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The problem of multiple hypothesis testing with correlated test statistics is a
very important problem in statistical literature. Specifically, we consider the case
when the joint distribution of the test statistics is a multivariate normal distribution
with an unknown mean vector and compound symmetric correlation structure. Our
goal is to identify nonzero entries of the mean vector. Bogdan et al. (2011) solved
this problem when test statistics are independent normals along with the study
of asymptotic optimality in a Bayesian decision theoretic sense. The case under
dependence was left as a challenging open problem. The solution is intuitive and
permutation invariant, does not assume sparsity unlike Bogdan et al. (2011) and is
validated through simulation studies.
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1. Introduction
Multiple hypothesis testing has emerged as a very important topic of research in the last twenty
years. The biggest impetus to such work came from the necessity to analyse and draw inference on
data sets involving a large number of parameters. Such data sets occur, e.g., in the fields of biology,
astronomy, and economics, just to name a few. Needless to say, the goal of simultaneous testing,
or for that matter, simultaneous inference in general, is to ensure a good performance of the overall
inference.

Over the years, various performance evaluation criteria have been developed to quantify the overall
error in a simultaneous testing procedure. The most classical measure of this kind is the family-wise
error rate (FWER). Well-known procedures that control the FWER are the Bonferroni procedure and
its improvements, see for example, Holm (1979), Simes (1986), Hommel (1988), and Benjamini and
Hochberg (1995). A nice historical account of the early works in this area can be found in Hochberg
and Tamhane (1987). A great leap forward in the field of simultaneous inference was made through
the introduction of the concept of false discovery rate (FDR) and a procedure called the Benjamini–
Hochberg procedure. These appeared in the seminal work by Benjamini and Hochberg in 1995.
FDR is obviously the more appropriate error to control in large-scale simultaneous testing problems
compared to the FWER, since trying to control the probability of a single erroneous rejection seems
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too stringent a requirement in such cases. See, for example, Benjamini and Liu (1999), Sarkar (2007),
Storey (2002), and Storey et al. (2004) for further details. An excellent account on the literature on
FDR can be found in Sarkar (2008) and Efron (2012)

The degree of “surprise” required in the observed data to declare a particular hypothesis to be
false in a multiple hypothesis testing context should be more than what would be required to reject a
hypothesis in an individual testing problem. The examples given above of multiple testing procedures
belong to the frequentist domain. For the Bayesian, it is intuitive to reject a hypothesis when it is
less likely aposteriori. The articles Scott and Berger (2006) and Scott and Berger (2010) beautifully
explain this insight and explicitly demonstrate multiplicity adjustment in multiple testing through
such Bayesian hierarchical modelling. See Bogdan et al. (2011) and Bogdan et al. (2008) for examples
of Bayesian multiple testing rules derived as optimal rules with respect to an additive loss functions
which are further discussed in Section 2. For other Bayesian decision theoretic approaches, see, e.g.
Müller et al. (2004), Sun and Cai (2009) and Ghosh (2017).

The above examples of multiple hypothesis testing procedures are under the assumption of inde-
pendence of the test statistics for the individual tests. However, in practice test statistics may often
be dependent. It has been observed that when the procedures intended for the independent setup are
applied unaltered under dependence, a lot of undesirable things can creep in and the performances
of these procedures greatly suffer. See in this context, e.g., Qiu et al. (2006) and references of Cohen
and Sackrowitz (2007) for further details. Although these issues have been raised, they have not been
adequately resolved in the literature and the area of multiple testing under dependence is still very
open to say the least.

The above works on dependence do not focus on the decision theoretic aspect of multiple testing.
This aspect has been largely ignored except for some references like Sun and Cai (2009), Xie et al.
(2011), Cohen and Sackrowitz (2005), Cohen and Sackrowitz (2007), and Cohen and Sackrowitz
(2008). In Sun and Cai (2009) a decision theoretic study was carried out when the unknown
parameters are assumed to be random in nature with a Markovian dependence structure among them.
Under the dependent setup, in multiple hypothesis testing procedures there are some methods for
estimating FDP, see e.g. Fan and Han (2017), Fan et al. (2017). In these methods it is assumed that
the dependency comes into play in the form of some common factors. These methods perform well
in the presence of the factor type dependence setup. There are some other methods by Efron (e.g.
Efron, 2007; Efron, 2010), where the 𝑧-scores are transformed into count data. This translates the
problem to the estimation of distribution of the correlations. But still these methods are very problem
specific and mostly perform under the assumption of sparsity.

