parameter.

3.4 Two-step spline smoothing regression

Let us consider the data points $(t_1, \xi_\eta(t_1)), (t_2, \xi_\eta(t_2)), \dots, (t_J, \xi_\eta(t_J))$. We want to find a function $\hat{m}(t)$, which is a good approximation to the true regression function $m(t) = E(\xi_\eta(t)|T = t)$. A natural way to do this is to minimise the spline objective function

$$O(m,h) = \sum_{j=1}^{J} \left(\xi_{\eta}(t_j) - m(t_j) \right)^2 + h \int \left(m''(t) \right)^2 dt,$$
(8)

where *h* is a smoothing parameter, chosen by cross-validation. The first term is just the mean squared error (MSE) using the curve m(t) to predict $\xi_{\eta}(t)$. The second term penalises curvature in the function. m'' is the second derivative of *m* with respect to *t*, which confirms the existence of curvature of *m* at *t*. The sign of m'' tells whether *m* is concave or convex but squaring it makes it immaterial. Integration of this over all *t* determines the average curvature of *m*. Finally, this is multiplied by *h* and added to the MSE. Given two functions with the same MSE, we choose the one with less average curvature. It can be shown (Green and Silverman, 1994; Solo, 1999) that (8) has an explicit, finite-dimensional, unique minimiser which is a natural cubic spline with knots at the unique values of the t_j , $j = 1, 2, \ldots, J$. It seems that the family is still over-parametrised, since there are as many as *J* knots, which implies *J* degrees of freedom. However, the penalty term translates to a penalty on the spline coefficients, which are shrunk some of the way toward a linear fit (Hastie et al., 2009). Since the solution is a natural spline, we can write it as $m(t) = \sum_{j=1}^{J} N_j(t)\theta_j$, where the N_j are a *J*-dimensional set of basis functions for representing this family of natural splines. After the above reparametrisation, the optimisation problem (8) turns out to be

$$O(\theta, h) = \sum_{j=1}^{J} \left(\xi_{\eta}(t_j) - \sum_{j=1}^{J} N_j(t) \theta_j \right)^2 + h \int \left(\sum_{j=1}^{J} N_j''(t) \theta_j \right)^2 dt.$$
(9)

By defining the basis matrix and penalty matrices N and $\Omega \in \mathfrak{R}$ by $N_{ij} = N_j(t_i)$ and $\Omega_{ij} = \int N_i''(t)N_j''(t)dt$, for i, j = 1, 2, ..., J, problem (9) becomes

$$O(\theta, h) = (\xi_{\eta} - N\theta)^{T} (\xi_{\eta} - N\theta) + h\theta^{T} \Omega\theta.$$
(10)

The solution is easily seen to be $\tilde{\theta} = (N^T N + h\Omega)^{-1} N^T \xi_{\eta}$, with fitted smoothing spline

$$\hat{m}(t) = N(N^T N + h\Omega)^{-1} N^T \xi_{\eta} = \sum_{j=1}^{J} N_j(t) \tilde{\theta}_j.$$
(11)

3.5 Minimum absolute distance (MAD) values

Suppose $\xi_{\eta}(t_j)$ are the observed values of the nonparametric quantile of order η at time point t_j . In our application, we consider $\eta = 0.95$ and $\eta = 0.05$, which stand for 95th and 5th percentile values. Let $\hat{\xi}_{\eta_{LP}}(t_j)$, $\hat{\xi}_{\eta_{KS}}(t_j)$, $\hat{\xi}_{\eta_{SS}}(t_j)$ and $\hat{\xi}_{\eta_{QR}}(t_j)$ be the smoothed/fitted values obtained from local polynomial smoothing, kernel smoothing, spline smoothing and quantile regression. The MAD values for each of the three smoothing estimates with respect to the quantile regression estimate for each time point are computed by $|\hat{\xi}_{\eta_{LP}}(t_j) - \xi_{\eta}(t_j)|$, $|\hat{\xi}_{\eta_{KS}}(t_j) - \xi_{\eta}(t_j)|$, $|\hat{\xi}_{\eta_{SS}}(t_j) - \xi_{\eta}(t_j)|$ and $|\hat{\xi}_{\eta_{QR}}(t_j) - \xi_{\eta}(t_j)|$ for j = 1, ..., J. In Section 5, we compare the MAD values for each of the seven cities and select the Best Estimator (BE). The BE is chosen as the estimator with the smallest MAD value. The BE refers to the estimator that approximates the observed quantiles best.

3.6 Kernel selection

In nonparametric regression such as local polynomial smoothing and kernel smoothing, the kernel works as a weighting function. Similar to density estimation, kernel regression uses a kernel function $K : \mathfrak{R} \to \mathfrak{R}$, satisfying $\int K(x)dx = 1$, $\int xK(x)dx = 0$, $0 \leq \int x^2K(x)dx \leq \infty$. The Gaussian kernel and the Epanechnikov kernel are two commonly used kernels respectively defined by $K(x) = (2\pi)^{-1/2} \exp(-\frac{1}{2}x^2)$, $x \in \mathfrak{R}$, and $K(x) = \frac{3}{4}(1-x^2)$, $|x| \leq 1$. MISE (Mean Integrated Squared Error) or AMISE (Asymptotic MISE) are two metrics to check the comparative performance of the kernels. The Epanechnikov kernel minimises AMISE, and is therefore considered optimal. The Epanechnikov kernel is used in our application and simulation studies. In nonparametric regression, kernel selection is not as important as the choice of bandwidth. No kernel is used in the two-step spline smoothing estimator.

3.7 Cross-validation for bandwidth choices

In nonparametric regression, the bandwidth controls the smoothness and roughness of the smoothing estimator. Two popular bandwidth selection techniques are "Leave-One-Subject-Out Cross Validation (LSCV)" and "Leave-One-Time-Point-Out Cross Validation (LTCV)." The LSCV procedure deletes observations one at a time while LTCV deletes all observations at the time design points $\mathbf{t} = (t_1, \ldots, t_J)$. The bandwidths for (4) and (7) and smoothing parameters for (11) are selected using the LTCV procedure because our data in the applications and simulations are binned to different time (age) points. The cross-validation criterion is

$$CV(h) = \sum_{j=1}^{J} \sum_{i \in \mathcal{S}_j} W_i \left\{ Y_i(t_j) - \widehat{\xi}_{\eta}^{(-j)}(t_j) \right\}^2,$$
(12)

where W_i is a weight function which could be 1/N and $\hat{\xi}_{\eta}^{(-j)}(t_j)$ is the nonparametric regression estimators of (3), (7) and (11) applied to the data at all time points except time point t_j . The CV choice of h is the one that minimises CV(h) over $h \ge 0$. Bandwidth choice plays a significant role in nonparametric regression. A subjective or wrong choice of very small $(h \to 0)$ or very large $(h \to \infty)$ bandwidth will produce undersmoothed or oversmoothed curves. For a very large choice of bandwidth, nonparametric smoothing estimates converge to the ordinary least squares fit of a straight line yielding higher biases in smoothing curve. On the other hand, if the bandwidth is very small, the smoothing estimates will have large variances.

3.8 Point-wise bootstrap confidence band

Hoover et al. (1998) suggested the "resampling-subject" bootstrap for inferences on nonparametric analysis. By incorporating his suggestion to our two-step estimation procedure, we can obtain a pointwise bootstrap confidence band for $\xi_{\eta}(t)$ by first obtaining *B* bootstrap samples through resampling the subjects from the sample with replacement, and then computing *B* two-step smoothing estimators $\{\hat{\xi}_{\eta}^{b}(t) : b = 1, ..., B\}$ using (4), (7) and (11) for each of the bootstrap samples. A similar procedure is followed to construct bootstrap confidence bands for the quantile regression line. The lower and upper boundaries of the $[100 \times (1 - \alpha)]$ th empirical quantile bootstrap point-wise confidence band of $\hat{\xi}_{\eta}(t)$ are the empirical lower and upper $[100 \times (\alpha/2)]$ th percentiles based on the bootstrap estimators $\{\hat{\xi}_{\eta}^{b}(t) : b = 1, ..., B\}$. Alternatively, if $SD\{\hat{\xi}_{\eta}^{b}(t)\}$ is the empirical standard deviation of $\{\hat{\xi}_{\eta}^{b}(t) : b = 1, ..., B\}$, the $[100 \times (1 - \alpha)]$ th normally approximated bootstrap pointwise confidence interval of $\hat{\xi}_{\eta}(t)$ is $\hat{\xi}_{\eta}(t) \pm Z_{1-\alpha/2} \times SD\{\hat{\xi}_{\eta}^{b}(t)\}$, where $Z_{1-\alpha/2}$ is the $[100 \times (1 - \alpha/2)]$ th percentile value coming from the standard normal distribution.

