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This paper provides new insight in the distribution of the (forward par) swap rate in a
stochastic volatility model for the dynamics of the forward rate curve. First the swap rate
dynamics are obtained in a multi-curve environment with deterministic spread. Then, the
variance of the swap rate is derived making use of a result on the distribution of random
variables generated by extended square-root diffusion processes. Also, the skewness is derived
by Itô calculus. These results give rise to moment-matching swaption price formulas which
are expected to permit a fast approximate calibration of the model.
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1. Introduction
Subsequent to the introduction of the Heston model (Heston, 1993) and especially since the early
2000’s we have seen stochastic volatility models of increasing complexity to capture the apparently
non-deterministic nature of interest rate volatility (Chen and Scott, 2001; Casassus et al., 2005;
Andersen and Brotherton-Ratcliffe, 2005).
Clearly these models offer a more commensurate representation of the market than classical short-

rate models (Casassus et al., 2005). Yet their practical use is complicated by the fact that elementary
interest rates products (such as European swaptions) are only tractable by Fourier inversion methods
and other numerical means which leads to a lengthy calibration process (Trolle and Schwartz, 2009).
Similarly our understanding of the basic model-implied processes is hindered by the lack of closed-
form expressions for their density functions at a given point of time (del Bano Rollin et al., 2010;
Gulisashvili, 2012) and of results regarding the moments. Among these processes the one driving
the evolution of the swap underlying, namely the (forward par) swap rate, is of special significance:
the distribution of its values at option expiry (under the forward swap measure) directly determines
the price of the European swaption. For example, as in (Grbac and Runggaldier, 2015, ch. 1.4.7), the
value at time 𝑡 of a receiver swaption with strike 𝐾 and notional 1 becomes

𝑉rec (𝑡) = 𝐴(𝑡)
∫ 𝐾

−∞
(𝐾 − 𝑥) 𝑓𝑋 (𝑥)𝑑𝑥, (1)

where the random variable 𝑋 with density function 𝑓𝑋 (𝑥) models the swap rate at option expiry and
𝐴(𝑡) denotes the annuity, a quantity that can directly be extracted from the yield curve, see (3).

MSC2020 subject classifications. 91G30, 62P05, 60J25.

South African Statistical Journal
Vol. 55, No. 2, pp. 109–123
https://doi.org/10.37920/sasj.2021.55.2.2
© 2021 South African Statistical Association

109

https://doi.org/10.37920/sasj


The purpose of this paper is to derive the variance and skewness of the distribution of swap rates
in a concrete stochastic volatility interest rate model framework under so-called martingale-freezing
(Brigo and Mercurio, 2006, ch. 6.15). These theoretical results give rise to approximative formulas
for the swaption price by replacing the unknown 𝑓𝑋 (𝑥) in (1) with a candidate density function 𝑓̂𝑋 (𝑥)
that matches (at least) the first 3 moments. Such expressions have been used to roughly calibrate
the model to the market within seconds on a standard computer, in contrast to the computational
effort required for pricing and calibrating with the usual numerical techniques (see appendix). Hence
the proposed method is deemed to be of practical relevance as a tool for validation purposes or by
providing a starting value for the actual calibration algorithm.
Before we set up the stochastic interest rate model framework, consider that in a standard interest

rate swap a predetermined fixed rate is exchanged against a risky rate, whereas the rate implicit in the
discount factors is assumed to be a, basically riskfree, Overnight Index Swap (OIS) rate, as usually
prescribed in the Credit Support Annexes (CSAs) of secured transactions. Indeed, the OIS rate arises
as the natural rate for discounting by being the accrual rate paid on posted cash collateral (Grbac and
Runggaldier, 2015, ch. 1.3.1). The term “risky rate” in turn denotes any interest rate that reflects a
certain degree of credit or liquidity risk, depending on the tenor, such as the LIBOR, EURIBOR or
JIBAR (Grbac and Runggaldier, 2015, ch. 1.2.1). To model the combined dynamics of the risky rate
and the OIS rate curve we set up a stochastic model for the latter and presume a time-dependent but
deterministic spread between the two curves (see Section 2), as in Henrard (2009).
To define the model, note that given a curve of discount factors 𝑇 ↦→ 𝑃(𝑡, 𝑇), where 𝑇 ≥

𝑡, expressing the respective value at 𝑡 of the future payment of 1 unit at 𝑇 , the instantaneous
continuously compounded forward rate at 𝑇 observed at 𝑡 is defined as 𝑓 (𝑡, 𝑇) := − 𝜕

𝜕𝑇 log(𝑃(𝑡, 𝑇)),
such that 𝑃(𝑡, 𝑇) = exp(−

∫ 𝑇
𝑡
𝑓 (𝑡, 𝑠)𝑑𝑠). Thereby the forward rates are the appropriate discount rates

applicable to outstanding cashflows implied by the market’s view on their values today.
With this in mind, we assume that the dynamics of the OIS forward rates 𝑇 ↦→ 𝑓 (𝑡, 𝑇), where

𝑇 ≥ 𝑡, and their volatility process 𝜐𝑡 are driven by the model introduced in Trolle and Schwartz
(2009)1:

𝑑𝑓 (𝑡, 𝑇) = 𝜇 𝑓 (𝑡, 𝑇)𝑑𝑡 + 𝜎 𝑓 (𝑡, 𝑇)
√
𝜐𝑡𝑑𝑊𝑡 ,

𝑑𝜐𝑡 = 𝜅 (𝜃 − 𝜐𝑡 ) 𝑑𝑡 + 𝜎
√
𝜐𝑡

(
𝜌𝑑𝑊𝑡 +

√︃
1 − 𝜌2𝑑𝑍𝑡

)
,

(2)

where 𝑊𝑡 and 𝑍𝑡 are two independent Brownian motions under the risk-neutral measure. It is
postulated that the diffusion term satisfies

𝜎 𝑓 (𝑡, 𝑇) = (𝛼0 + 𝛼1 (𝑇 − 𝑡)) 𝑒−𝛾 (𝑇−𝑡)

and, to assure the absence of arbitrage (Heath et al., 1992), we set2

𝜇 𝑓 (𝑡, 𝑇) = 𝜐𝑡𝜎 𝑓 (𝑡, 𝑇)
∫ 𝑇

𝑡
𝜎 𝑓 (𝑡, 𝑢)𝑑𝑢.