A natural question is what would the optimal rule (Bayes Oracle) look like under an arbitrary
form of dependence among test statistics and what would be its asymptotic risk properties in the
asymptotic framework of Bogdan et al. (2011) and Bogdan et al. (2008). This in itself is a very
challenging problem under dependence and the reason will become clear shortly. This was left as
an open problem in Bogdan et al. (2011). Ours is a modest attempt to work in the direction of this
challenging problem. We restrict ourselves to the setup where the test statistics jointly have a mixture
multivariate normal distribution in a permutationally invariant setup. We further assume that the
parameters have a joint multivariate normal distribution, given values of a vector of independent
Bernoulli random variables; see Section 2. With respect to additive loss, the general form of the
Bayes Oracle is very easy to derive even under dependence, but it is intractable. We tried to view
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the problem in a different light. An algorithm is proposed which converges to a rule close to the
ideal classifier. Since the signals and noises differ in variances, it is intuitive to propose some
random threshold for separating observations with different variances. The risk from the additive
loss function is tractable only through approximations. For a constant threshold 𝐶, the approximated
risk becomes a continuous function of 𝐶 and can be minimised mathematically.

We need an ideal classifier or ‘Oracle’-type rule to provide a lower bound on the misclassification
risk in the dependent setup to assess the performance of our methods, but it is hard to find due to
the intractability of the naive rule; see (3). The classifier which minimises the total error, i.e. the
sum of false positives and false negatives, is calculated by a grid search technique; see Section 3.4.
This experiment is repeated several times and averaged to get the ‘optimal’ risk. Though some of
our methods perform close to the ideal classifier, the ideal risk is a non-achievable lower bound even
in the limit. The paper is organised as follows: In Section 2 we introduce the problem and Section
3 shows our attempts to find an easy-to-compute approximately ‘optimal’ rule. The methods are
assessed through simulation studies in Section 4.

2. Description of the problem
Bogdan et al. (2011) deal with independent normal observations an independent normal prior. We
expand the problem in the normal setup with a compound symmetric correlation structure. Suppose
we have 𝑚 observations 𝑋1, 𝑋2, ..., 𝑋𝑚 such that X = (𝑋1, 𝑋2, ..., 𝑋𝑚)⊤ and

X | µ ∼ 𝑁𝑚
(
µ, 𝜎2

Y𝚺
)
,

where µ = (`1, . . . , `𝑚)⊤ represents the unknown effects and 𝜎2
Y𝚺 represents the variability of the

random noise (e.g. measurement error). We assume that 𝜎2
Y > 0 is known and 𝚺 is a compound

symmetric matrix with a known 𝜌. The vector of unknown effects µ is random and its distribution
is determined by the values of 𝑚 unobserved independent Bernoulli(𝑝) random variables a𝑖 , for
some 𝑝 ∈ (0, 1). We call 𝐻0𝑖 : a𝑖 = 0 and 𝐻1𝑖 : a𝑖 = 1. We assume that, given ν = ν0 =
(a01, a02, . . . a0𝑚)⊤, the different components of µ are correlated (with the common correlation 𝜌
the same as X) and have the following distribution:

µ| (ν = ν0) ∼ 𝑁 (0,Dν0𝚺Dν0 ),

where Dν0 is a diagonal matrix with

(
Dν0

)
𝑖𝑖 =



𝜎0 if a0𝑖 = 0,√︃
(𝜎2

0 + 𝜏2) if a0𝑖 = 1.

This implies

`𝑖 ∼
{
𝑁 (0, 𝜎2

0 ) under 𝐻0𝑖 ,

𝑁 (0, 𝜎2
0 + 𝜏2) under 𝐻1𝑖 .