4. Simulation

In this section, we conduct a simulation study to assess the performances of the smoothing curves obtained from the two-step smoothing estimators against the quantile regression line. We also compare the relative performance of these three two-step smoothing estimators among themselves. We compare their performances by computing BIAS, MSE, and COVERAGE. Data are simulated with increasing variance over 50 time points (TP) with the standard deviation s_t being $s_t = 0.1 + 0.05t$, $t \in \{1, 2, ..., 50\}$. The heterocedastic model for data simulation is $y = b_0 + b_1 t + e$, where $b_0 = 3$, $b_1 = 0.1$ and $e \sim N(0, s_t)$. We generated 500 simulated data to evaluate these four methods on the curve/line estimation for 95th and 5th percentile values. The Epanechnikov kernel and the optimal bandwidth from cross-validation are used for the smoothing estimators. We then calculate MSE, BIAS and COVERAGE to determine which method is best. Table 1 and Table 2 represent the simulation results for the 95th and 5th percentile values respectively. From Table 1, we see that the two-step local polynomial smoothing (LP) and the two-step spline smoothing (SS) have less bias than the quantile regression (QR) line for all 50 time points. For the two-step kernel smoothing (KS), we see that only at first four time points, QR has less bias than the KS. For comparison of MSE for these four methods, we conclude that the SS estimator has less MSE than QR at all 50 time points. We also see that at the first three time points, the KS estimator has a higher MSE than QR and only in the last time point, the LP smoothing estimator has a higher MSE than QR. In all other time points, QR has a higher MSE than then the LP estimator and the KS estimator. For coverage probability, we see that only at time point 49, QR has a higher coverage than the LP estimator and in all other time points, QR has a lower coverage than all three two-step smoothing estimators. From Table 1, we also see that out of the 50 time points, LP has less bias in 17 time points whereas KS and SS have less bias in 18 and 15 time points respectively. In terms of MSE, we see from Table 1 that the KS has a less MSE in 41 time points than the SS and the LP. In terms of Coverage probability, all three smoothing estimators have consistent results. Similar explanations stand for Table 2.

Table 1. Bias, MSE, Coverage and Best Estimator (BE) corresponding to 50 Time Points (TP) for the Quantile Regression (QR), Local Polynomial Smoothing (LP), Kernel Smoothing (KS) and Spline Smoothing (SS) estimators for the 95th percentile values from the simulation design.

			Bias					MSE					Covera	ge	
ТР	QR	LP	KS	SS	BE	QR	LP	KS	SS	BE	QR	LP	KS	SS	BE
1	0.064 25	0.00463	0.399 15	0.006 69	lp	0.014 23	0.00166	0.183 66	0.00941	lp	0.920	0.945	0.245	0.960	ss
2	0.061 18	-0.00538	0.262 46	-0.00319	ss	0.016 54	0.00371	0.088 19	0.01092	lp	0.930	0.995	0.500	0.990	lp
3	0.071 29	-0.00791	0.165 25	-0.00543	SS	0.02093	0.007 52	0.044 64	0.013 55	lp	0.935	0.995	0.730	0.980	lp
4	0.089 26	0.007 39	0.11077	0.01033	lp	0.028 57	0.01001	0.026 27	0.01272	lp	0.895	0.985	0.845	0.975	lp
5	0.100 44	0.01234	0.071 10	0.01493	lp	0.035 54	0.015 30	0.021 87	0.01981	lp	0.930	0.985	0.910	0.975	lp
6	0.081 92	-0.00008	0.031 12	0.00078	lp	0.037 98	0.02053	0.02149	0.023 52	lp	0.960	0.995	0.995	0.975	lp
7	0.079 86	-0.00725	0.009 92	-0.00823	lp	0.04177	0.02215	0.02171	0.03407	ks	0.950	0.995	0.980	0.995	lp, ss
8	0.096 06	0.00426	0.014 23	0.001 54	ss	0.05611	0.02946	0.028 56	0.03657	ks	0.960	0.995	0.990	0.990	lp
9	0.102 21	-0.01241	-0.00884	-0.01601	ks	0.05471	0.03035	0.028 98	0.05234	ks	0.950	0.980	0.975	0.985	ss
10	0.115 24	-0.00287	-0.003 89	-0.00682	lp	0.065 38	0.03327	0.03173	0.05633	ks	0.920	0.990	0.990	0.990	lp, ks, ss
11	0.13342	0.01399	0.013 29	0.00981	ss	0.087 80	0.04618	0.04445	0.05324	ks	0.930	0.985	0.980	0.990	ss
12	0.117 55	-0.00624	-0.004 98	-0.01068	ks	0.094 08	0.053 36	0.05144	0.061 82	ks	0.970	0.980	0.980	0.990	SS
13	0.127 93	-0.01482	-0.01708	-0.01874	lp	0.10173	0.05883	0.057 39	0.08269	ks	0.940	0.990	0.985	0.995	\$\$
14	0.152 21	0.003 83	0.007 03	0.001 22	SS	0.113 69	0.068 22	0.06613	0.09600	ks	0.940	1.000	0.995	1.000	lp, ss
15	0.175 67	0.02365	0.01960	0.02377	ks	0.144 88	0.08265	0.07963	0.12156	ks	0.950	0.990	0.990	0.985	lp, ks
16	0.168 39	0.00292	0.002 74	0.00584	ks	0.147 88	0.09233	0.087 65	0.11506	ks	0.960	0.990	0.990	0.995	ss
17	0.12675	-0.03880	-0.03980	-0.03525	SS	0.125 54	0.08892	0.086 53	0.13331	ks	0.960	0.995	0.995	0.995	lp, ks, ss
18	0.19263	0.02017	0.02042	0.02512	lp	0.178 32	0.101 30	0.095 18	0.13619	ks	0.930	0.985	0.980	0.985	lp, ss
19	0.184 31	-0.00435	-0.003 79	0.00274	SS	0.208 63	0.127 56	0.12267	0.14266	ks	0.965	0.985	0.985	0.995	SS
20	0.191 42	0.01231	0.011 66	0.01788	ks	0.21168	0.13018	0.124 31	0.148 24	ks	0.955	0.990	0.985	0.995	SS
21	0.18547	-0.00595	-0.00489	-0.00495	ks	0.30145	0.18934	0.181 63	0.17652	SS	0.975	0.995	0.995	0.995	lp, ks, ss
22	0.196 90	0.001 05	0.003 62	-0.00004	SS	0.236 81	0.16001	0.15440	0.22822	ks	0.965	0.995	0.995	0.995	lp, ks, ss
23	0.197 82	0.00085	-0.003 42	0.00094	lp	0.272 54	0.17030	0.164 08	0.19883	ks	0.960	0.990	0.985	0.995	SS
24	0.226 26	0.00278	0.007 69	0.00435	lp	0.288 84	0.17887	0.169 10	0.27431	ks	0.965	0.985	0.985	1.000	SS
25	0.222 51	0.001 81	0.00049	-0.00034	SS	0.279 59	0.16815	0.163 04	0.231 27	ks	0.960	0.995	0.995	0.995	lp, ks, ss
26	0.232 25	-0.00249	-0.00077	-0.01138	ks	0.31266	0.20060	0.189 93	0.27053	ks	0.940	0.990	0.990	0.995	SS
27	0.227 57	-0.01118	-0.01484	-0.02007	lp	0.38842	0.24513	0.23673	0.300 00	ks	0.970	0.995	0.995	1.000	88
28	0.270 96	0.02097	0.015 47	0.01948	ks	0.409 51	0.23771	0.232 56	0.35996	ks	0.930	0.990	0.990	0.995	SS
29	0.259 05	0.00601	0.00972	0.01003	lp	0.41258	0.26056	0.252 14	0.35465	ks	0.940	0.995	0.995	0.985	lp, ks
30	0.246 40	-0.014 57	-0.004 28	-0.01101	ks	0.459 18	0.298 59	0.278 81	0.43137	ks	0.960	0.985	0.985	0.985	lp, ks, ss
31	0.25585	-0.00439	-0.00322	-0.00416	ks	0.537 05	0.341 62	0.323 36	0.39522	ks	0.975	0.995	0.995	1.000	SS
32	0.311 17	0.04842	0.042 69	0.04396	ks	0.45838	0.271 80	0.264 32	0.378 54	ks	0.940	0.975	0.975	0.985	88
33	0.171 32	-0.08865	-0.093 48	-0.099 57	lp	0.55813	0.37777	0.365 95	0.42712	ks	0.985	0.995	0.995	1.000	88
34	0.328 32	0.07617	0.075 05	0.06025	SS	0.544 38	0.327 52	0.315 62	0.444 87	ks	0.945	0.990	0.985	0.990	lp, ss
35	0.21172	-0.048 10	-0.044 56	-0.06164	ks	0.567 33	0.37944	0.369 00	0.52047	ks	0.970	0.985	0.985	0.990	SS
36	0.265 38	-0.01243	-0.00836	-0.01607	ks	0.52441	0.355 80	0.346 31	0.45928	ks	0.965	0.985	0.985	0.985	lp, ks, ss
37	0.33627	0.038 86	0.038 86	0.044 57	ks	0.66087	0.375 24	0.358 00	0.49119	ks	0.980	0.990	0.990	0.985	lp, ks
38	0.324 62	0.008 68	0.008 11	0.01696	ks	0.72391	0.47046	0.453 72	0.62837	ks	0.985	0.985	0.985	0.995	SS
39	0.284 20	-0.031 08	-0.037 20	-0.02279	SS	0.74661	0.47226	0.441 82	0.646 82	ks	0.975	0.990	1.000	0.990	ks
40	0.374 69	0.04680	0.04211	0.05966	ks	0.78038	0.48931	0.468 29	0.66490	ks	0.935	0.990	0.990	0.995	SS
41	0.334 26	0.008 81	0.004 29	0.02640	ks	0.76065	0.47213	0.454 59	0.63980	ks	0.955	0.985	0.985	0.980	lp, ks
42	0.306 12	-0.02824	-0.023 77	-0.01419	SS	0.767 04	0.54803	0.51463	0.65794	ks	0.990	0.995	0.995	0.995	lp, ks, ss
43	0.330 58	0.00418	-0.008 81	0.01246	lp	0.799 22	0.54640	0.531 84	0.78488	ks	0.945	0.985	0.985	0.985	lp, ks, ss
44	0.237 98	-0.08651	-0.09265	-0.07747	ss	0.87177	0.62392	0.591 79	0.70685	ks	0.985	0.995	0.995	0.995	lp, ks, ss
45	0.384 79	0.05659	0.02710	0.06449	ks	0.920.05	0.58782	0.55179	0.684 89	ks	0.940	0.985	0.990	0.985	ks
46	0.325 14	-0.01238	-0.079 62	-0.01648	lp	0.881 25	0.59229	0.574 85	0.72694	ks	0.965	0.975	0.985	0.985	ks, ss
47	0.319 18	-0.02565	-0.126 81	-0.044 49	lp	0.815 39	0.57140	0.551 09	0.65286	ks	0.950	0.975	0.980	0.980	ks, ss
48	0.399 23	0.04661	-0.133 83	0.02065	ss	1.294 77	0.785.62	0.870.90	0.71095	ss	0.980	0.980	0.990	0.995	ss
49	0.341 17	-0.01670	-0.299 60	-0.044 20	lp	1.304.80	0.342.84	0.86344	0.75018	lp	0.980	0.975	1.000	1.000	ks, ss
- 50	0.458 //	0.082.83	-0.52700	0.04840	SS	0.988.80	2.00927	0.023.01	0.75852	KS	0.935	0.975	1.000	0.980	KS