1 Trolle and Schwartz (2009) and Trolle (2009) propose different ways to generalize this model from the one-dimensional
setup, in their nomenclature 𝑁 = 1, to arbitrary dimensions. To simplify matters and improve readability the whole discussion
will assume 𝑁 = 1, noting that Theorems 1 and 2 extend to 𝑁 > 1 since the dimensions can in any case be treated separately.
2The expression for 𝜇 𝑓 (𝑡 , 𝑇) is further spelled out in Trolle and Schwartz (2009, eq. (57)).
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Thereby the model is determined by an 8-tuple of model parameters (𝛼0, 𝛼1, 𝛾, 𝜅, 𝜃, 𝜎, 𝜌, 𝜐0) which
can be calibrated from swaption prices observed in the market3. For the CIR process we assume that
𝜅, 𝜃 ≥ 0, 𝜎 > 0 as well as 𝜐0 > 0. As in Trolle and Schwartz (2009), our derivations are valid for
any real 𝛼0 and non-zero real 𝛼1, 𝛾. For the correlation parameter we assume 𝜌 ∈ [−1, 1].
This volatility structure produces the empirically detected “humped” shape of forward rate volatility

curves, initially rising and then falling monotonously along the bond maturity spectrum, (Ritchken
and Chuang, 2000). Also, it is known that this framework guarantees the interest rate dynamics
to be Markovian in augmented state space (Ritchken and Sankarasubramaniam, 1995). The model
encompasses some classical short-rate models such as the Hull-White model and the Ho-Lee model
as special cases. Also, if 𝜐𝑡 = 𝜐0 for all 𝑡, it specialises to the Mercurio and Moraleda model
(Mercurio and Moraleda, 2000). Finally, the Trolle-Schwartz model fits in the general discussion of
stochastic volatility models (compare e.g. Casassus et al., 2005).
The paper is organized as follows: In Section 2 we first formalize the construction of the interest

rate swap starting from the mere observation of the OIS and risky rate curves in the market. Then
we derive the corresponding stochastic dynamics of the swap rate. In Section 3 we use this result to
arrive at the variance and skewness of the swap rate distribution. Section 4 concludes with possible
applications and gives an outlook for further research.

2. The swap rate dynamics
In this section we will first explicate how we model an interest rate swap within our interest rate
framework. Then we will provide the resulting dynamics of the swap rate in terms of stochastic
differential equations (see Lemma 1). This result will be exploited in the next section in order to
derive the variance and skewness of its distribution at the expiry of an option on this swap. The main
technical tool in this section is Itô’s formula which is presented in most introductory textbooks on
stochastic analysis; see e.g. Karatzas and Shreve (1991, Theorem 3.3).
The starting point of this deduction is the OIS rate discount factor curve, 𝑇 ↦→ 𝑃(𝑡, 𝑇), where

𝑇 ≥ 𝑡, seen from today: 𝑡 = 0. Likewise we require the risky rate discount factor curve for a given
tenor 𝑥, which corresponds to the duration of the interest rate period of the floating side of a swap
(e.g. 6 months), 𝑇 ↦→ 𝑃𝑥 (𝑡, 𝑇), 𝑇 ≥ 𝑡, at 𝑡 = 0. Both of them may have been constructed from the
market prices of interest rate products (e.g. futures, forward rate agreements, swaps), a daily exercise
in a bank (Henrard, 2009, ch. 3).
Recall that we intend to model the evolution of the OIS discount factors 𝑃(𝑡, 𝑇) by assuming a

Trolle-Schwartz model for the forward rates 𝑓 (𝑡, 𝑇) = − 𝜕
𝜕𝑇 log(𝑃(𝑡, 𝑇)), see (2), and for the resulting

dynamics of 𝑃(𝑡, 𝑇), see Trolle and Schwartz (2009, eq. (20)). To establish the connection between
the two curves we define the product of discount factor ratios

𝛽𝑥𝑡 (𝑆, 𝑇) :=
𝑃𝑥 (𝑡, 𝑆)
𝑃𝑥 (𝑡, 𝑇)

𝑃(𝑡, 𝑇)
𝑃(𝑡, 𝑆) ,

where 0 ≤ 𝑡 ≤ 𝑆 ≤ 𝑇 . As in Henrard (2009, hypothesis S0) we assume that, given 𝑆 and 𝑇 ,
𝛽𝑥𝑡 (𝑆, 𝑇) = 𝛽𝑥0 (𝑆, 𝑇) for all 𝑡, i.e. the term is constant through time. It follows that for every future

3Note that among (𝛼0, 𝛼1, 𝜃 , 𝜎, 𝜐0) one parameter can be chosen at will (which corresponds to rescaling 𝜐𝑡 by a constant
positive factor), i.e. there are in fact 7 degrees of freedom instead of 8.
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𝑡 ≥ 0 the spread curve 𝑇 ↦→ 𝜆𝑥 (𝑡, 𝑇), where 𝑇 ≥ 𝑡, defined by 𝑃𝑥 (𝑡, 𝑇) = 𝑃(𝑡, 𝑇)𝑒−𝜆𝑥 (𝑡 ,𝑇) (𝑇−𝑡) , is
already determined at 𝑡 = 0.4

Let us now move on to the derivation of the swap rate dynamics according to this setup: In a
standard interest rate swap a preset fixed rate is exchanged against a floating rate, determined at
the start of each period and paid at the end. The (forward par) swap rate is then defined to be the
appropriate fixed rate such that the value of the swap equals 0.
Historically (before the financial crisis of 2007–08), both the discount factors and the floating rate

were derived from the same curve (Grbac and Runggaldier, 2015, ch. 1). Say, for a swap running
from 𝑇𝑚 to 𝑇𝑛, with variable coupons of size [𝑃(𝑇𝑗 , 𝑇𝑗+1)]−1 − 1, 𝑗 = 𝑚, . . . , 𝑛 − 1, fixed at 𝑇𝑗 and
paid at 𝑇𝑗+1 (the end of the period), as well as 𝜏𝑗 := 𝑇𝑗+1 −𝑇𝑗 , the single-curve swap rate observed at
𝑡 ≤ 𝑇𝑚 becomes5

𝑆𝑡 (𝑇𝑚, 𝑇𝑛) =
∑𝑛−1
𝑗=𝑚 𝜏𝑗𝑃(𝑡, 𝑇𝑗+1)𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1)

𝐴(𝑡) =
𝑃(𝑡, 𝑇𝑚) − 𝑃(𝑡, 𝑇𝑛)

𝐴(𝑡) ,

where 𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) := 𝜏−1𝑗 [𝑃(𝑡, 𝑇𝑗 )/𝑃(𝑡, 𝑇𝑗+1) − 1] is the discretely compounded forward rate for
the time interval [𝑇𝑗 , 𝑇𝑗+1] and

𝐴(𝑡) :=
𝑛−1∑︁
𝑗=𝑚

𝜏𝑗𝑃(𝑡, 𝑇𝑗+1) (3)

denotes the annuity; see also Brigo and Mercurio (2006, ch. 1.5).
In our multi-curve setup the risk-free forward rate 𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) is replaced by