The interpretation is that for small 𝜎2
0 > 0 and substantially large 𝜏2 > 0, the 𝐻0𝑖 correspond

to the insignificant signals or noises and the 𝐻1𝑖 correspond to important signals. The problem of
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identifying components of µ corresponds to the signals is equivalent to test 𝐻0𝑖 : a𝑖 = 0 versus
𝐻1𝑖 : a𝑖 = 1 simultaneously for 𝑖 = 1, . . . , 𝑚. It is evident that when 𝜎2

0 = 0, 𝐻0𝑖 corresponds to the
point null hypothesis `𝑖 = 0 and 𝐻1𝑖 implies 𝑃(`𝑖 = 0) = 0, which is equivalent (when 𝜎0 = 0) to
the canonical testing problem of `𝑖 = 0 versus `𝑖 ≠ 0.

We define 𝑃 (ν = ν0) = 𝑝ν0 = 𝑝 | |ν0 | | (1 − 𝑝)𝑚−| |ν0 | | where | |ν0 | | = number of 1s in the vector
ν0. This provides the marginal distribution of X as follows:

X | ν0 ∼ 𝑁
(
0, 𝜎2

Y𝚺 +Dν0𝚺Dν0

)
, X ∼

∑︁
ν0

𝑝ν0𝑁 (0, 𝜎2
Y𝚺 +Dν0𝚺Dν0 ). (1)

The marginal distribution of X is not compound symmetric but the decision problem is still permu-
tation invariant. Intuitively, we should reject the 𝑖th null hypothesis, i.e. 𝑣𝑖 = 1 if |𝑋𝑖 | is greater than
some symmetric function of the observations (e.g. 𝑇𝑖 in Section 3) including the constant function.

We should look for a procedure that identifies the signals (big signals) from the noises (insignificant
signals) while reducing the expected loss. The chosen loss function is an additive one that defines
the overall loss as the sum of the losses incurred in the individual testing problems. The simplest loss
of this kind is the sum of the total number of type I and type II errors made by a multiple testing rule,
originally proposed in Lehmann (1957a,b) and later considered by many others. See in this context
Sun and Cai (2007), Bogdan et al. (2011), Bogdan et al. (2008), Datta and Ghosh (2013), and Sun
and Cai (2009).

We say that a loss of 𝛿0 ∈ R+ is incurred for the 𝑖-th testing problem when 𝐻0𝑖 is true but it is
rejected, i.e, an error of type I is made. A loss of 𝛿1 ∈ R+ is said to be incurred for the 𝑖-th problem
when an error of type II occurs in that problem. Here 𝛿0, 𝛿1 might depend on 𝑚. The overall loss of
a multiple testing procedure is

𝐿 [ν (X), ν] =
𝑚∑︁
𝑖=1

𝛿𝑖 (a𝑖 (X) − a𝑖)2 ,

where ν denotes the true value and ν (X) = (a1 (X), . . . , a𝑚 (X))⊤ represents the corresponding
random binary vector indicating the decisions obtained from a multiple testing procedure. More
precisely, a𝑖 (X) = 0 if the multiple testing rule accepts 𝐻0𝑖 and a𝑖 (X) = 1 if 𝐻0𝑖 is rejected. Thus,
𝛿𝑖 = 𝛿0 when a𝑖 = 0 but a𝑖 (X) = 1, whereas 𝛿𝑖 = 𝛿1 when a𝑖 = 1 but a𝑖 (X) = 0. The Bayes risk is
defined as 𝑅𝑚 = 𝐸 [𝐿 (ν (X), ν)], where 𝐸 denotes expectation with respect to the joint distribution
of (X , ν). It follows easily that

𝑅𝑚 = 𝐸ν𝐸 [𝐿 (ν (X), ν) |ν] =
𝑚∑︁
𝑖=1
[𝛿0 (1 − 𝑝)𝑡1𝑖 + 𝛿1𝑝𝑡2𝑖] , (2)

where 𝑡1𝑖 and 𝑡2𝑖 denote the probabilities of type I and type II errors incurred for the 𝑖-th testing
problem.

It may be noted that in our setup, the parameter space, the marginal distribution and conditional
distribution of (𝑋1, 𝑋2, . . . , 𝑋𝑚)⊤ remain invariant with respect to permutations, which tells us to
consider permutation invariant tests. This immediately implies that 𝑡1𝑖 = 𝑡1 and 𝑡2𝑖 = 𝑡2 for all 𝑖.
Applying this, the risk becomes

𝑅(ν, ν∗) = 𝑚 [𝛿0 (1 − 𝑝)𝑡1 + 𝛿1𝑝𝑡2] .
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Our goal would be to minimise [𝛿0 (1 − 𝑝)𝑡1 + 𝛿1𝑝𝑡2] among permutation invariant tests to obtain a
good approximate rule in this case.