Table 2. Bias, MSE, Coverage and Best Estimator (BE) corresponding to 50 Time Points (TP) for the Quantile Regression (QR), Local Polynomial Smoothing (LP), Kernel Smoothing (KS) and Spline Smoothing (SS) estimators for the 5th percentile values of the simulation design.

	Bias fo	or Maximum	Smoothing	Values		MSE	for Maxim	um Smoot	hing Values		Covera	ige for N	laximun	1 Smootl	ning Values
ТР	QR	LP	KS	SS	BE	QR	LP	KS	SS	BE	QR	LP	KS	SS	BE
1	-0.03367	-0.001 54	-0.18687	-0.00002	ss	0.00711	0.003 40	0.04444	0.009 41	lp	0.935	0.935	0.480	0.945	SS
2	-0.031 56	0.007 54	-0.15130	0.008 51	lp	0.009 86	0.005 03	0.033 92	0.01092	lp	0.940	0.965	0.660	0.940	lp
3	-0.049 70	-0.003 11	-0.13766	-0.00214	SS	0.014 63	0.00677	0.03079	0.013 55	lp	0.910	0.945	0.715	0.945	lp, ss
4	-0.067 66	-0.01007	-0.12292	-0.009 58	SS	0.017 54	0.01043	0.03044	0.01272	lp	0.905	0.950	0.810	0.955	SS
5	-0.07163	-0.00774	-0.10091	-0.006 86	ss	0.023 47	0.01441	0.028 19	0.01981	lp	0.920	0.955	0.880	0.955	lp, ss
6	-0.07629	-0.00735	-0.08531	-0.00610	SS	0.029 27	0.018 88	0.028 51	0.023 52	lp	0.930	0.960	0.915	0.955	lp
7	-0.053 37	0.019 58	-0.045 56	0.02241	lp	0.037 41	0.02948	0.03163	0.034 07	lp	0.955	0.940	0.960	0.950	ks
8	-0.088 11	-0.00604	-0.058 39	-0.00221	SS	0.044 19	0.03279	0.036 62	0.036 57	lp	0.925	0.960	0.940	0.960	lp, ss
9	-0.067 36	0.02024	-0.02617	0.023 67	lp	0.055 82	0.048 95	0.047 94	0.052 34	ks	0.950	0.935	0.940	0.940	qr
10	-0.08518	0.008 86	-0.02479	0.01244	lp	0.065 34	0.054 37	0.05374	0.05633	ks	0.945	0.950	0.960	0.960	ks, ss
11	-0.10988	-0.01322	-0.03843	-0.00612	SS	0.065 90	0.05051	0.05208	0.053 24	lp	0.930	0.955	0.960	0.960	ks, ss
12	-0.121 29	-0.01606	-0.03510	-0.00874	SS	0.079 07	0.056 59	0.05872	0.061 82	lp	0.930	0.960	0.965	0.955	ks
13	-0.10267	0.011 14	0.00041	0.01893	ks	0.097 01	0.07597	0.07286	0.08269	ks	0.940	0.940	0.945	0.950	SS
14	-0.13173	-0.009 15	-0.01940	-0.00273	SS	0.11768	0.09062	0.087 52	0.096 00	ks	0.940	0.945	0.950	0.950	ks, ss
15	-0.078 83	0.053 30	0.039 09	0.058 14	ks	0.128 69	0.11445	0.108 20	0.121 56	ks	0.950	0.930	0.935	0.940	qr
16	-0.16068	-0.01883	-0.02257	-0.01486	SS	0.145 51	0.10746	0.10606	0.115 06	ks	0.930	0.960	0.960	0.955	lp, ks
17	-0.18585	-0.033 10	-0.03528	-0.03228	SS	0.172 10	0.12772	0.12675	0.133 31	ks	0.945	0.955	0.955	0.945	lp, ks
18	-0.12649	0.034 92	0.036 25	0.034 53	SS	0.159 19	0.12695	0.124 89	0.13619	ks	0.950	0.955	0.955	0.950	lp, ks
19	-0.167 38	-0.00104	-0.00028	-0.00361	ks	0.175 50	0.13461	0.13279	0.14266	ks	0.935	0.965	0.965	0.965	lp, ks, ss
20	-0.213 36	-0.03918	-0.04067	-0.041 32	lp	0.194 60	0.14296	0.141 67	0.148 24	ks	0.920	0.960	0.960	0.950	lp, ks
21	-0.20826	-0.02572	-0.02558	-0.03111	ks	0.227 48	0.16617	0.16042	0.17652	ks	0.925	0.955	0.950	0.955	lp, ss
22	-0.19034	0.000 09	-0.00879	-0.00655	lp	0.281 00	0.20655	0.19972	0.22822	ks	0.930	0.960	0.960	0.960	lp, ks, ss
23	-0.17207	0.027 16	0.025 03	0.01944	SS	0.240 29	0.17815	0.17281	0.198 83	ks	0.940	0.955	0.955	0.950	lp, ks
24	-0.22689	-0.01876	-0.01560	-0.02887	ks	0.33813	0.24754	0.24441	0.27431	ks	0.940	0.960	0.960	0.960	lp, ks, ss
25	-0.218 40	-0.002 86	-0.004 50	-0.015 33	lp	0.29043	0.208 56	0.204 04	0.231 27	ks	0.955	0.970	0.970	0.960	lp, ks
26	-0.18801	0.035 84	0.04005	0.025 43	ss	0.32143	0.243 74	0.241 32	0.27053	ks	0.955	0.965	0.965	0.960	lp, ks
27	-0.20926	0.021 29	0.018 28	0.01249	SS	0.375 58	0.284 66	0.277 94	0.300 00	ks	0.935	0.950	0.945	0.950	lp, ss
28	-0.286 59	-0.059 18	-0.06019	-0.066 87	lp	0.465 18	0.325 70	0.318 87	0.35996	ks	0.930	0.950	0.950	0.945	lp, ks
29	-0.238 12	-0.01065	-0.00510	-0.015 03	ks	0.437 35	0.33931	0.333 47	0.35465	ks	0.970	0.975	0.975	0.980	SS
30	-0.21945	0.009 01	0.011 32	0.009 43	lp	0.52576	0.388 30	0.381 33	0.431 37	ks	0.940	0.955	0.955	0.960	SS
31	-0.27046	-0.035 59	-0.03387	-0.03670	ks	0.496 02	0.355 33	0.34617	0.39522	ks	0.950	0.945	0.940	0.955	SS
32	-0.27583	-0.03276	-0.03847	-0.03809	lp	0.50473	0.35621	0.34076	0.378 54	ks	0.945	0.955	0.955	0.965	SS
33	-0.21467	0.036 59	0.03576	0.03213	SS	0.487 65	0.404 85	0.40175	0.427 12	ks	0.935	0.955	0.955	0.965	SS
34	-0.255 68	0.005 47	0.01376	0.004 90	SS	0.52470	0.41291	0.407 70	0.444 87	ks	0.960	0.950	0.950	0.950	qr
35	-0.229 57	0.04015	0.051 24	0.039 87	SS	0.61595	0.487 54	0.478 33	0.52047	ks	0.945	0.950	0.945	0.950	lp, ss
36	-0.298 29	-0.02284	-0.02647	-0.02687	lp	0.561 04	0.42090	0.407 15	0.459 28	ks	0.935	0.950	0.955	0.955	ks, ss
37	-0.297 26	-0.017 95	-0.00889	-0.02040	ks	0.596 51	0.46615	0.461 67	0.491 19	ks	0.935	0.955	0.955	0.950	lp, ks
38	-0.201 12	0.08033	0.09916	0.07913	SS	0.723 35	0.58460	0.577 47	0.628 37	ks	0.955	0.945	0.940	0.960	SS
39	-0.288 14	-0.003 02	0.023 25	-0.008 39	lp	0.79041	0.602 80	0.58407	0.646 82	ks	0.940	0.945	0.940	0.950	SS
40	-0.21661	0.07773	0.088 03	0.066 60	SS	0.767 66	0.628 87	0.61174	0.66490	ks	0.955	0.940	0.920	0.930	qr
41	-0.24084	0.07248	0.09705	0.06346	SS	0.753 35	0.604 92	0.597 11	0.639 80	ks	0.950	0.955	0.955	0.950	lp, ks
42	-0.325 61	0.009 85	0.037 26	-0.003 12	SS	0.80273	0.609 52	0.566 09	0.657 94	ks	0.950	0.960	0.960	0.965	SS
43	-0.388 27	-0.035 10	0.00627	-0.054 14	ks	0.97316	0.73678	0.72060	0.78488	ks	0.955	0.950	0.940	0.965	SS
44	-0.390 09	-0.029 91	0.035 40	-0.043 09	lp	0.901 56	0.67517	0.655 64	0.706 85	ks	0.950	0.960	0.965	0.960	ks
45	-0.342 02	0.015 89	0.08624	0.01297	SS	0.898 33	0.627 19	0.62699	0.684 89	ks	0.950	0.945	0.945	0.950	qr, ss
46	-0.361 46	-0.009 44	0.064 40	-0.01074	lp	0.967 00	0.693 63	0.673 28	0.72694	ks	0.955	0.945	0.935	0.950	qr
47	-0.380 94	-0.027 25	0.067 02	-0.021 64	SS	0.91349	0.542 09	0.58494	0.65286	lp	0.945	0.950	0.940	0.935	lp
48	-0.418 14	-0.053 62	0.061 09	-0.05010	SS	0.971 18	0.583 49	0.597 32	0.71095	lp	0.935	0.935	0.940	0.950	SS
49	-0.344 33	0.045 02	0.183 37	0.031 88	SS	0.961 01	0.51763	0.761 24	0.75018	lp	0.955	0.950	0.940	0.950	qr
50	-0.34673	0.077 28	0.201 69	0.037 28	SS	0.996 87	1.35717	0.765.60	0.73852	SS	0.940	0.950	0.940	0.945	lp