𝐿𝑥 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) := 1
𝜏𝑗

(
𝑃𝑥 (𝑡, 𝑇𝑗 )
𝑃𝑥 (𝑡, 𝑇𝑗+1) − 1

)
=
1
𝜏𝑗

(
𝑃(𝑡, 𝑇𝑗 )
𝑃(𝑡, 𝑇𝑗+1) 𝛽

𝑥
𝑗 − 1

)
,

with 𝛽𝑥𝑗 := 𝛽
𝑥
𝑡 (𝑇𝑗 , 𝑇𝑗+1), which by assumption does in fact not depend on 𝑡. The swap rate for a swap

against variable coupons of size [𝑃𝑥 (𝑇𝑗 , 𝑇𝑗+1)]−1−1 with equal payment schedule as above becomes

𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) =
∑𝑛−1
𝑗=𝑚 𝜏𝑗𝑃(𝑡, 𝑇𝑗+1)𝐿𝑥 (𝑡, 𝑇𝑗 , 𝑇𝑗+1)

𝐴(𝑡) . (4)

To disentangle the payoff and discounting components of the swaption price it is convenient to
consider the stochastic model under the forward swap measure P𝑚,𝑛0 (Privault, 2014, ch. 12), which
is defined by its Radon-Nikodym derivative relative to the risk-neutral measure P∗:

𝑑P𝑚,𝑛0
𝑑P∗

= 𝑒−
∫ 𝑇𝑚
0 𝑟𝑠𝑑𝑠

𝐴(𝑇𝑚)
𝐴(0) ,

4 Indeed, taking 𝑆 = 𝑡 we get 𝛽𝑥𝑡 (𝑡 , 𝑇) = 𝑃 (𝑡 , 𝑇)/𝑃𝑥 (𝑡 , 𝑇) = 𝑒𝜆
𝑥 (𝑡,𝑇 ) (𝑇−𝑡 ) . By assumption this equals

𝛽𝑥0 (𝑡 , 𝑇) =
𝑃𝑥 (0, 𝑡)
𝑃𝑥 (0, 𝑇)

𝑃 (0, 𝑇)
𝑃 (0, 𝑡) =

𝑒−𝜆𝑥 (0,𝑡 )𝑡

𝑒−𝜆𝑥 (0,𝑇 )𝑇
.

After rearraging we obtain 𝜆𝑥 (𝑡 , 𝑇) = [𝜆𝑥 (0, 𝑇)𝑇 − 𝜆𝑥 (0, 𝑡)𝑡 ]/(𝑇 − 𝑡) , which can be observed today.
5𝑆𝑡 (𝑇𝑚, 𝑇𝑛) is simply the solution for the fixed rate 𝐾 in 𝐴(𝑡)𝐾 =

∑𝑛−1
𝑗=𝑚 𝜏 𝑗𝑃 (𝑡 , 𝑇𝑗+1)𝐿 (𝑡 , 𝑇𝑗 , 𝑇𝑗+1) , where the values of

the two opposing legs are set equal for a swap value of 0.
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with the short-rate process 𝑟𝑠 := 𝑓 (𝑠, 𝑠).6
In the next lemma we write the dynamics of 𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) as a stochastic differential equation driven

by a Brownian motion under this changed measure.

Lemma 1. Denote by 𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) the swap rate of a swap against the risky rate, running from 𝑇𝑚 to
𝑇𝑛, with floating payments fixed at 𝑇𝑗 and paid at 𝑇𝑗+1 = 𝑇𝑗 + 𝜏𝑗 , 𝑗 = 𝑚, ..., 𝑛 − 1, as before.
For 𝜏 ≥ 0, let 𝐵𝑥 (𝜏) = 𝛼1𝛾

−1 [(𝛾−1 + 𝛼0𝛼−11 ) (𝑒−𝛾𝜏 − 1) + 𝜏𝑒−𝛾𝜏]. Then 𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) evolves
according to

𝑑𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) =
𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (𝑡)𝐵𝑥 (𝑇𝑗 − 𝑡)
√
𝜐𝑡𝑑𝑊

𝑚,𝑛
𝑡 , (5)

where𝑊𝑚,𝑛
𝑡 denotes a Brownian motion under the forward swap measure and

𝜁 𝑥𝑚 (𝑡) =
𝑃(𝑡, 𝑇𝑚)
𝐴(𝑡) 𝛽𝑥𝑚,

𝜁 𝑥𝑗 (𝑡) =
𝑃(𝑡, 𝑇𝑗 )
𝐴(𝑡)

(
𝛽𝑥𝑗 − 1 − 𝜏𝑗−1𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛)

)
, 𝑗 = 𝑚 + 1, ..., 𝑛 − 1,

𝜁 𝑥𝑛 (𝑡) = −(1 + 𝜏𝑛−1𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛))
𝑃(𝑡, 𝑇𝑛)
𝐴(𝑡) .

Proof. By Itô’s formula we can write

𝑑𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) =
𝑛−1∑︁
𝑗=𝑚

𝜕𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛)
𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) 𝑑𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) + (...)𝑑𝑡, (6)

i.e. up to additional drift terms. Observe that there are no other random variables involved, such
that the Brownian motion part of the differential, contained in the 𝑑𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1), is complete.
Furthermore, 𝐴(𝑡)𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛), equating to a swap with a fixed rate of 0, is a tradable product, such
that 𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) is a martingale under the forward swap measure (Privault, 2014, ch. 12.4), and hence
we already know that the overall drift term of 𝑑𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) will vanish. Straightforward differentiation
of the sum of products

𝜕𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛)
𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) =

𝜕

𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1)

{
𝑛−1∑︁
𝑘=𝑚

𝜏𝑘𝑃(𝑡, 𝑇𝑘+1)
𝐴(𝑡) 𝐿𝑥 (𝑡, 𝑇𝑘 , 𝑇𝑘+1)

}

6With regards to the risk-neutral measure the price of, for example, a receiver swaption with strike 𝐾 and notional 1 becomes
𝑉𝑟𝑒𝑐 (𝑡) = E∗ [exp(−

∫ 𝑇𝑚
𝑡

𝑟𝑠𝑑𝑠) (
∑𝑛−1
𝑗=𝑚 𝑃 (𝑇𝑚, 𝑇𝑗+1) (𝐾 − 𝐿𝑥 (𝑇𝑚, 𝑇𝑗 , 𝑇𝑗+1)))+ |F𝑡 ], where the 𝜎-algebra F𝑡 contains

the information available at 𝑡 . After a change of numéraire we can rewrite this as an expected value under the forward
swap measure, 𝑉𝑟𝑒𝑐 (𝑡) = 𝐴(𝑡)E𝑚,𝑛0 [ (𝐾 − 𝑆𝑥𝑇𝑚 (𝑇𝑚, 𝑇𝑛))+ | F𝑡 ], as in Privault (2014, ch. 12), which is simply (1) with
𝑋 = 𝑆𝑥𝑇𝑚 (𝑇𝑚, 𝑇𝑛) |F𝑡 .
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as in Wu (2019, Lemma 6.4.1) yields

𝜕𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛)
𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1)