It is easy to see that for this additive loss function, the optimal multiple testing rule is the one
which simply applies the Bayes rule (with respect to the given 𝛿0, 𝛿1 losses) for each individual test
and is given by

Reject 𝐻0𝑖 if
𝑓 (X |a𝑖 = 1)
𝑓 (X |a𝑖 = 0) >

(1 − 𝑝)
𝑝

𝛿0
𝛿1
, and accept it otherwise, (3)

for each 𝑖 = 1, . . . , 𝑚, where 𝑓 (X |a𝑖 = 𝑗) is the marginal density of X , where a𝑖 = 𝑗 for 𝑗 = 0, 1.
However, this rule is hard to implement because of the mathematical intractability of type I and type
II errors, even asymptotically. The conditional densities of 𝑓 (X |a𝑖 = 0) and 𝑓 (X |a𝑖 = 1) are given
from the mixture densities

∑
ν:a𝑖=0 𝑓 (X |ν)𝑝ν and

∑
ν:a𝑖=1 𝑓 (X |ν)𝑝ν , respectively, where 𝑓 (X |ν)

follows (1). The naive approach of trying to get directly the optimal rule will get us nowhere.
We observe that for both a𝑖 = 0 and a𝑖 = 1, the 𝑋𝑖 come from normal distributions with zero

means, but different variances, namely 𝜎2
𝜖 + 𝜎2

0 and 𝜎2
𝜖 + 𝜎2

0 + 𝜏2. For large 𝜏2, the variance under
a𝑖 = 1 is much larger compared to 𝜎2

0 and 𝜎2
𝜖 . Therefore an intuitive approach will be to look for

coordinates of the observed data points with a large variance in order to reject the null hypothesis.
The following lemma, to be proved in the appendix, would indicate that this amounts to looking for
the 𝑋𝑖 for which 𝑋2

𝑖 are the largest.

Lemma 1.

(a) Let X = (𝑋1, 𝑋2, . . . 𝑋𝑚)⊤ follow a multivariate normal distribution with correlation matrix
R and variances 𝜎2

1 , 𝜎
2
2 , . . . , 𝜎

2
𝑚, respectively. Then 𝑋2

𝑖 ≤𝑠𝑡 𝑋2
𝑗 if and only if 𝜎2

𝑖 ≤ 𝜎2
𝑗 .

(b) Under the assumption of part (a), with compound symmetric correlation matrix R, 𝑋2
𝑖 |Z ≤𝑠𝑡

𝑋2
𝑗 |Z if and only if 𝜎2

𝑖 ≤ 𝜎2
𝑗 , where Z is a subset of {𝑋1, 𝑋2, . . . , 𝑋𝑚} not containing 𝑋𝑖 and

𝑋 𝑗 .

(c) LetX ∼ 𝑁𝑚
(
0, 𝜎2

Y𝚺 +D𝚺D
)
, with𝚺 compound symmetric andD = diag

(
𝜎2

1 , 𝜎
2
2 , . . . , 𝜎

2
𝑚

)
.

Then 𝑋2
𝑖 |Z ≤𝑠𝑡 𝑋2

𝑗 |Z if and only if 𝜎2
𝑖 ≤ 𝜎2

𝑗 , where Z is a subset of {𝑋1, 𝑋2, . . . , 𝑋𝑚} not
containing 𝑋𝑖 and 𝑋 𝑗 .

Note: The notation 𝑋 ≤𝑠𝑡 𝑌 means 𝑌 is stochastically larger than 𝑋 .
The discussion above and the lemma together show that the tests corresponding to the highest 𝐾

ordered statistics of the 𝑋2
𝑖 will be rejected. However, the question of finding an ‘optimal’ 𝐾 remains

to be answered. Put another way, this is equivalent to finding an ’optimal’ threshold 𝐶 (fixed or data
dependent) such that we reject 𝐻0𝑖 whenever |𝑋𝑖 | > 𝐶; see Section 3. The random classifier 𝐶 must
be a symmetric function of 𝑋1, 𝑋2, . . . , 𝑋𝑚 under the permutation invariant rules.