5. Application to temperature data in seven US cities

We apply our methods to temperature data measured in degree Celsius from seven US cities. The cities were selected in such a way that three of them are in the extreme north (Minneapolis, Portland and Seattle), three are in the extreme south (Dallas, Miami, San Diego) and one (Kansas) is in the middle of the US. These data were recorded on each day by the US Meteorological Department from 1990 to 2016. From this data, we computed the 95th and 5th percentile temperature for each of the 27 years for these 7 cities. We have J = 27 distinct time design points $\{t_1, t_2, \ldots, t_{27}\} = \{1990, 1991, \ldots, 2016\}$. Thus, for a given $1 \le j \le J = 27$, we denote $T_{0.95}(t_j)$ and $T_{0.05}(t_j)$ as the 95th and 5th percentile values of temperature at year t_j . The values of $T_{0.95}(t_j)$ and $T_{0.05}(t_j)$ are regarded as the raw estimate for each t_j . Applying the two-step local polynomial smoothing (LP) estimator (4), kernel smoothing (KS) estimator (7), spline smoothing (SS) estimator (11) to the quantiles $\{T_{0.95}(t_j), t_j; 1 \le j \le J, 1 \le i \le n\}$ and $\{T_{0.05}(t_j), t_j; 1 \le j \le J, \}$, we obtain the 95th and 5th smoothing quantile curves on temperature data for any time point within the entire time design points $\{t_1, t_2, \ldots, t_{27}\} = \{1990, 1991, \ldots, 2016\}$. It should be noted that the fitted quantile regression (QR) line from equation (2) is obtained from the entire data Y_{t_i} .

Figures 1 and 2 show the KS estimates, LP estimates, SS estimates, and QR estimates of $T_{0.95}(t_j)$ and $T_{0.05}(t_j)$ and their corresponding bootstrap pointwise 95% confidence bands based on B=500 bootstrap replications. The Epanechnikov kernel was used as a weighting function for KS and LP smoothing. In Figure 1, KS T0.95 DAL, LPS T0.95 DAL, SS T0.95 DAL and QR T0.95 DAL stand for two-step kernel smoothing estimates, two-step local polynomial smoothing estimates, two-step spline smoothing estimates, and quantile regression estimates of $T0.95(t_j)$ in Dallas. Similar abbreviations are used for other cities corresponding to $T_{0.95}(t_j)$ and $T_{0.05}(t_j)$ in Figures 1 and 2.

The value of the bandwidth h was chosen by minimising the LTCV scores. One concern when choosing the optimal h in this application is that a range of h was set in advance. This is because a too large h will flatten the smooth curve and fail to catch the "curvature" pattern in the original data while a too small h will make the smooth curve too spiky. Therefore, a range of 1 to 10 of h was used for KS and LP estimates to look for the value that can minimise the LTCV scores, while a range of 0 to 1.5 was used for SS estimates of parameter λ . Furthermore, to avoid getting unusual estimations near the boundary of the sample data (close to 1990 or 2016), some observations that were close to the boundary were removed when comparing the LTCV scores. A parameter named TRIMMED was used to control the number of observations removed. For instance, TRIMMED = 1 means that the first and last observations were removed when comparing the LTCV scores. Since there are only 27 observations for each city, the value of TRIMMED was controlled within 3 in this application. Tables 3 and 4 show the values of h and TRIMMED for KS estimates, LP estimates, and SS estimates of $T_{0.95}(t_i)$ and $T_{0.05}(t_i)$ for each of the 7 cities. In Table 3, KS_h and KS_Trim stand for values of bandwidth h and TRIMMED for two-step kernel smoothing estimates of $T_{0.95}(t_i)$. LP_h and LP_Trim stand for values of bandwidth h and TRIMMED for two-step local polynomial smoothing estimates of $T_{0.95}(t_i)$. SS_h and SS_Trim stand for values of bandwidth h and TRIMMED for spline smoothing estimates of $T_{0.95}(t_i)$. Similar abbreviations stand for the $T_{0.05}(t_i)$ in Table 4.

Bootstrap confidence bands have been calculated to demonstrate that the bandwidth choice is made correctly and also to see which smoothing estimator has narrower confidence bands. In Figures 1 and 2, dots represent the raw estimates, solid black lines represent smoothing estimates and dashed lines represent the 95% pointwise bootstrap confidence bands of $T_{0.95}(t_i)$ and $T_{0.05}(t_i)$. By looking

City	KS_h	KS_Trim	LP_h	LP_Trim	SS_h	SS_Trim
DAL	1.15	3	1.01	3	0.25	3
KANSAS	1.02	3	1.01	3	0.24	3
MIAMI	10.01	3	10.01	3	0.99	3
MINNEAPOLIS	1.18	3	1.01	3	0.20	3
PORTLAND	1.26	3	1.01	3	0.26	3
SAN DIEGO	2.80	3	1.04	3	0.68	3
SEATTLE	3.39	3	1.26	3	0.75	3

Table 3. Values of the bandwidth *h* and TRIMMED for the 7 cities for the kernel smoothing estimate, local polynomial smoothing estimate, and spline smoothing estimate of $T0.95(t_i)$.