=
𝑛−1∑︁
𝑘=𝑚

𝜏𝑘𝑃(𝑡, 𝑇𝑘+1)
𝐴(𝑡)

𝜕𝐿𝑥 (𝑡, 𝑇𝑘 , 𝑇𝑘+1)
𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) +

𝑗−1∑︁
𝑘=𝑚

𝜕
{
𝜏𝑘𝑃 (𝑡 ,𝑇𝑘+1)

𝐴(𝑡)
}

𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) 𝐿
𝑥 (𝑡, 𝑇𝑘 , 𝑇𝑘+1)

=
𝜏𝑗𝑃(𝑡, 𝑇𝑗+1)

𝐴(𝑡) 𝛽𝑥𝑗 +
𝜏𝑗

1 + 𝜏𝑗𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1)
𝑗−1∑︁
𝑘=𝑚

𝜏𝑘𝑃(𝑡, 𝑇𝑘+1)
𝐴(𝑡)

(
𝐿𝑥 (𝑡, 𝑇𝑘 , 𝑇𝑘+1) − 𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛)

)
,

(7)

using

𝜕𝐿𝑥 (𝑡, 𝑇𝑘 , 𝑇𝑘+1)
𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) =

𝜕

𝜕𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1)

{
𝛽𝑥𝑘𝐿 (𝑡, 𝑇𝑘 , 𝑇𝑘+1) +

1
𝜏𝑘

(𝛽𝑥𝑘 − 1)
}
= 𝛽𝑥𝑗1 𝑗=𝑘 .

Regarding the other factors in (6), 𝑑𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) = 𝜏−1𝑗 𝑑 (𝑃(𝑡, 𝑇𝑗 )/𝑃(𝑡, 𝑇𝑗+1)), for 𝑗 = 𝑚, ..., 𝑛 − 1,
we know that

𝑑𝑃(𝑡, 𝑇)
𝑃(𝑡, 𝑇) = 𝑟𝑡𝑑𝑡 + 𝐵𝑥 (𝑇 − 𝑡)√𝜐𝑡𝑑𝑊𝑡 ,

for any 𝑇 ≥ 𝑡 (Trolle and Schwartz, 2009, eq. 28), with𝑊𝑡 a Brownian motion under the risk-neutral
measure. By making use of 𝑑𝑊𝑚,𝑛

𝑡 = 𝑑𝑊𝑡 + (...)𝑑𝑡 (Trolle, 2009, eq. 61), i.e. the diffusion term is
not altered when moving to the forward swap measure, another application of Itô’s formula yields

𝑑𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1) =
{√
𝜐𝑡
1
𝜏𝑗

(
1 + 𝜏𝑗𝐿 (𝑡, 𝑇𝑗 , 𝑇𝑗+1)

) (
𝐵𝑥 (𝑇𝑗 − 𝑡) − 𝐵𝑥 (𝑇𝑗+1 − 𝑡)

)}
𝑑𝑊𝑚,𝑛

𝑡 + (...)𝑑𝑡. (8)

Multiplying (8) and the expression obtained last in (7), summing over 𝑗 and grouping terms by
𝐵𝑥 (𝑇𝑗 − 𝑡) we obtain the result. ■

Note that Lemma 1 specializes to the case 𝑁 = 1 of equations (62), (63) in Trolle (2009) when
𝛽𝑥𝑗 = 1 for all 𝑗 , i.e. in the single-curve setting.
Finally we cite the corresponding result for the process 𝜐𝑡 to have a full description of the model

at our disposal, suitable for the derivation of some of its statistical properties in the next section.
According to Trolle (2009, eq. (64)),

𝑑𝜐𝑡 =
©­«
𝜅 (𝜃 − 𝜐𝑡 ) + 𝜐𝑡𝜎𝜌

𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (𝑡)𝐵𝑥 (𝑇𝑗 − 𝑡)ª®¬
𝑑𝑡 + 𝜎√𝜐𝑡

(
𝜌𝑑𝑊𝑚,𝑛

𝑡 +
√︃
1 − 𝜌2𝑑𝑍𝑚,𝑛𝑡

)
, (9)

with 𝐵𝑥 (𝜏) as in Lemma 1, 𝜉 𝑗 (𝑡) = 𝜏𝑗−1𝑃(𝑡, 𝑇𝑗 )/𝐴(𝑡) and where 𝑍𝑚,𝑛𝑡 is another Brownian motion
under the forward swap measure, independent of𝑊𝑚,𝑛

𝑡 .

3. Variance and skewness of the swap rate
First of all, let us briefly recall that in (4) we defined the swap rate 𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) observed at 𝑡 for an
interest rate swap, running from 𝑇𝑚 to 𝑇𝑛, with variable coupons of size [𝑃𝑥 (𝑇𝑗 , 𝑇𝑗+1)]−1 − 1, fixed

114 PALAPIES



at 𝑇𝑗 and paid at 𝑇𝑗+1 = 𝑇𝑗 + 𝜏𝑗 , where 𝑗 = 𝑚, ..., 𝑛 − 1. The section concluded with its dynamics
under the forward swap measure P𝑚,𝑛0 which are specified by equations (5) and (9).
Next we use these results to get the variance and skewness of the random variable 𝑆𝑥𝑡 := 𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛)

at the option expiry 𝑡 = 𝑇𝑚 under this measure, given the model parameters (𝛼0, 𝛼1, 𝛾, 𝜅, 𝜃, 𝜎, 𝜌, 𝜐0).
Prior to this we note that, being a driftless diffusion process, 𝑆𝑥𝑡 is especially a martingale, such that
its starting value is also the expected value for a future time: E[𝑆𝑥𝑇𝑚 ] = 𝑆𝑥0 , introducing the shorthand
E[·] := E𝑚,𝑛0 [·].
In what follows, the martingales 𝜁 𝑥𝑗 (𝑡) and 𝜉 𝑗 (𝑡) in (5) and (9) are replaced by their values at 𝑡 = 0

(“freezing technique”). Since their enumerator and denominator are expected to move in line, their
variance is typically regarded as negligible (see e.g. Schrager and Pelsser, 2006).
Under this assumption we will obtain the variance of 𝑆𝑥𝑇𝑚 by means of the classical Itô isometry

(Karatzas and Shreve, 1991, eq. 2.14) and by making use of the distributional properties of the
extended CIR (Cox-Ingersoll-Ross) process 𝜐𝑡 appearing in (5). To arrive at the skewness in turn we
will generalize a method introduced for the Heston model in Zhang et al. (2017), which relies mainly
on Itô’s formula.
The following theorem provides the variance of 𝑆𝑥𝑇𝑚 .