3. Various approaches
Identification of signal from noises can be viewed as a clustering problem with two clusters. We
use the risk minimisation as an optimal way to find a classifier for multiple testing. The classifier 𝐶
(may be random) divides the 𝑋2

𝑖 into two groups which in turn rejects the corresponding tests. The
methods to choose 𝐶 are discussed next.
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3.1 Algorithm
Our goal is to find an algorithm that gradually converges to an ‘optimal’ 𝐶. Let us define three
quantities first.

𝑇1 =

(∑𝑚
𝑖=1 |𝑋𝑖 |
𝑚

)
, 𝑇2 =

(∑𝑚
𝑖=1 𝑋

2
𝑖

𝑚

) 1
2

, 𝑇4 =

(∑𝑚
𝑖=1 𝑋

4
𝑖

𝑚

) 1
4

.

We propose an iterative algorithm for determining the classifier 𝐶, which works good with rea-
sonable error of false positive and false negative. The iteration is as follows:

1. Initialisation: Start with 𝑍0 = 𝑇𝑖 for some 𝑖 ∈ {1, 2, 4}. Classify the vector of coordinate-wise
absolute value of 𝑋 with this classifier.

2. Loop: The coordinates of X for which the corresponding absolute values are less than 𝑍0
and those which are greater than 𝑍0 form two groups. Call the group means 𝐴1 and 𝐴2,
respectively, and obtain 𝑍1 = (𝐴1 + 𝐴2)/2.

3. Go to Step 2 with 𝑍1 and obtain 𝑍2, 𝑍3, . . . , respectively.

4. Termination: Terminate the process in the 𝑖th step if |𝑍𝑖+1 − 𝑍𝑖 | < 𝑓 , where 𝑓 is a predeter-
mined very small tolerance value.

The simulation study in Section 4 shows that the sequence {𝑍𝑛}𝑛≥0 converges in general and
the limit of the 𝑍𝑖 is the ‘optimal’ 𝐶. Different initial statistics maintain homogeneity among the
coordinates because observations only differ in variability. The following result shows the rationale
behind proposing this algorithm.

Result 1. Let 𝑤1, 𝑤2, . . . , 𝑤𝑚 be 𝑚 positive observations. Then the within-group variance

𝑉𝑤 (𝐶) =
∑︁
𝑤𝑖≤𝐶

(𝑤𝑖 − �̄�1)2 +
∑︁
𝑤𝑖>𝐶

(𝑤𝑖 − �̄�2)2

is minimised for a value of 𝐶 which satisfies 𝐶 = (�̄�1 + �̄�2)/2, with �̄�𝑖 giving the mean of the 𝑖th
group.

The algorithm, in each step, reduces the within-group variance and forces the limiting classifier to
divide the data into two clusters, leading to less expected misclassification.

3.2 Proposed random classifier
Let us define the following general quantity

𝑇2ℎ =

(∑𝑚
𝑖=1 𝑋

2ℎ
𝑖

𝑚

) 1
2ℎ

.

Since the main interest of the observations is their measure of variability, any even-powered moment
is a potential choice for the random classifier. The 2ℎth root is taken to maintain homogeneity among
the observations. We can find the ℎ = ℎ𝑜𝑝𝑡 that minimises the total misclassification by brute force.
We can also use any 𝑇2ℎ as our initialisation in the algorithm in Section 3.1 for various values of ℎ.
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3.3 Risk minimisation C
We will provide an almost optimal rule under additive loss within the class of permutation invariant
rules. Consider a multiple testing rule that rejects 𝐻0𝑖 whenever {|𝑋𝑖 | > 𝐶} for 𝑖 = 1, . . . , 𝑚, where
𝐶 is a constant. The risk is given by

𝑅(𝐶) = 𝛿0𝑚(1 − 𝑝)𝑃

|𝑌1 | > 𝐶√︃

𝜎2
𝜖 + 𝜎2

0


+ 𝛿𝐴𝑚𝑝𝑃


|𝑌1 | < 𝐶√︃

𝜎2
𝜖 + 𝜎2

0 + 𝜏2


, (4)

where 𝑌1 is standard normal random variable. This follows from the fact that the errors are identical
for each 𝑖.