Table 4. Values of the bandwidth *h* and TRIMMED for the 7 cities for the kernel smoothing estimate, local polynomial smoothing estimate, and spline smoothing estimate of $T0.05(t_i)$.

City	KS_h	KS_Trim	LPS_h	LPS_Trim	SS_h	SS_Trim
DAL	1.17	3	10.01	3	0.35	3
KANSAS	1.24	3	10.01	3	0.26	3
MIAMI	1.11	3	1.01	3	0.59	3
MINNEAPOLIS	1.31	3	10.01	3	0.25	3
PORTLAND	10.01	3	10.01	3	1.51	3
SAN DIEGO	4.05	3	1.55	3	0.70	3
SEATTLE	1.01	3	1.01	3	0.52	3

at the figures, we see that KS and LP estimators are a little rough compared to the SS estimator, and the SS estimator produces narrower bootstrap confidence bands. A close look at Figure 1 tells that there is not much change in Miami for $T_{0.95}(t_j)$. In San Diego and Seattle, we see from Figure 2 that there is an upward trend in $T0.05(t_j)$ from 1990 to 2016. In all figures, we see that two-step smoothing estimators better approximate the extreme quantiles than quantile regression line. Tables 5 to 11 show nonparametric raw quantile values $(T_{0.95}(t_j), \text{ and } T_{0.05}(t_j))$, two-step kernel smoothing estimates $(KS_{.95}(t_j) \text{ and } KS_{.05}(t_j))$, two-step local polynomial smoothing estimates $(LP_{.95}(t_j))$ and $LP_{.95}(t_j))$, two-step spline smoothing estimates $(SS_{.95}(t_j) \text{ and } SS_{.95}(t_j))$, and fitted quantile regression values $(QR_{.95}(t_j) \text{ and } QR_{.95}(t_j))$ for 95th and 5th percentile values from 1990 to 2016 for each of the 7 cities. Tabular representation of pointwise bootstrap confidence band have been omitted to avoid redundancy. From Tables 5 to 11, we see that all three two-step smoothing values better approximate the values of $T_{.95}(t_j)$ and $T_{.95}(t_j)$ than the values obtained by the quantile regression line in most of the 27 time points.

6. Discussion

We proposed and developed three two-step smoothing estimators for smoothing estimation of timevariant nonparametric extreme quantiles. We compared their performances among themselves and also compared them against quantile regression. We showed by application and simulation that smoothing curves obtained from these smoothing estimators outperformed the quantile regression line in terms of smaller MAD values, narrower bootstrap confidence bands, smaller bias, smaller MSE and higher coverage probability.

There are a number of theoretical and methodological aspects that need to be investigated. Theoretical and simulation studies are needed to investigate the properties of other smoothing methods, such as B-splines, wavelets and other basis approximations, and their corresponding asymptotic inference procedures. If data can be approximated by a parametric probability model, then the one-step kernel log likelihood smoothing method could also be investigated. However, it is extremely hard to approximate time-variant data by a parametric probability model. Under robustness assumptions, one can check the performance of one-step kernel log likelihood estimation method with the above estimation methods.

References

- CHOWDHURY, M. (2017). Nonparametric estimation of time-variant parametric models with application to cross-sectional data. *Journal of the Japan Statistical Society*, **47**, 197–220.
- CHOWDHURY, M., VANBRACKLE, L., AND PATWARY, M. (2017). Two-step smoothing estimation of the time-variant parameter with application to temperature data. *Journal of the Iranian Statistical Society*, **16**, 33–50.
- CHOWDHURY, M., WU, C., AND MODARRES, R. (2017). Local Box-Cox transformation on timevarying parametric models for smoothing estimation of conditional CDF with longitudinal data. *Journal of Statistical Computation and Simulation*, **87**, 2900–2914.
- CHOWDHURY, M., WU, C., AND MODARRES, R. (2018). Nonparametric estimation of conditional distribution functions with longitudinal data and time-varying parametric models. *Metrika*, **81**, 61–83.
- CLEVELAND, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. *Journal* of the American Statistical Association, **74**, 829–836.
- EUBANK, R. L. (1999). *Nonparametric Regression and Spline Smoothing*. CRC Press, New York, NY.
- FAN, J. (1992). Design-adaptive nonparametric regression. Journal of the American Statistical Association, 87, 998–1004.
- FAN, J. (1993). Local linear regression smoothers and their minimax efficiencies. Annals of Statistics, 21, 196–216.
- FAN, J. AND GIJBELS, I. (1992). Variable bandwidth and local linear regression smoothers. Annals of Statistics, 20, 2008–2036.
- FAN, J. AND GIJBELS, I. (1996). *Local Polynomial Modelling and Its Applications*. Chapman & Hall, London.
- FAN, J. AND ZHANG, J.-T. (2000). Two-step estimation of functional linear models with applications

to longitudinal data. *Journal of the Royal Statistical Society: Series B*, **62**, 303–322.

- GREEN, P. J. AND SILVERMAN, B. W. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. London, Chapman & Hall.
- HART, J. D. AND WEHRLY, T. E. (1986). Kernel regression estimation using repeated measurements data. *Journal of the American Statistical Association*, **81**, 1080–1088.
- HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. (2009). *The Elements of Statistical Learning*. Springer, New York, NY.
- HOOVER, D. R., RICE, J. A., WU, C. O., AND YANG, L.-P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. *Biometrika*, **85**, 809–822.
- KOENKER, R. AND BASSETT, G. (1978). Regression quantiles. Econometrica, 46, 33-50.
- NADARAYA, E. A. (1964). On estimating regression. *Theory of Probability & Its Applications*, 9, 157–159.
- REINSCH, C. H. (1967). Smoothing by spline functions. Numerische Mathematik, 10, 177–183.
- RUPPERT, D. AND WAND, M. P. (1994). Multivariate locally weighted least squares regression. *Annals of Statistics*, **22**, 1346–1370.
- SCHOENBERG, I. J. (1964). Spline functions and the problem of graduation. In Proceedings of the National Academy of Sciences of the United States of America, volume 52. National Academy of Sciences, Washington, DC, 947–950.
- SCOTT, D. W. (1992). *Multivariate Density Estimation: Theory, Practice, and Visualization*. Wiley & Sons, New York, NY.
- SILVERMAN, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. *Journal of the Royal Statistical Society: Series B*, **47**, 1–52.
- SILVERMAN, B. W. (1986). *Density Estimation for Statistics and Data Analysis*. CRC Press, Boca Raton, FL.
- Solo, V. (1999). Selection of regularisation parameters for total variation denoising. *In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing*, volume 3. 1653–1655.
- STONE, C. J. (1977). Consistent nonparametric regression. Annals of Statistics, 5, 595-620.
- STONE, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Annals of Statistics, 8, 1348–1360.
- STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. *Annals of Statistics*, **10**, 1040–1053.
- WAHBA, G. (1975). Smoothing noisy data with spline functions. *Numerische Mathematik*, 24, 383–393.
- WAHBA, G. (1990). Spline Models for Observational Data, volume 59. SIAM, Philadelphia, PA.
- WATSON, G. S. (1964). Smooth regression analysis. Sankhyā: Series A, 26, 359–372.

Manuscript received 2020-05-01, revised 2021-02-09, accepted 2021-07-01.

Figure 1. KS, LP, SS and QR estimates (solid lines) of T0.95 together with point-wise bootstrap confidence bands (dashed lines).

Figure 2. KS, LP, SS and QR estimates (solid lines) of T0.05 together with point-wise bootstrap confidence bands (dashed lines).