Theorem 1. The second moment of 𝑆𝑥𝑇𝑚 is given by

Var
(
𝑆𝑥𝑇𝑚

)
=

∫ 𝑇𝑚

0

(
𝜐0𝑒

𝑏2 − 𝑑

4
𝜎2

∞∑︁
𝑙=0

𝑎𝑙2
𝑔(𝑙)𝑙+1 {𝑒

−𝑔 (𝑙)𝑡 𝐽 (𝑡, 𝑙) − 𝐽 (0, 𝑙)}
)

× 𝑞(𝑡)
(
𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡)
)2
𝑑𝑡,

where

𝑎2 =
𝑎

𝛾
, 𝑎 = 𝜎𝜌

𝛼1
𝛾

𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0)𝑒−𝛾𝑇𝑗 , 𝑏2 =
𝑏

𝛾
− 𝑎

𝛾2
,

𝑏 = −𝜎𝜌𝛼1
𝛾

𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0)𝑒−𝛾𝑇𝑗
(
1
𝛾
+ 𝛼0
𝛼1

+ 𝑇𝑗
)
, 𝑑 =

4𝜅𝜃
𝜎2

,

𝑔(𝑙) = −𝑙𝛾 − 𝑐, 𝑐 = 𝜎𝜌
𝛼1
𝛾

(
1
𝛾
+ 𝛼0
𝛼1

) 𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0) + 𝜅,

and with certain elementary functions 𝑞(𝑡) and 𝐽 (𝑥, 𝑙) defined in (15) and (18) in the proof.
Proof. According to the Itô isometry the variance of 𝑆𝑥𝑇𝑚 can be written as

Var
(
𝑆𝑥𝑇𝑚

)
=

∫ 𝑇𝑚

0

(
𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡)
)2
E[𝜐𝑡 ]𝑑𝑡. (10)

The expected value can be made explicit as follows: Observe that

𝑑𝜐𝑡 = (𝜅𝜃 − 𝑏(𝑡)𝜐𝑡 ) 𝑑𝑡 + 𝜎
√
𝜐𝑡

(
𝜌𝑑𝑊𝑚,𝑛

𝑡 +
√︃
1 − 𝜌2𝑑𝑍𝑚,𝑛𝑡

)
, (11)

SWAP RATE VARIANCE AND SKEWNESS IN A STOCHASTIC VOLATILITY MODEL 115



where 𝑏(𝑡) := 𝜅 − 𝜎𝜌∑𝑛
𝑗=𝑚+1 𝜉 𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡). For this extended CIR process Maghsoodi (1996)

has shown that, up to a factor, 𝜐𝑡 is noncentral chi-square distributed. Concretely,

Σ(0, 𝑡)−1𝜐𝑡 ∼ 𝜒2

(
𝑑,
𝜐0𝑒

−
∫ 𝑡
0 𝑏 (𝑢)𝑑𝑢

Σ(0, 𝑡)

)
,

where Σ(0, 𝑡) := 1
4𝜎
2
∫ 𝑡
0 exp(−

∫ 𝑡
𝑠
𝑏(𝑢)𝑑𝑢)𝑑𝑠 and 𝑑 := 4𝜅𝜃/𝜎2. According to Johnson et al. (1995,

ch. 29) it follows that
E[𝜐𝑡 ] = 𝜐0𝑒−

∫ 𝑡
0 𝑏 (𝑢)𝑑𝑢 + 𝑑Σ(0, 𝑡). (12)

To spell out the integral term Σ(0, 𝑡), let us write

𝑏(𝑡) = 𝑒𝛾𝑡 (𝑎𝑡 + 𝑏) + 𝑐, (13)

with

𝑎 := 𝜎𝜌
𝛼1
𝛾

𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0)𝑒−𝛾𝑇𝑗 , 𝑏 := −𝜎𝜌𝛼1
𝛾

𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0)𝑒−𝛾𝑇𝑗
(
1
𝛾
+ 𝛼0
𝛼1

+ 𝑇𝑗
)
,

𝑐 := 𝜎𝜌
𝛼1
𝛾

(
1
𝛾
+ 𝛼0
𝛼1

) 𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0) + 𝜅.

We have
𝑒−

∫ 𝑡
𝑠
𝑏 (𝑢)𝑑𝑢 = 𝑞(𝑡)𝑒𝑒𝛾𝑠 (𝑎2𝑠+𝑏2)+𝑐𝑠 , (14)

with 𝑎2 := 𝑎
𝛾 , 𝑏2 :=

𝑏
𝛾 − 𝑎

𝛾2
and

𝑞(𝑡) := 𝑒−(𝑒𝛾𝑡 (𝑎2𝑡+𝑏2)+𝑐𝑡) . (15)

We obtain the following form whose integrand we develop into a series:

Σ(0, 𝑡) = 1
4
𝜎2𝑞(𝑡)

∫ 𝑡

0
𝑒𝑒
𝛾𝑠 (𝑎2𝑠+𝑏2)+𝑐𝑠𝑑𝑠 =

1
4
𝜎2𝑞(𝑡) lim

𝐿→∞

∫ 𝑡

0

𝐿∑︁
𝑙=0

𝑒𝑐𝑠𝑒𝑙𝛾𝑠 (𝑎2𝑠 + 𝑏2)𝑙
𝑙!

𝑑𝑠. (16)

Now we use Gradshteyn et al. (2007, eq. 2.33.11) to get the following expression:

Σ(0, 𝑡) = 1
4
𝜎2𝑞(𝑡) lim

𝐿→∞

𝐿∑︁
𝑙=0

− 𝑎𝑙2
𝑔(𝑙)𝑙+1 {𝑒

−𝑔 (𝑙)𝑡 𝐽 (𝑡, 𝑙) − 𝐽 (0, 𝑙)}, (17)

where 𝑔(𝑙) := −𝑙𝛾 − 𝑐 and

𝐽 (𝑥, 𝑙) :=
𝑙∑︁
𝑘=0

(
𝑎2𝑥+𝑏2
𝑎2

𝑔(𝑙)
) 𝑘

𝑘!
. (18)

Finally, using (17) and (14) with 𝑠 = 0, (12) is plugged into (10). ■

Using parameters observed in practice, the limit is well approximated by developing the sum in
(17) up to e.g. 𝐿 = 10. The variance can then be determined by numerical integration.
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Interestingly, replacing 𝜐𝑡 by its expected value as in Trolle and Schwartz (2009) leads to the same
variance, but, as the diffusion term in the dynamics of 𝑑𝑆𝑥𝑡 becomes deterministic, this enforces a
normal distribution of 𝑆𝑥𝑇𝑚 and thereby restrains the higher moments.
Originally a main motivation to introduce stochastic volatility models was to be able to reproduce

the skewed curve of implied swaption volatilities observed in the market (Brigo and Mercurio, 2006,
ch. 11). In the next theoremwewill derive the skewness of 𝑆𝑥𝑇𝑚 as a function of the model parameters.
The subsequent remark recovers the fact that this skewness essentially arises from the correlation
between the Brownian motions driving the processes 𝑆𝑥𝑡 and 𝜐𝑡 .