When the 𝑋𝑖 and `𝑖 are independent for 𝑖 = 1, 2, . . . , 𝑚, the optimal test has a rejection region
based on a threshold that is a function of the model parameters but is independent of the observations.
This rule is called a Bayes Oracle. Bogdan et al. (2011, Eq. 2.4 §2) calculated the asymptotic risk
of the Bayes Oracle.

Ideally we want to extend the study of optimality in the dependent setup. However, due to the
intractability of the risk, our optimal test (the Bayes Oracle) is not a simple thresholding rule, unlike
the independent case. The risk function for the fixed threshold test depends only on the marginal
distribution of the observations. If the marginal distributions of dependent and independent cases
remain identical, the risk does not change either. We can minimise the risk with respect to 𝐶 to
obtain a critical region for the dependent case. The implication is that the optimal fixed threshold
rule for the independent case is also optimal among fixed threshold rules in the dependent case.

We restrict ourselves to providing a heuristic approximation to the exact asymptotic risk. The
expression of the risk of a fixed threshold in (4) can be approximated in the following way. Assuming
𝐶/

√︃
𝜎2
Y + 𝜎2

0 is large and 𝐶/
√︃
𝜎2
Y + 𝜎2

0 + 𝜏2 is small, we have

𝑅(𝐶) ≈ 𝛿0𝑚(1 − 𝑝)

√︃
2(𝜎2

0 + 𝜎2
Y)

𝐶
√
𝜋

𝑒
− 𝐶2

2(𝜎2
0+𝜎

2
Y ) + 𝛿1𝑚𝑝

𝐶
√

2√︃
𝜋(𝜎2

0 + 𝜎2
Y + 𝜏2)

=
𝑉

𝐶
𝑒
− 𝐶2

2(𝜎2
0+𝜎

2
Y ) +𝑈𝐶, (5)

where𝑉 = 𝛿0𝑚(1−𝑝)
√︃
𝜎2

0 + 𝜎2
Y

√︁
2/𝜋 and𝑈 = 𝛿1𝑚𝑝

√
2
/√︃

𝜋(𝜎2
0 + 𝜎2

Y + 𝜏2). For the first summand,

we exploit the fact that 𝐶/
√︃
𝜎2
Y + 𝜎2

0 is large and employ the standard approximation to normal tails

using Mill’s Ratio. For the second summand, we note that since 𝐶/
√︃
𝜎2
Y + 𝜎2

0 + 𝜏2 is small and for
small 𝑥, 𝑃[|𝑁 (0, 1) | < 𝑥] ≈ 2𝑥𝜙(0). The risk function 𝑅(𝐶) in (5) is a convex function of 𝐶, since

𝑅′ (𝐶) = 𝑈 −𝑉𝑒−𝑎𝐶2
(

1
𝐶2 + 2𝑎

)
= 𝑈 − 2𝑎𝑉𝑒−𝑎𝐶

2 − O
(

1
𝑒𝑎𝐶2𝐶2

)
,

where 𝑎 = 1/(2(𝜎2
0 + 𝜎2

Y)), 𝑅′ (0) > 0 and 𝑅′ (𝐶) is an increasing function of 𝐶 (as 𝑅′′ (𝐶) > 0). By
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ignoring the third term in the expression of 𝑅′ (𝐶), the approximate ‘optimal’ 𝐶 becomes

𝐶 =

√︄
1
𝑎
𝑙𝑜𝑔

(
2𝑎𝑉
𝑈

)
=

√√√√√
2(𝜎2

0 + 𝜎2
Y) log ©«

𝛿0 (1 − 𝑝)
𝛿1𝑝

√√√(
1 + 𝜏2

𝜎2
0 + 𝜎2

Y

)ª®¬
. (6)

3.4 Ideal classifier
It is hard to evaluate the performance of our methods without any standard oracle rule. We use a grid
search to choose an ideal 𝐶 and use it as a benchmark.