$QR_{.05}($	$(t_j))$ of the	95th and 5th	n percentile 1	temperature	from Dallas	in the Uni	ited States fr	om 1990 to	2016.	
t_{j}	$T_{.95}(t_j)$	$KS_{.95}(t_j)$	$LP_{.95}(t_j)$	$SS_{.95}(t_j)$	$QR_{.95}(t_j)$	$T_{.05}(t_{j})$	$KS_{.05}(t_j)$	$LP_{.05}(t_j)$	$SS_{.05}(t_j)$	$QR_{.05}(t_j)$
1990	37.20	37.17	37.21	37.22	38.74	-0.48	-0.52	-0.77	-0.63	-4.43
1991	36.70	36.67	36.66	36.51	38.82	-1.10	-0.95	-0.81	-0.47	-4.41
1992	35.60	35.79	36.56	36.08	38.90	0.73	0.51	-0.85	-0.11	-4.38
1993	37.80	37.61	36.89	37.28	38.98	-1.00	-0.90	-0.88	-0.54	-4.35
1994	36.70	36.78	37.00	37.02	39.07	-1.10	-1.09	-0.91	-1.14	-4.33
1995	37.10	37.05	36.89	36.96	39.15	-1.10	-1.30	-0.94	-1.99	-4.30
1996	36.70	36.69	36.81	36.55	39.23	-4.28	-3.88	-0.97	-2.71	-4.28
1997	36.10	36.32	37.24	36.67	39.32	-1.10	-1.22	-0.99	-1.54	-4.25
1998	39.40	39.15	38.13	38.75	39.40	0.12	0.08	-1.02	-0.11	-4.22
1999	38.30	38.40	38.48	38.76	39.48	0.70	0.55	-1.05	0.19	-4.20
2000	38.90	38.74	38.07	38.50	39.57	-1.10	-1.02	-1.07	-0.69	-4.17
2001	36.70	36.79	37.24	36.90	39.65	-1.58	-1.56	-1.10	-1.47	-4.14
2002	36.10	36.22	36.74	36.42	39.73	-1.70	-1.69	-1.13	-1.78	-4.12
2003	37.68	37.44	36.58	36.93	39.82	-1.70	-1.69	-1.16	-1.73	-4.09
2004	35.00	35.28	36.50	35.69	39.90	-1.55	-1.50	-1.20	-1.31	-4.06
2005	37.20	37.20	37.16	37.22	39.98	-0.60	-0.58	-1.23	-0.53	-4.04
2006	39.40	39.09	37.74	38.62	40.06	0.60	0.42	-1.27	-0.07	-4.01
2007	36.10	36.40	37.56	36.98	40.15	-1.10	-0.96	-1.31	-0.50	-3.98
2008	38.18	38.04	37.66	37.68	40.23	-0.60	-0.70	-1.35	-0.95	-3.96
2009	37.80	37.85	38.08	37.89	40.31	-1.70	-1.63	-1.40	-1.53	-3.93
2010	38.30	38.40	38.75	38.59	40.40	-1.70	-1.76	-1.44	-1.88	-3.91
2011	40.48	40.30	39.39	40.09	40.48	-2.68	-2.46	-1.50	-1.75	-3.88
2012	39.40	39.40	39.19	39.53	40.56	0.00	-0.26	-1.55	-1.18	-3.85
2013	38.30	38.30	38.35	38.27	40.65	-1.60	-1.64	-1.61	-1.83	-3.83
2014	37.20	37.26	37.54	37.30	40.73	-3.80	-3.49	-1.68	-2.55	-3.80
2015	37.20	37.20	37.11	37.15	40.81	-1.00	-1.11	-1.75	-1.55	-3.77
2016	37.20	37.20	37.02	37.20	40.90	0.00	-0.07	-1.82	-0.03	-3.75

Table 5. Raw estimates $(T_{.95}(t_j), T_{.05}(t_j))$, kernel smoothing estimates $(KS_{.95}(t_j), KS_{.05}(t_j))$, local polynomial smoothing

$(05(t_j))$, local polynomial smoothi	antile regression estimate (QR .95(ates from 1990 to 2016.
ble 6. Raw estimates $(T_{.95}(t_j), T_{.05}(t_j))$, kernel smoothing estimates $(KS_{.95}(t_j), K_{.95}(t_j))$	imates $(LP_{.95}(t_j), LP_{.05}(t_j))$, spline smoothing estimate $(SS_{.95}(t_j), SS_{.05}(t_j))$, and t	$\mathcal{R}_{.05}(t_j)$) of the 95th and 5th percentile temperature from Kansas City in the United

t_j	$T_{.95}(t_j)$	$KS.95(t_j)$	$LP_{.95}(t_j)$	$SS_{.95}(t_j)$	$QR_{.95}(t_j)$	$T_{.05}(t_j)$	$KS_{.05}(t_j)$	$LP_{.05}(t_j)$	$SS_{.05}(t_j)$	$QR_{.05}(t_j)$
1990	34.40	34.42	34.73	34.61	34.87	-7.80	-8.12	-9.64	-8.27	-15.47
1991	35.00	34.86	33.76	34.28	35.00	-11.58	-10.85	-9.72	-10.13	-15.47
1992	30.60	30.79	32.59	31.45	35.13	-6.10	-6.89	-9.80	-7.76	-15.47
1993	32.80	32.75	32.54	32.42	35.27	-10.60	-10.33	-9.87	-9.91	-15.46
1994	33.30	33.29	32.95	33.36	35.40	-11.70	-11.47	-9.94	-11.20	-15.46
1995	33.30	33.25	32.84	33.09	35.53	-9.88	-10.46	-10.01	-11.33	-15.45
1996	31.70	31.78	32.55	32.03	35.67	-15.45	-14.60	-10.07	-13.86	-15.45
1997	32.80	32.78	32.75	32.63	35.80	-10.26	-10.47	-10.13	-10.78	-15.45
1998	33.30	33.30	33.30	33.33	35.93	-7.68	-7.92	-10.19	-7.85	-15.44
1999	33.90	33.90	33.81	33.92	36.07	-8.20	-8.52	-10.26	-8.80	-15.44
2000	34.40	34.37	34.16	34.22	36.20	-12.80	-12.21	-10.32	-11.71	-15.43
2001	33.90	33.96	34.51	34.23	36.33	-9.88	-9.95	-10.39	-10.06	-15.43
2002	35.60	35.55	34.86	35.52	36.47	-7.80	-8.22	-10.46	-8.52	-15.43
2003	35.60	35.47	34.34	34.95	36.60	-11.10	-10.92	-10.53	-10.75	-15.42
2004	31.10	31.32	33.50	32.05	36.73	-12.08	-11.87	-10.61	-11.93	-15.42
2005	34.30	34.25	33.94	33.92	36.87	-10.48	-10.26	-10.69	-9.92	-15.42
2006	35.60	35.55	34.66	35.59	37.00	-6.10	-6.80	-10.77	-7.29	-15.41
2007	35.00	34.92	34.12	34.70	37.13	-10.60	-10.52	-10.87	-10.39	-15.41
2008	31.70	31.81	32.96	32.08	37.27	-14.13	-13.57	-10.96	-13.17	-15.40
2009	32.10	32.14	32.81	32.08	37.40	-10.60	-10.91	-11.07	-11.40	-15.40
2010	33.90	33.88	33.83	33.72	37.53	-11.00	-11.02	-11.18	-11.05	-15.40
2011	35.00	35.05	35.15	35.46	37.67	-11.70	-11.37	-11.30	-10.85	-15.39
2012	37.80	37.61	35.60	37.02	37.80	-8.18	-8.72	-11.43	-9.15	-15.39
2013	33.78	33.86	34.48	34.26	37.93	-11.60	-11.63	-11.56	-11.70	-15.38
2014	32.68	32.71	33.17	32.65	38.07	-15.38	-14.77	-11.71	-14.47	-15.38
2015	32.80	32.83	32.66	32.80	38.20	-11.48	-11.53	-11.86	-11.94	-15.38
2016	33.81	33.78	32.69	33.78	38.33	-8.20	-8.48	-12.02	-8.19	-15.37