Theorem 2. Let 𝜌 ≠ 0. Then the third moment of 𝑆𝑥𝑇𝑚 equals

𝜇3

(
𝑆𝑥𝑇𝑚

)
= E

[(
𝑆𝑥𝑇𝑚 − E[𝑆𝑥𝑇𝑚 ]

)3]

= 3
(
𝑎3
𝑎2

)2 ∫ 𝑇𝑚

0

∞∑︁
𝑙=0

(−1)𝑙+1𝑎𝑙2{𝑒−𝑔2 (𝑙)𝑇𝑚𝐾 (𝑇𝑚, 𝑙) − 𝑒−𝑔2 (𝑙)𝑡𝐾 (𝑡, 𝑙)}

× 𝜎𝜌E[𝜐𝑡 ]𝑞(𝑡)−1
𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡)𝑑𝑡,

where

𝑎3 = −𝛼1
𝛾

𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝑒−𝛾𝑇𝑗 , 𝑎2 =
𝑎

𝛾
, 𝑎 = 𝜎𝜌

𝛼1
𝛾

𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0)𝑒−𝛾𝑇𝑗 ,

𝑏2 =
𝑏

𝛾
− 𝑎

𝛾2
, 𝑏 = −𝜎𝜌𝛼1

𝛾

𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0)𝑒−𝛾𝑇𝑗
(
1
𝛾
+ 𝛼0
𝛼1

+ 𝑇𝑗
)
, 𝑑 =

4𝜅𝜃
𝜎2

,

𝑔2 (𝑙) = −𝑙𝛾 + 𝑐, 𝑐 = 𝜎𝜌
𝛼1
𝛾

(
1
𝛾
+ 𝛼0
𝛼1

) 𝑛∑︁
𝑗=𝑚+1

𝜉 𝑗 (0) + 𝜅,

E[𝜐𝑡 ] from (12), and with certain elementary functions 𝑞(𝑡) and 𝐾 (𝑥, 𝑙) defined respectively in (15)
above and in (25) in the proof.

Proof. The proof follows similar arguments as in Zhang et al. (2017). To simplify notation, denote
𝑆𝑡 := 𝑆𝑥𝑡 − E[𝑆𝑥𝑇𝑚 ] = 𝑆𝑥𝑡 − 𝑆𝑥0 .
Then by Itô’s formula,

E[𝑆3𝑇𝑚 ] = E
∫ 𝑇𝑚

0
𝑑

(
𝑆3𝑡

)
= E

∫ 𝑇𝑚

0
3𝑆2𝑡 𝑑𝑆𝑡 + 3𝑆𝑡𝑑 [𝑆]𝑡

= 3
∫ 𝑇𝑚

0

(
𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡)
)2
E[𝜐𝑡𝑆𝑡 ]𝑑𝑡.
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By the product rule of stochastic integration,

E[𝜐𝑡𝑆𝑡 ] = E
∫ 𝑡

0
𝑑 (𝜐𝑢𝑆𝑢) = E

∫ 𝑡

0
𝜐𝑢𝑑𝑆𝑢 + 𝑆𝑢𝑑𝜐𝑢 + 𝑑 [𝑆, 𝜐]𝑢

= E
∫ 𝑡

0
𝑆𝑢 (𝜅𝜃 − 𝑏(𝑢)𝜐𝑢) + 𝜎𝜌

𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑢)𝜐𝑢𝑑𝑢

= −
∫ 𝑡

0
𝑏(𝑢)E[𝜐𝑢𝑆𝑢]𝑑𝑢 + 𝜎𝜌

∫ 𝑡

0

𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑢)E[𝜐𝑢]𝑑𝑢,

(19)

with 𝑏(𝑢) = 𝑒𝛾𝑢 (𝑎𝑢 + 𝑏) + 𝑐 as in (13) in the dynamics (11).
Taking the derivative 𝑑

𝑑𝑡 on both sides of (19) yields an inhomogenous linear differential equation
of first order with variable coefficients for 𝑓 (𝑡) := E[𝜐𝑡𝑆𝑡 ]:

𝑓 ′(𝑡) = −𝑏(𝑡) 𝑓 (𝑡) + 𝑓0 (𝑡), (20)

where

𝑓0 (𝑡) := 𝜎𝜌
𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡)E[𝜐𝑡 ] . (21)

The solution with initial value 𝑓 (0) = 0 is

𝑓 (𝑡) = 𝑒−
∫ 𝑡
0 𝑏 (𝑢)𝑑𝑢

∫ 𝑡

0
𝑒
∫ 𝑢
0 𝑏 (𝑠)𝑑𝑠 𝑓0 (𝑢)𝑑𝑢.

It follows that
E[𝑆3𝑇𝑚 ] = 3

∫ 𝑇𝑚

0
ℎ(𝑡)

∫ 𝑡

0
𝑒
∫ 𝑢
0 𝑏 (𝑠)𝑑𝑠 𝑓0 (𝑢)𝑑𝑢𝑑𝑡,

with ℎ(𝑡) := (∑𝑛
𝑗=𝑚 𝜁

𝑥
𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡))2 exp(−

∫ 𝑡
0 𝑏(𝑢)𝑑𝑢). Let 𝐻 (𝑡) denote an antiderivative of the

latter, i.e. 𝐻 ′(𝑡) = ℎ(𝑡). Then, by the usual integration by parts,

E[𝑆3𝑇𝑚 ] = 3
∫ 𝑇𝑚

0
(𝐻 (𝑇𝑚) − 𝐻 (𝑡)) 𝑒

∫ 𝑡
0 𝑏 (𝑢)𝑑𝑢 𝑓0 (𝑡)𝑑𝑡. (22)

We show how such an 𝐻 (𝑡) can be obtained. First write
𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝐵𝑥 (𝑇𝑗 − 𝑡) = 𝑒𝛾𝑡 (𝑎3𝑡 + 𝑏3) + 𝑐3,

with the parameters

𝑎3 := −𝛼1
𝛾

𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝑒−𝛾𝑇𝑗 ,

𝑏3 :=
𝛼1
𝛾

𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0)𝑒−𝛾𝑇𝑗
(
1
𝛾
+ 𝛼0
𝛼1

+ 𝑇𝑗
)
,

𝑐3 := −𝛼1
𝛾

(
1
𝛾
+ 𝛼0
𝛼1

) 𝑛∑︁
𝑗=𝑚

𝜁 𝑥𝑗 (0).
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Then, as in (14),
𝑒−

∫ 𝑡
0 𝑏 (𝑢)𝑑𝑢 = 𝑞(𝑡)𝑒𝑏2 , (23)

with 𝑞(𝑡) = exp(−(𝑒𝛾𝑡 (𝑎2𝑡 + 𝑏2) + 𝑐𝑡)), 𝑎2 = 𝑎𝛾−1 and 𝑏2 = 𝑏𝛾−1 − 𝑎𝛾−2. Writing 𝑞(𝑡) as a series,
we may state

𝐻 (𝑡) = 𝑒𝑏2 lim
𝐿→∞

∫ 𝑡

0
(𝑒𝛾𝑠 (𝑎3𝑠 + 𝑏3) + 𝑐3)2

𝐿∑︁
𝑙=0

(−1)𝑙 𝑒
(𝛾𝑙−𝑐)𝑠 (𝑎2𝑠 + 𝑏2)𝑙

𝑙!
𝑑𝑠.