Let |𝑋 | ( 𝑗 ) denote the 𝑗 th order statistic of the absolute value of the coordinates of the X vector.
Starting with 𝐶 (0) = |𝑋 | (1) − 1, we classify the data, compute the error (sum of false positive and
false negative) and repeat this process for each 𝐶 (𝑘 ) ∈ (|𝑋 | (𝑘 ) , |𝑋 | (𝑘+1) ) for 𝑘 = 0, 1, . . . , 𝑚. Among
them, the 𝐶 (𝑘∗ ) with minimum total error is the oracle threshold or ideal 𝐶 and the corresponding
total error is ‘optimal’. There may be multiple choices of best classifier 𝐶 providing the same total
error. Any of these choices is fine since we are interested in the ‘optimal’ total error for reference.

Remark 1. Note that, we have made classification in the ideal case with the knowledge of which
observation comes from which 𝜎2

𝑖 . In practice, it may not be achievable as the classifier is not a
function of𝑌2

1 , 𝑌
2
2 , . . . , 𝑌

2
𝑚 alone. Thus the ideal case can be looked upon as some lower bound which

may not be achievable even in the limit.

4. Simulation
The problem has reduced to find a suitable𝐶 for classification of the observations. We have simulated
and performed the tests to validate our methods and have compared them with the independent cases.
It is shown that our method with nonzero correlation coefficient is at least as good as the independent
case in terms of the risk function.

4.1 Simulation setup
We have chosen 𝑚 = 200, 𝜎𝜖 = 𝜎0 = 1, 𝜏 = 15, 90 and 𝜌 = 0, 0.1, 0.5, 0.7. We first generate
the a = a0 where each entry is a Bernoulli(𝑝) variable with 𝑝 = 0.05, 0.12. The choice of 𝑝 will
show that our method works for both sparse and non-sparse cases. With these parameters, we have
generated the observations X | ν0 = (𝑋1, 𝑋2, . . . , 𝑋𝑚) | ν0 using (1). The simulation for each set
of parameter values is run 10 000 times and then the average of the sum of false positive and false
negative is taken to estimate the misclassification risk.

We calculate the discrepancies to compare the performance of our methods using the following
formula:

Discrepancy in percentage = 100 × 𝐸𝐾 − 𝐸𝐾0

𝐸𝐾0

where 𝐸𝐾 is the error (false positive, false negative or total) in the corresponding choice of 𝐶 and
𝐸𝐾0 is the error in the ideal choice of 𝐶. The idea is similar to PRIAL in Ledoit and Wolf (2004).
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Table 1. The discrepancy percentage for two cases: 1) for 𝐶 in (6) and 2) for 𝐶 computed using the
algorithm with starting point 𝑇1.

Parameters CDet TAlgo
1

p 𝜌 𝜏2 F.Pos F.Neg Total F.Pos F.Neg Total

0.05 0.0 15 300.00 4.46 18.30 23 227.27 −54.02 1035.74
90 112.50 14.52 20.45 3737.50 25.00 250.00

0.1 15 104.76 7.89 13.22 10 047.62 −48.25 535.81
90 −10.53 19.92 17.78 −63.16 61.75 52.96

0.5 15 180.00 20.32 29.81 16 393.33 −50.60 880.75
90 112.50 36.43 41.18 2462.50 46.51 189.71

0.8 15 1000.00 51.14 90.32 83 225.00 −57.95 3523.66
90 800.00 81.63 109.80 51 400.00 0.00 2015.69

0.12 0.0 15 73.13 3.99 9.82 1304.48 −25.31 86.90
90 27.78 12.01 13.37 −97.22 74.93 60.14

0.1 15 190.48 0.93 14.66 3323.81 −36.43 206.90
90 22.22 13.35 13.88 −97.22 75.39 60.53

0.5 15 164.44 14.88 26.17 2568.89 −27.77 168.29
90 283.33 25.52 39.51 191.67 64.06 70.73

0.8 15 111.11 52.96 57.94 1233.33 −9.37 92.28
90 164.71 75.20 80.99 −52.94 88.62 79.47

4.2 Discussion
Our procedure is at least as good as in the case of the independent setup in terms of risk function
irrespective of the method, see Table 1. The performance decreases as the data become more
correlated. For large values of the ratio 𝜏/𝜎0 the classification is better and the expected number of
both false positives and false negatives decrease.

We have chosen 𝛿0 = 𝛿𝐴 = 1 for computing 𝐶 from (6). We can see from Table 1 that our method
works for both sparse (𝑝 = 0.05) and non-sparse (𝑝 = 0.12) cases. The 𝐶 from (6) performs better
than the algorithm in general. Discrepancy in estimating expected false negative values is less than
false positives, but expected value of false negatives is almost uniformly larger than its counterpart.

