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Machine learning and statistical models are increasingly used in a prediction
context and in the process of building these models the question of which variables
to include often arises. Over the last 50 years a number of procedures have been
proposed, especially in the statistical literature. In this paper a new variable selection
procedure is introduced for linear models. A subset of variables is defined here to
be “good at margin 𝜆” if it has two properties, namely (i) its associated criterion
of fit will be improved in relative terms by less than 𝜆 if any variable is added to
it, and (ii) its criterion of fit will deteriorate in relative terms by at least 𝜆 if any
variable inside it, is dropped from it. Thus, such a subset contains all variables that
are individually important and none that are unimportant at a given margin 𝜆 ≥ 0.
This paper discusses calculation of such 𝜆-good subsets. The “good” approach
extends readily to generalised linear and many other models by using an appropriate
criterion of performance. The approach is illustrated on an artificial data set and a
number of real data sets.

Keywords: Good subsets, Linear regression, Logistic regression, Robust regression, Subset
selection, Variable importance, Variable selection.

1. Introduction
The literature on variable selection methods for linear regression models is truly vast and will not
be surveyed extensively here. The interested reader is referred to the recent surveys by Heinze et al.
(2018), Desboulets (2018) and Talbot and Massamba (2019). At least three broad classes of methods
should be mentioned. The first class is usually referred to as subset selection and consists of a
variety of methods among which are best subset selection, forward, backward and stepwise selection,
and combinations of these approaches (see e.g. Zhang, 2008). A second class is often referred to as
“regularisation” and consists of adding a term to the criterion of fit which penalises the number or size
of the parameter estimates used in the model. Among these methods are AIC (Akaike Information
Criteria; see Akaike, 1992), SBC (Schwarz Bayesian Criteria; see Schwarz, 1978), ridge regression,
the lasso and many further variations depending on the form of the penalisation function (see e.g.
Desboulets, 2018; Freĳeiro-González et al., 2022). A third class seeks to attach some measure of
importance to the variables and then selects a subset from those that are most important (see e.g.
Grömping, 2007; Mielniczuk and Teisseyre, 2014).
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In this paper we introduce a simple approach that has some characteristics of all three of these
classes of methods. The main idea underlying selection methods is that the subset of variables selected
should include all and only those variables that are “important” to establish the relationship between
the regressors and the response variable. Methods diverge depending on how the notion of a variable
being important (or significant, essential, etc.) is measured. In Section 2 we introduce a notion which
we refer to as the selected subset being “𝜆-good”, with 𝜆 being a tuning parameter expressing the
demarcation level between a variable being important or unimportant, when importance is expressed
in terms of the relative change in the measure of fit of the model. Search algorithms to calculate such
subsets and their paths as functions of 𝜆 are discussed. In Section 3 these ideas are illustrated using
generated data from a known linear model. Section 4 further illustrates the 𝜆-good method applied
to the Boston housing data set, which is often used in the literature to illustrate selection methods. A
variety of possible choices of 𝜆 is also discussed. Section 5 illustrates the application of the method
to the case of robust linear regression. Section 6 further illustrates the method applying it to a large
data set and using logistic regression. Section 7 concludes with an outline of open issues and further
research projects. An appendix shows formulas that ease the computational efforts required by the
method.

2. The “good subsets” approach to linear regression
In this section we introduce the main ideas of the “good subsets” approach to variable selection in
the simplest context, namely standard linear regression. Its extension to other cases will be discussed
subsequently. To begin with some notation is needed. Suppose that we have a response (dependent or
target) variable 𝑌 and 𝐾 regressors (independent, explanatory or predictor variables) 𝑋1, 𝑋2, . . . , 𝑋𝐾
and the model under consideration is

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + · · · + 𝑏𝐾𝑋𝐾 + 𝑒, (1)

with 𝑒 an error term and b = (𝑏0, 𝑏1, . . . , 𝑏𝐾 ) the regression coefficients. Not all the regressors may
be relevant and some of the regression coefficients may actually be 0, but we do not know which
these might be. Indeed, we are especially interested in the sparse case where only a few coefficients
are non-zero and their identification and estimation are the main issues.

For brevity we shall refer to regressor 𝑋𝑘 simply as regressor 𝑘 below. The data consists of
observations𝑌𝑛, 𝑋𝑛1, . . . , 𝑋𝑛𝐾 , 𝑛 = 1, . . . , 𝑁 and the minimised error sum of squares associated with
a subset 𝑆 ⊆ 𝐴 = {1, 2, . . . , 𝐾} of the regressors, is given by

ESS(𝑆) = min
b

𝑁∑︁
𝑛=1

[
𝑌𝑛 − 𝑏0 −

∑︁
𝑘∈𝑆

𝑏𝑘𝑋𝑛𝑘

]2

.