An equivalent expression that can be treated as (16) reads

𝐻 (𝑡) = 𝑒𝑏2
(
𝑎3
𝑎2

)2
lim
𝐿→∞

𝐿∑︁
𝑙=0

∫ 𝑡

0
(𝑒𝛾𝑠 (𝑎2𝑠 + 𝑏2) + 𝑒𝛾𝑠𝑏4 + 𝑐4)2 (−1)𝑙 𝑒

(𝛾𝑙−𝑐)𝑠 (𝑎2𝑠 + 𝑏2)𝑙
𝑙!

𝑑𝑠,

with 𝑏4 := −𝑏2 + 𝑏3𝑎2𝑎−13 , 𝑐4 := 𝑐3𝑎2𝑎
−1
3 . For each 𝑙 expanding the squared brackets under the

integral yields 6 integrals that can again all be transformed according to Gradshteyn et al. (2007,
eq. 2.33.11). The terms can then be grouped as follows:

𝐻 (𝑡) = 𝑒𝑏2
(
𝑎3
𝑎2

)2
lim
𝐿→∞

𝐿∑︁
𝑙=0

(−1)𝑙+1𝑎𝑙2{𝑒𝑡 (𝛾𝑙−𝑐)𝐾 (𝑡, 𝑙) − 𝐾 (0, 𝑙)}, (24)

with

𝐾 (𝑥, 𝑙) :=

( (𝑙+1) (𝑙+2)𝑎22
𝑔2 (𝑙+2)2 + 2(𝑙+1)𝑎2𝑏4𝑔2 (𝑙+2) + 𝑏24

)
𝑒2𝛾𝑥

𝑔2 (𝑙 + 2)𝑙+1
𝑙∑︁
𝑘=0

(
𝑎2𝑥+𝑏2
𝑎2

𝑔2 (𝑙 + 2)
) 𝑘

𝑘!

+

(
2(𝑙+1)𝑎2𝑐4
𝑔2 (𝑙+1) + 2𝑏4𝑐4

)
𝑒𝛾𝑥

𝑔2 (𝑙 + 1)𝑙+1
𝑙∑︁
𝑘=0

(
𝑎2𝑥+𝑏2
𝑎2

𝑔2 (𝑙 + 1)
) 𝑘

𝑘!

+ 𝑐24
𝑔2 (𝑙)𝑙+1

𝑙∑︁
𝑘=0

(
𝑎2𝑥+𝑏2
𝑎2

𝑔2 (𝑙)
) 𝑘

𝑘!
+ 𝑀 (𝑥, 𝑙),

(25)

with the function 𝑔2 (𝑙) := −𝛾𝑙 + 𝑐 and residual terms

𝑀 (𝑥, 𝑙) := (𝑙 + 1) (𝑙 + 2)𝑎22𝑒2𝛾𝑥
𝑔2 (𝑙 + 2)𝑙+3

©­­«

(
𝑎2𝑥+𝑏2
𝑎2

𝑔2 (𝑙 + 2)
) 𝑙+1

(𝑙 + 1)! +

(
𝑎2𝑥+𝑏2
𝑎2

𝑔2 (𝑙 + 2)
) 𝑙+2

(𝑙 + 2)!
ª®®
¬

+ 2(𝑙 + 1)𝑎2𝑏4𝑒
2𝛾𝑥

𝑔2 (𝑙 + 2)𝑙+2

(
𝑎2𝑥+𝑏2
𝑎2

𝑔2 (𝑙 + 2)
) 𝑙+1

(𝑙 + 1)! + 2(𝑙 + 1)𝑎2𝑐4𝑒
𝛾𝑥

𝑔2 (𝑙 + 1)𝑙+2

(
𝑎2𝑥+𝑏2
𝑎2

𝑔2 (𝑙 + 1)
) 𝑙+1

(𝑙 + 1)! .

Plugging in (24), the inverse of (23) as well as (21) with the expected value E𝑚,𝑛0 [𝜐𝑡 ] from (12) into
(22) a numerical integration yields E[𝑆3𝑇𝑚 ] = 𝜇3. ■

Remark 1. For 𝜌 = 0 the skewness vanishes. Indeed, under this condition in (20) we have 𝑓0 (𝑡) = 0
and 𝑏(𝑡) = 𝜅 for all 𝑡, such that 𝑓 (0) = 0 implies 𝑓 (𝑡) = 0 for all 𝑡.
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4. Summary and outlook
The preceding sections dealt with the dynamics of the swap rate in a stochastic volatility interest rate
model in a multi-curve setting. First the relevant stochastic differential equations have been provided.
Then the variance and skewness of the swap rate have been derived. Along with the expected value,
which under the assumed forward swap measure is simply the starting value, this means that the first
three moments that characterize the distribution of the swap rate are now known in explicit form.
As indicated in the introduction, these results give rise to approximate moment-matching formulas

for the swaption price. More explicitly, let the swap rate be represented by a random variable
𝑋 = 𝑆𝑥𝑇𝑚 (𝑇𝑚, 𝑇𝑛) with density function 𝑓𝑋 (𝑥). Then recall from (1) that the price of a receiver
swaption with strike 𝐾 and notional 1 at time 𝑡 = 0 equals

𝑉rec (0) = 𝐴(0)E𝑚,𝑛0
[(𝐾 − 𝑆𝑥𝑇𝑚 (𝑇𝑚, 𝑇𝑛))+

]
= 𝐴(0)

∫ 𝐾

−∞
(𝐾 − 𝑥) 𝑓𝑋 (𝑥)𝑑𝑥.

Having the expected value, variance and skewness of 𝑋 at hand we can replace the unknown 𝑓𝑋 (𝑥)
with some other density function 𝑓̂𝑋 (𝑥) whose parameters have been chosen to match these moments.
In this regard, three-parameter families such as skewed logistic (Johnson et al., 1995, ch. 23.10) or
skewed hyperbolic secant (Cook, 2016) that can account for skewness and provide excess kurtosis
are potential candidates.
Given the observed ease and speed of the implementation of the moment formulas in Theorems 1

and 2, they provide a means for a fast rough calibration procedure that circumvents the computational
effort when using the actual model price (see Appendix). It is envisaged to analyze this application
further in another research work.