5. Conclusion
We have proposed methods to do multiple hypothesis testing for a specific dependent setup. Our
methods are simple and computationally fast. The classifier 𝐶𝐷𝑒𝑡 performs best in both sparse and
non-sparse scenarios and comes very close to the ‘oracle’ in terms of misclassification risk.

Acknowledgement. We are grateful to Professor Malay Ghosh for his valuable suggestions and
comments.
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Appendix A
1. Proof of (2):

𝑅(ν, ν∗) = 𝐸𝐸 [𝐿 (ν, ν∗) |ν = ν0]

=
∑︁
a0

𝑝a0𝐸

[
𝑚∑︁
𝑖=1

𝛿01[ (a0𝑖−a∗𝑖 )=1] +
𝑚∑︁
𝑖=1

𝛿𝐴1[ (a0𝑖−a∗𝑖 )=−1]

]

=
𝑚∑︁
𝑖=1

𝐸

[∑︁
ν0

𝑝a0

(
𝛿01[ (a0𝑖−a∗𝑖 )=1 + 𝛿𝐴1[ (a0𝑖−a∗𝑖 )=−1]

)]

=
𝑚∑︁
𝑖=1

[∑︁
ν0

𝑝a0

(
𝛿0𝐸 (1(a0𝑖=1) |a∗𝑖 = 0)𝑃(a∗𝑖 = 0) + 𝛿𝐴𝐸 (1(a0𝑖=0) |a∗𝑖 = 1)𝑃(a∗𝑖 = 1))

]

=
𝑚∑︁
𝑖=1

𝛿0 (1 − 𝑝)𝑡1𝑖 + 𝛿𝐴𝑝𝑡2𝑖 .

2. Proof of Lemma 1:

(a) First we consider marginals of 𝑋2
𝑖 and 𝑋2

𝑗 with their marginal variance 𝜎2
𝑖 and 𝜎2

𝑗 as their
variances, respectively. Then

𝑋2
𝑖 ∼ 𝜎2

𝑖 𝑉,

where 𝑉 is chi square with one degree of freedom. From this it easily follows that
𝑋2
𝑖 ≤𝑠𝑡 𝑋2

𝑗 if and only if 𝜎2
𝑖 ≤ 𝜎2

𝑗 .

(b) Here we shall prove 𝑋2
𝑖 |𝑍 ≤𝑠𝑡 𝑋2

𝑗 |𝑍 when the inequality in variance holds as stated
above. Here 𝑍 is a subset of {𝑋1, 𝑋2, . . . , 𝑋𝑚} deleted by 𝑋𝑖 and 𝑋 𝑗 , respectively. Now
in the equi-correlated setup, without loss of generality, instead of 𝑖 ≠ 𝑗 we may simply
work with elements 1 and 2. Define

𝑈 =

[(
𝑋1
𝜎1
,
𝑋2
𝜎2

) ����
(
𝑋3
𝜎3
,
𝑋4
𝜎4
, . . . ,

𝑋𝑚
𝜎𝑚

)]
.

This quantity is free of𝜎2
𝑖 , and

(
𝑋1
𝜎1
, 𝑋2
𝜎2
, 𝑋3
𝜎3
, 𝑋4
𝜎4
, . . . , 𝑋𝑚𝜎𝑚

)
has exchangeable distributions.

Now 𝑈 = (𝑈1,𝑈2) which are exchangeable. (𝑋2
1 , 𝑋

2
2 ) = (𝜎2

1𝑈
2
1 , 𝜎

2
2𝑈

2
2 ) which has equi-

correlated matrix R∗. Hence by part (a) the result follows.

(c) This part follows from part (a) and part (b).

3. Proof of Result 1:
Let us assume a continuous p.d.f. of 𝑤 and call it 𝑓𝑤 . Then the within-group variance 𝑉𝑊 (𝐶)
of the two groups obtained from 𝑤, using 𝐶, is a continuous function of 𝐶. We consider

𝜕𝑉𝑊 (𝐶)
𝜕𝐶

= 0

and obtain the result. Now as the result holds for a continuous p.d.f., it is easy to see that it
holds for the discrete case also.
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