Suppose that we have a subset 𝑆 under consideration and want to examine dropping regressors from
it or adding regressors to it. If a regressor 𝑘 which is in 𝑆, is dropped from 𝑆, then ESS(𝑆) is
increased to ESS(𝑆 \ 𝑘) and, intuitively speaking, if this increase is small, then we might as well
drop regressor 𝑘 , but if the increase is large, then it is important to keep regressor 𝑘 . The size of
the increase 𝛿𝑘 (𝑆) = ESS(𝑆 \ 𝑘) − ESS(𝑆), is a possible measure of importance of regressor 𝑘 in 𝑆.
Next, suppose regressor 𝑘 is out of 𝑆. If it is added to 𝑆, then ESS(𝑆) is decreased to ESS(𝑆 ∪ 𝑘)
and if this decrease is small then we would not want to add it, but if the decrease is large, then it
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is important to add regressor 𝑘 . Again the size of the decrease 𝛿𝑘 (𝑆) = ESS(𝑆) − 𝐸𝑆𝑆(𝑆 ∪ 𝑘) is a
possible measure of importance of regressor 𝑘 when it is out of 𝑆. Note that the definition of these
measures of importance 𝛿𝑘 (𝑆) of regressor 𝑘 with respect to the subset 𝑆, depends on whether or not
regressor 𝑘 is in 𝑆.

Now suppose 𝑘 is in 𝑆 and we decide to drop it in view its importance measured by 𝛿𝑘 (𝑆). After
dropping it, 𝑘 is out of the smaller subset 𝑆 \ 𝑘 , and the importance of 𝑘 with respect to 𝑆 \ 𝑘 is
𝛿𝑘 (𝑆 \ 𝑘) = 𝐸𝑆𝑆(𝑆 \ 𝑘) −𝐸𝑆𝑆(𝑆) = 𝛿𝑘 (𝑆). This equation says that after dropping a regressor from a
subset, its importance with respect to the remainder of the initial subset, is the same as its importance
was with respect to the initial subset. This is a reasonable property of the definitions of the 𝛿𝑘 (𝑆).
For example, it implies that just after dropping a regressor on the evidence of its importance, you will
not suddenly have different importance evidence from the reduced subset for adding it back in again.
Similarly, if 𝑘 is out of 𝑆, then we have the equation 𝛿𝑘 (𝑆 ∪ 𝑘) = 𝛿𝑘 (𝑆). This implies that if you
add a regressor to a subset on the evidence of its importance, you will not have different importance
evidence from the enlarged subset for dropping it out again.

The importance measures 𝛿𝑘 (𝑆) are not invariant with respect to the scale of the response𝑌 . Scale
invariance is desirable since it would imply that the importance measures express relationships of
the regressors to the response that are more intrinsic than the unit of measurement of the response.
Such scale invariance can be obtained if the increase (or decrease) in error sum of squares is
expressed in relative terms. This can be done in various ways. One possibility is the measure
𝛿′𝑘 (𝑆) = 𝛿𝑘 (𝑆)/ESS(𝑆). This may be viewed as a𝑇-type statistic for testing the hypothesis that 𝛽𝑘 = 0
(see e.g. Mielniczuk and Teisseyre, 2014). However, this measure does not satisfy the equivalents of
the equations 𝛿′𝑘 (𝑆 \ 𝑘) = 𝛿′𝑘 (𝑆) and 𝛿′𝑘 (𝑆 ∪ 𝑘) = 𝛿′𝑘 (𝑆) discussed above. An importance measure
that does satisfy these equations and provides scale invariance as well, is obtained if we express the
𝛿𝑘 (𝑆) relative to the geometric mean of the error sum of squares of the two subsets 𝑆 involved in each
case. We denote this measure by Δ𝑘 (𝑆). For reference purposes below, the definition is as follows:

Δ𝑘 (𝑆) =
{
[𝐸𝑆𝑆(𝑆 \ 𝑘) − 𝐸𝑆𝑆(𝑆)]/

√︁
𝐸𝑆𝑆(𝑆)𝐸𝑆𝑆(𝑆 \ 𝑘) if 𝑘 ∈ 𝑆,

[𝐸𝑆𝑆(𝑆) − 𝐸𝑆𝑆(𝑆 ∪ 𝑘)]/
√︁
𝐸𝑆𝑆(𝑆)𝐸𝑆𝑆(𝑆 ∪ 𝑘) if 𝑘 ∉ 𝑆.