Appendix
To complete the presentation of swaptions in the multi-curve Trolle-Schwartz model, this appendix
outlines the implementation of the pricing formulas for the payer and receiver swaption, 𝑉pay (𝑡) and
𝑉rec (𝑡).
The model price of a swaption is in fact also an approximation that deals with the problem of a

multitude of dependent discount factors by replacing the underlying swap with a zero-coupon bond
with equal volatility.
For convenience we repeat the result regarding the price of a bond option stated in Trolle and

Schwartz (2009) and then describe how the extension to swaptions proposed in the appendix of
Trolle and Schwartz (2009) can be adopted to a multi-curve setting.
The authors demonstrate that the price 𝑃(𝑡, 𝑇0, 𝑇1, 𝐾) at time 𝑡 of a put option on 𝑃(𝑡, 𝑇1), i.e. on

a zero-coupon bond with maturity 𝑇1, having strike price 𝐾 and expiry 𝑇0 can be traced back to the
transform

𝜓(𝑢, 𝑡, 𝑇0, 𝑇1) := E∗
[
𝑒−

∫ 𝑇0
𝑡
𝑟𝑠𝑑𝑠𝑒𝑢 log(𝑃 (𝑇0 ,𝑇1))

���F𝑡 ]
as follows:

𝑃(𝑡, 𝑇0, 𝑇1, 𝐾) = 𝐾𝐺0,1 (log(𝐾)) − 𝐺1,1 (log(𝐾)),
where

𝐺𝑎,𝑏 (𝑦) := 𝜓(𝑎, 𝑡, 𝑇0, 𝑇1)
2

− 1
𝜋

∫ ∞

0

ℑ(𝜓(𝑎 + 𝑖𝑢𝑏, 𝑡, 𝑇0, 𝑇1)𝑒−𝑖𝑢𝑦)
𝑢

𝑑𝑢 (26)
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and ℑ(𝑧) denotes the imaginary part of a complex number 𝑧.
According to Trolle and Schwartz (2009, Prop. 2) we have

𝜓(𝑢, 𝑡, 𝑇0, 𝑇1) = 𝑒𝑀 (𝑇0−𝑡)+𝑁 (𝑇0−𝑡)𝜐𝑡+𝑢 log(𝑃 (𝑡 ,𝑇1))+(1−𝑢) log(𝑃 (𝑡 ,𝑇0)) ,

where 𝑀 (𝜏), 𝑁 (𝜏) solve the following system of ordinary differential equations:
𝑑𝑀 (𝜏)
𝑑𝜏

= 𝑁 (𝜏)𝜅𝜃,

𝑑𝑁 (𝜏)
𝑑𝜏

= 𝑁 (𝜏) (−𝜅 + 𝜎𝜌(𝑢𝐵𝑥 (𝑇1 − 𝑇0 + 𝜏) + (1 − 𝑢)𝐵𝑥 (𝜏))) + 12𝑁 (𝜏)2𝜎2

+ 1
2
(𝑢2 − 𝑢)𝐵𝑥 (𝑇1 − 𝑇0 + 𝜏)2 + 12

(
(1 − 𝑢)2 − (1 − 𝑢)

)
𝐵𝑥 (𝜏)2

+ 𝑢(1 − 𝑢)𝐵𝑥 (𝑇1 − 𝑇0 + 𝜏)𝐵𝑥 (𝜏),

with boundary conditions 𝑀 (0) = 0 and 𝑁 (0) = 0.
The functions 𝑁 (𝜏) and 𝑀 (𝜏) have to be implemented by numerical means, such as Runge-Kutta

methods. Observe that this problem has to be solved repeatedly for each evaluation of the integrand
in (26).
Recalling the notation in Section 2, let us now move on to a swaption on a swap running from 𝑇𝑚

to 𝑇𝑛, with floating payments of size [𝑃𝑥 (𝑇𝑗 , 𝑇𝑗+1)]−1 − 1 fixed at 𝑇𝑗 and paid at 𝑇𝑗+1 = 𝑇𝑗 + 𝜏𝑗 , 𝑗 =
𝑚, ..., 𝑛 − 1. To see how the actual swap underlying can be traced back to a bond, observe that at
expiry the value of a payer swaption equals

𝑉pay (𝑇𝑚) =
(
𝛽𝑥𝑚 +

𝑛−2∑︁
𝑗=𝑚

𝑃(𝑇𝑚, 𝑇𝑗+1)
(
𝛽𝑥𝑗+1 − 1

)
− 𝑃(𝑇𝑚, 𝑇𝑛) − 𝐾

𝑛−1∑︁
𝑗=𝑚

𝜏𝑗𝑃(𝑇𝑚, 𝑇𝑗+1)
)+
,

which is the payoff of a put option with strike 𝛽𝑥𝑚 on a bond

𝑃𝑐 (𝑡) :=
𝑛−1∑︁
𝑗=𝑚

𝑌 (𝑇𝑗 )𝑃(𝑡, 𝑇𝑗+1),

paying coupons 𝑌 (𝑇𝑗 ) := 𝐾𝜏𝑗 − (𝛽𝑥𝑗+1 − 1) at 𝑇𝑗+1, 𝑗 = 𝑚, ..., 𝑛 − 2, and 𝑌 (𝑇𝑛−1) := 𝐾𝜏𝑛−1 + 1 at 𝑇𝑛.
For a corresponding zero-coupon bond to match the level of volatility, its remaining duration 𝐷 (𝑡)
must satisfy

𝐵𝑥 (𝐷 (𝑡))2 =
(
𝑛−1∑︁
𝑗=𝑚

𝑤 𝑗𝐵𝑥 (𝑇𝑗+1 − 𝑡)
)2
,

with 𝐵𝑥 (𝜏) as in Lemma 1 and where the 𝑤 𝑗 := 𝑌 (𝑇𝑗 )𝑃(𝑡, 𝑇𝑗+1)/(
∑𝑛−1
𝑘=𝑚𝑌 (𝑇𝑘)𝑃(𝑡, 𝑇𝑘+1)) are the

relative weights of the cashflows of the bond 𝑃𝑐 (𝑡). The solution 𝐷 (𝑡) has to be found numerically.
Also as in Trolle and Schwartz (2009) and Munk (1999) the swaption value can then be approxi-

mated by
𝑉pay (𝑡) = 𝜁𝑃

(
𝑡, 𝑇𝑚, 𝑡 + 𝐷 (𝑡), 𝛽𝑥𝑚𝜁−1

)
,

with 𝜁 = 𝑃𝑐 (𝑡)
𝑃 (𝑡 ,𝑡+𝐷 (𝑡)) .
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By put-call parity (Wu, 2019, ch. 6.4), the corresponding receiver swaption with equal payment
schedule and fixed rate 𝐾 has the value

𝑉rec (𝑡) = 𝑉pay (𝑡) − (𝑆𝑥𝑡 (𝑇𝑚, 𝑇𝑛) − 𝐾)𝐴(𝑡).
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