103

t_{j}	$T_{.95}(t_j)$	$KS_{.95}(t_j)$	$LP_{.95}(t_j)$	$SS_{.95}(t_j)$	$QR_{.95}(t_j)$	$T_{.05}(t_j)$	$KS_{.05}(t_j)$	$LP_{.05}(t_j)$	$SS_{.05}(t_j)$	QI
1990	33.90	33.68	33.70	33.61	34.47	15.00	14.90	14.83	14.09	
1991	33.90	33.66	33.67	33.60	34.46	12.90	12.99	13.53	13.64	
1992	33.30	33.64	33.64	33.59	34.45	12.80	12.81	13.03	13.25	
1993	33.90	33.62	33.62	33.58	34.44	12.90	12.94	13.05	12.93	
1994	33.30	33.60	33.59	33.57	34.43	13.90	13.75	12.87	12.68	
1995	33.90	33.57	33.57	33.56	34.43	11.70	11.75	12.14	12.48	
1996	33.30	33.54	33.55	33.55	34.42	10.60	10.78	11.87	12.38	
1997	33.30	33.51	33.54	33.54	34.41	13.30	13.17	12.50	12.36	_
1998	34.40	33.47	33.52	33.53	34.40	13.30	13.25	12.84	12.35	_
1999	33.30	33.43	33.51	33.52	34.39	12.20	12.28	12.64	12.28	1
2000	33.30	33.39	33.50	33.51	34.38	12.80	12.72	12.38	12.17	
2001	33.30	33.36	33.49	33.50	34.38	11.70	11.78	12.09	12.01	
2002	32.80	33.35	33.48	33.50	34.37	12.32	12.21	11.72	11.88	
2003	32.80	33.35	33.48	33.49	34.36	10.60	10.71	11.32	11.81	
2004	33.30	33.36	33.48	33.48	34.35	11.25	11.24	11.34	11.84	
2005	33.90	33.39	33.47	33.48	34.34	11.70	11.71	11.81	11.98	
2006	33.30	33.43	33.47	33.47	34.33	12.32	12.37	12.55	12.14	
2007	33.30	33.47	33.48	33.46	34.33	13.90	13.80	13.18	12.24	
2008	33.30	33.51	33.48	33.46	34.32	13.45	13.44	13.02	12.24	
2009	33.90	33.53	33.48	33.45	34.31	12.80	12.59	11.84	12.16	
2010	34.30	33.54	33.49	33.45	34.30	7.80	8.30	11.03	12.16	
2011	33.90	33.54	33.50	33.44	34.29	13.30	13.05	11.98	12.36	
2012	33.30	33.53	33.51	33.44	34.28	13.45	13.44	13.03	12.69	
2013	32.80	33.51	33.51	33.43	34.28	13.30	13.29	13.28	13.07	
2014	33.30	33.49	33.52	33.43	34.27	12.90	12.99	13.47	13.48	
2015	33.90	33.48	33.53	33.42	34.26	14.40	14.33	14.24	13.93	
2016	33.30	33.46	33.54	33.42	34.25	14 40	1/ /0	17 70	11 20	

$S_{2}(t_{j}), KS_{.05}(t_{j}))$, local polynomial smoothing	()), and quantile regression estimate $(QR_{.95}(t_j))$,	United States from 1990 to 2016.
3. Raw estimates $(T_{.95}(t_j), T_{.05}(t_j))$, kernel smoothing estimates $(KS_{.15})$	es $(LP_{.95}(t_j), LP_{.05}(t_j))$, spline smoothing estimate $(SS_{.95}(t_j), SS_{.05}(t_j))$	t_j)) of the 95th and 5th percentile temperature from Minneapolis in the
Table 8	estimate	$QR_{.05}(1$

t_j	$T_{.95}(t_j)$	$KS_{.95}(t_j)$	$LP_{.95}(t_j)$	$SS_{.95}(t_j)$	$QR_{.95}(t_j)$	$T_{.05}(t_j)$	$KS_{.05}(t_j)$	$LP_{.05}(t_j)$	$SS_{.05}(t_j)$	$QR_{.05}(t_j)$
1990	30.00	30.04	30.21	30.08	30.55	-15.00	-15.47	-18.54	-15.41	-22.63
1991	30.60	30.41	29.82	30.38	30.70	-19.40	-18.55	-18.53	-18.13	-22.64
1992	28.30	28.45	29.07	28.47	30.85	-15.00	-15.90	-18.51	-16.45	-22.64
1993	28.30	28.41	29.01	28.34	31.00	-19.88	-19.58	-18.47	-19.37	-22.64
1994	30.00	29.96	29.80	29.97	31.15	-21.70	-21.28	-18.43	-21.12	-22.64
1995	31.10	31.00	30.48	31.04	31.30	-19.18	-19.76	-18.38	-20.27	-22.65
1996	30.60	30.59	30.53	30.61	31.45	-22.65	-22.05	-18.33	-21.82	-22.65
1997	30.00	30.07	30.41	30.04	31.60	-19.88	-19.78	-18.27	-19.76	-22.65
1998	30.48	30.52	30.62	30.57	31.75	-16.10	-16.67	-18.21	-16.82	-22.66
1999	31.58	31.41	30.87	31.29	31.90	-18.20	-18.05	-18.15	-17.87	-22.66
2000	30.00	30.24	31.04	30.38	32.05	-18.75	-18.65	-18.09	-18.82	-22.66
2001	32.20	32.03	31.43	31.93	32.20	-18.30	-17.86	-18.04	-17.48	-22.66
2002	31.70	31.69	31.46	31.82	32.35	-13.30	-14.33	-17.99	-14.81	-22.67
2003	31.10	31.03	30.99	30.87	32.50	-18.90	-18.30	-17.95	-17.97	-22.67
2004	29.40	29.73	30.95	29.85	32.65	-18.30	-18.10	-17.91	-18.27	-22.67
2005	32.80	32.54	31.72	32.37	32.80	-15.60	-15.59	-17.88	-15.38	-22.68
2006	32.20	32.28	32.23	32.49	32.95	-12.80	-13.55	-17.86	-13.64	-22.68
2007	32.80	32.62	31.91	32.58	33.10	-17.80	-17.68	-17.86	-17.60	-22.68
2008	30.60	30.66	30.98	30.62	33.25	-21.55	-20.97	-17.86	-20.98	-22.68
2009	29.30	29.54	30.56	29.55	33.40	-19.30	-19.27	-17.88	-19.45	-22.69
2010	31.70	31.55	31.15	31.39	33.55	-16.70	-17.05	-17.91	-17.28	-22.69
2011	31.70	31.80	31.96	31.96	33.70	-17.68	-17.16	-17.95	-16.57	-22.69
2012	33.30	33.12	32.28	33.14	33.85	-13.30	-14.20	-18.01	-14.46	-22.69
2013	32.10	32.00	31.57	32.00	34.00	-18.20	-18.16	-18.09	-18.13	-22.70
2014	29.40	29.60	30.30	29.62	34.15	-22.70	-21.94	-18.18	-21.88	-22.70
2015	29.88	29.90	29.63	29.79	34.30	-19.30	-19.36	-18.29	-19.75	-22.70
2016	30.60	30.55	29.84	30.60	34.45	-16.51	-16.81	-18.42	-16.49	-22.71

105

2	i_j)) or me	ירב טונו מווע בע	i bercentrie	temperature	HOIII FUIUA	nd m me O	Inted States	TLOID TAAD II	0 2016.	
t_j	$T_{.95}(t_j)$	$KS_{.95}(t_j)$	$LP_{.95}(t_j)$	$SS_{.95}(t_j)$	$QR_{.95}(t_j)$	$T_{.05}(t_j)$	$KS_{.05}(t_j)$	$LP_{.05}(t_j)$	$SS_{.05}(t_j)$	$QR_{.05}(t_j)$
1990	29.30	29.42	29.59	29.51	30.60	-11.58	-13.79	-13.81	-13.81	-17.13
1991	30.60	30.24	29.52	29.92	30.60	-13.30	-13.89	-13.80	-13.79	-17.15
1992	27.65	28.09	29.08	28.53	30.60	-13.30	-13.96	-13.80	-13.77	-17.16
1993	29.88	29.61	29.07	29.31	30.59	-15.60	-13.99	-13.79	-13.75	-17.18
1994	28.90	28.98	28.98	29.15	30.59	-17.20	-13.97	-13.77	-13.73	-17.20
1995	28.90	28.76	28.56	28.56	30.58	-13.90	-13.90	-13.75	-13.70	-17.22
1996	27.20	27.53	28.32	27.81	30.58	-15.60	-13.81	-13.73	-13.68	-17.24
1997	29.40	29.12	28.56	28.82	30.57	-12.68	-13.71	-13.71	-13.66	-17.25
1998	28.30	28.48	28.72	28.77	30.57	-9.30	-13.63	-13.69	-13.64	-17.27
1999	29.40	29.12	28.60	28.78	30.56	-12.80	-13.58	-13.67	-13.62	-17.29
2000	27.20	27.57	28.52	27.88	30.56	-15.45	-13.57	-13.64	-13.60	-17.31
2001	29.40	29.31	29.04	29.26	30.55	-13.90	-13.58	-13.62	-13.58	-17.33
2002	30.48	30.20	29.26	30.06	30.55	-10.60	-13.60	-13.60	-13.56	-17.34
2003	28.20	28.27	28.52	28.30	30.54	-17.20	-13.61	-13.58	-13.54	-17.36
2004	26.70	27.05	28.01	27.30	30.54	-15.00	-13.58	-13.57	-13.52	-17.38
2005	29.40	29.04	28.26	28.63	30.53	-14.40	-13.53	-13.56	-13.50	-17.40
2006	27.80	28.03	28.39	28.36	30.53	-10.48	-13.44	-13.55	-13.48	-17.42
2007	28.90	28.72	28.30	28.53	30.52	-14.40	-13.34	-13.55	-13.46	-17.44
2008	27.80	27.84	28.05	27.81	30.52	-12.80	-13.24	-13.55	-13.44	-17.45
2009	27.20	27.49	28.19	27.75	30.51	-14.88	-13.17	-13.56	-13.42	-17.47
2010	30.00	29.62	28.68	29.28	30.51	-10.60	-13.14	-13.58	-13.40	-17.49
2011	28.30	28.44	28.68	28.65	30.50	-13.90	-13.14	-13.61	-13.38	-17.51
2012	28.30	28.35	28.53	28.37	30.50	-9.85	-13.19	-13.64	-13.36	-17.53
2013	28.90	28.79	28.58	28.63	30.49	-12.80	-13.26	-13.69	-13.34	-17.54
2014	28.20	28.35	28.70	28.44	30.49	-15.50	-13.35	-13.75	-13.32	-17.56
2015	29.30	29.31	29.17	29.23	30.48	-17.58	-13.44	-13.83	-13.30	-17.58
2016	30.48	30.37	30.11	30.47	30.48	-11.00	-13.53	-13.92	-13.27	-17.60

$_{j}$), $KS_{.05}(t_{j})$), local polynomial smoothing	and quantile regression estimate $(QR_{.95}(t_j))$,	ed States from 1990 to 2016.
ble 10. Raw estimates $(T_{.95}(t_j), T_{.05}(t_j))$, kernel smoothing estimates $(KS_{.95})$	imates $(LP_{.95}(t_j), LP_{.05}(t_j))$, spline smoothing estimate $(SS_{.95}(t_j), SS_{.05}(t_j))$	$\mathcal{R}_{.05}(t_j)$) of the 95th and 5th percentile temperature from San Diago in the Un

t_j	$T_{.95}(t_j)$	$KS{95}(t_j)$	$LP_{.95}(t_j)$	$SS_{.95}(t_j)$	$QR.95(t_j)$	$T_{.05}(t_j)$	$KS_{.05}(t_j)$	$LP_{.05}(t_j)$	$SS_{.05}(t_j)$	$QR_{.05}(t_j)$
1990	27.80	27.24	27.51	27.40	28.05	6.70	6.99	6.83	6.94	5.92
1991	26.10	27.12	27.12	27.34	28.18	7.32	7.06	7.01	7.10	5.96
1992	28.30	27.19	27.19	27.29	28.30	6.83	7.15	7.13	7.25	6.01
1993	26.10	27.22	27.22	27.22	28.42	7.80	7.27	7.27	7.39	6.05
1994	28.20	27.36	27.36	27.15	28.55	6.10	7.51	7.51	7.53	6.10
1995	27.20	27.36	27.36	27.06	28.67	8.90	7.81	7.81	7.65	6.15
1996	26.70	27.40	27.40	26.95	28.79	8.30	8.03	8.01	7.75	6.19
1997	28.90	27.43	27.43	26.83	28.91	7.80	8.07	8.06	7.82	6.24
1998	26.10	26.93	26.93	26.69	29.04	8.30	7.99	7.98	7.87	6.28
1999	26.70	26.31	26.31	26.58	29.16	7.80	7.85	7.85	7.89	6.33
2000	25.60	25.75	25.75	26.50	29.28	7.80	7.71	7.72	7.91	6.38
2001	24.88	25.50	25.50	26.50	29.40	7.20	7.68	7.70	7.91	6.42
2002	25.60	25.96	25.96	26.57	29.53	7.20	7.86	7.87	7.92	6.47
2003	27.20	26.81	26.81	26.70	29.65	8.90	8.15	8.14	7.93	6.52
2004	27.80	27.33	27.33	26.88	29.77	8.30	8.31	8.29	7.93	6.56
2005	27.10	27.45	27.45	27.06	29.90	9.40	8.16	8.14	7.92	6.61
2006	27.80	27.58	27.58	27.24	30.02	7.20	7.80	7.81	7.91	6.65
2007	27.20	27.91	27.91	27.42	30.14	6.70	7.55	7.57	7.91	6.70
2008	29.40	28.22	28.22	27.60	30.26	7.20	7.63	7.65	7.95	6.75
2009	27.80	27.92	27.92	27.77	30.39	8.30	7.93	7.92	8.02	6.79
2010	27.10	27.38	27.38	27.96	30.51	8.90	8.14	8.13	8.12	6.84
2011	26.70	27.33	27.33	28.20	30.63	7.80	8.19	8.19	8.24	6.88
2012	28.18	27.84	27.84	28.50	30.75	8.30	8.25	8.26	8.38	6.93
2013	27.80	28.74	28.75	28.86	30.88	7.20	8.48	8.53	8.55	6.98
2014	31.00	29.72	29.85	29.26	31.00	10.00	8.83	9.07	8.73	7.02
2015	30.00	30.11	30.33	29.66	31.12	9.40	9.08	9.70	8.92	7.07
2016	30.00	30.07	29.76	30.06	31.25	8.90	9.15	10.15	9.10	7.12

107

t_j	$T_{.95}(t_j)$	$KS_{.95}(t_j)$	$LP_{.95}(t_j)$	$SS_{.95}(t_j)$	$QR_{.95}(t_j)$	$T_{.05}(t_j)$	$KS_{.05}(t_{j})$	$LP_{.05}(t_{j})$	$SS_{.05}(t_j)$	$QR_{.05}(t_j)$
1990	28.90	28.62	28.85	28.34	28.90	-1.58	-1.55	-1.48	-1.18	-2.98
1991	28.30	28.43	28.54	28.16	28.98	-0.48	-0.50	-0.81	-1.03	-2.92
1992	28.90	28.06	28.09	27.99	29.07	0.00	-0.09	-0.90	-0.96	-2.86
1993	26.70	27.64	27.64	27.82	29.15	-2.80	-2.66	-1.23	-0.91	-2.80
1994	27.20	27.49	27.49	27.67	29.23	-0.48	-0.51	-0.79	-0.72	-2.74
1995	27.80	27.60	27.60	27.53	29.32	0.60	0.53	-0.32	-0.49	-2.68
1996	28.30	27.61	27.61	27.41	29.40	-1.10	-1.04	-0.41	-0.32	-2.62
1997	26.70	27.41	27.41	27.32	29.48	-0.48	-0.47	-0.25	-0.14	-2.56
1998	27.80	27.11	27.11	27.24	29.57	0.60	0.57	0.17	-0.01	-2.49
1999	26.58	26.71	26.71	27.20	29.65	0.60	0.57	0.18	-0.01	-2.43
2000	26.10	26.39	26.39	27.20	29.73	-0.60	-0.56	-0.21	-0.14	-2.37
2001	25.48	26.53	26.53	27.23	29.81	-0.48	-0.49	-0.47	-0.28	-2.31
2002	27.20	27.19	27.19	27.29	29.90	-0.60	-0.60	-0.50	-0.36	-2.25
2003	28.90	27.85	27.85	27.38	29.98	-0.60	-0.57	-0.33	-0.39	-2.19
2004	28.30	28.06	28.06	27.47	30.06	0.60	0.52	-0.25	-0.43	-2.13
2005	27.20	28.01	28.01	27.57	30.15	-1.10	-1.04	-0.51	-0.52	-2.07
2006	28.90	27.97	27.97	27.68	30.23	-0.60	-0.61	-0.66	-0.59	-2.01
2007	27.20	28.01	28.01	27.78	30.31	-0.60	-0.60	-0.67	-0.62	-1.94
2008	27.65	28.21	28.21	27.89	30.40	-0.60	-0.63	-0.72	-0.61	-1.88
2009	30.48	28.26	28.25	28.01	30.48	-1.58	-1.47	-0.49	-0.54	-1.82
2010	26.70	27.83	27.83	28.13	30.56	1.70	1.52	-0.16	-0.45	-1.76
2011	27.20	27.46	27.46	28.28	30.65	-1.70	-1.56	-0.41	-0.47	-1.70
2012	26.70	27.68	27.69	28.44	30.73	0.00	-0.07	-0.56	-0.43	-1.64
2013	28.78	28.42	28.47	28.63	30.81	-1.00	-0.95	-0.45	-0.30	-1.58
2014	29.40	29.17	29.47	28.83	30.90	0.00	-0.01	-0.04	-0.04	-1.52
2015	30.48	29.53	30.47	29.03	30.98	0.60	0.59	0.61	0.30	-1.46
	00 80	29.51	31.46	29.23	31.06	0.68	0.67	1.25	0.66	-1.39

of the 95th and 5th percentile temperature from Sez). LP $_{05}(t_i)$), spline smoothing estimate (SS	nates $(T_{.95}(t_i), T_{.05}(t_i))$, kernel smoothing
re from Seattle in the United States from 1990 to 2016.	stimate (SS $\alpha_5(t_i)$). SS $\alpha_5(t_i)$), and quantile regression estimate (OR α_5	smoothing estimates $(KS_{.95}(t_i), KS_{.05}(t_i))$, local polynomial smoot