(2)

It is straightforward to verify that Δ𝑘 (𝑆 \ 𝑘) = Δ𝑘 (𝑆) and Δ𝑘 (𝑆∪ 𝑘) = Δ𝑘 (𝑆), so that the implications
discussed above for the 𝛿𝑘 (𝑆), continue to hold while scale invariance also holds.

Turning to the use of these measures of importance, suppose that for a given subset 𝑆,Δ 𝑗 (𝑆) is small
for all 𝑗 ∉ 𝑆, then the subset 𝑆 is “good enough” in the sense that adding further individual regressors
will make the model less parsimonious, without leading to appreciable immediate improvement in
error sum of squares. If Δ𝑖 (𝑆) is large for all 𝑖 ∈ 𝑆, then the subset 𝑆 contains all important regressors
in the sense that dropping any one of them, will lead to appreciable immediate deterioration in its
error sum of squares performance. More formally, for a given 𝜆 ≥ 0, we define 𝑆 as “good at
margin 𝜆” (or 𝜆-good for short) if it satisfies the requirement

Δ 𝑗 (𝑆) < 𝜆 ≤ Δ𝑖 (𝑆) for all 𝑗 ∉ 𝑆 and all 𝑖 ∈ 𝑆. (3)

Thus 𝜆 represents the demarcation level below which improvement by adding regressors is no
longer considered worthwhile and above which deterioration by dropping regressors is unacceptable.
Another way of expressing this requirement, is to order the sequence Δ1 (𝑆),Δ2 (𝑆), . . . ,Δ𝐾 (𝑆)
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decreasingly, say as Δ𝑙1 (𝑆) ≥ Δ𝑙2 (𝑆) ≥ · · · ≥ Δ𝑙𝐾 (𝑆). Then with |𝑆 | denoting the size (cardinality or
number of elements) in 𝑆, we must have

Δ𝑙|𝑆 |+1 (𝑆) < 𝜆 ≤ Δ𝑙|𝑆 | (𝑆). (4)

Note that this implies that 𝑆 will then be 𝜆-good for any value of 𝜆 within the interval
(Δ𝑙|𝑆 |+1 (𝑆),Δ𝑙|𝑆 | (𝑆)]. Thus for 𝑘 = 1, 2, . . . , 𝐾 , {Δ𝑘 (𝑆)} may be thought of as a measure of the
importance of the 𝑘-th regressor, associated with a given subset 𝑆 and 𝑆 will be 𝜆-good if it consists
of exactly those regressors with importance at least 𝜆.

The Δs can be written in terms of the 𝑅2-values associated with the subset 𝑆 using the relation
𝑅2 (𝑆) = 1 − ESS(𝑆)/𝐸𝑆𝑆(∅) where ∅ is the empty set. We find

Δ𝑘 (𝑆) =


[
𝑅2 (𝑆) − 𝑅2 (𝑆 \ 𝑘)] /√︃[

1 − 𝑅2 (𝑆)] [
1 − 𝑅2 (𝑆 \ 𝑘)] if 𝑘 ∈ 𝑆,[

𝑅2 (𝑆 ∪ 𝑘) − 𝑅2 (𝑆)] /√︃[
1 − 𝑅2 (𝑆)] [

1 − 𝑅2 (𝑆 ∪ 𝑘)] if 𝑘 ∉ 𝑆.
(5)

In both cases the change in the 𝑅2-value is expressed relative to the geometric mean of the “unex-
plained variance fraction” associated with the two subsets in question.

In applications it is important to calculate the Δs efficiently. The appendix explains how this can
be done.

Some questions arise. For a given margin 𝜆, does there exist 𝜆-good subsets and if so, how do
we find them? What value of 𝜆 should be used for any given data set? At present we do not have
complete answers to these questions but here are some relevant notes. If the empty subset 𝑆 = ∅ is
to be 𝜆-good only the left-hand inequality of (3) is relevant and taking (5) into account, it requires
𝜆 > 𝑅2 ( 𝑗)/

√︁
1 − 𝑅2 ( 𝑗) for 𝑗 = 1, 2, . . . , 𝐾 . Thus if

𝜆 > 𝜆max = max
𝑗∈𝐴

𝑅2 ( 𝑗)/
√︃

1 − 𝑅2 ( 𝑗), (6)

then the empty subset 𝑆 = ∅ is 𝜆-good. At the other end of the scale, note that (3) holds for 𝑆 = 𝐴

if 𝜆 = 0 so that the set of all regressors is 0-good. Typically, we do not want to use all regressors
for reasons of parsimony and will take 𝜆 > 0. These notes suggest the use of 𝜆-values in the interval
between 0 and the bound 𝜆max in (6). This bound does not depend on any unknowns such as Var(𝑒),
the error variance in the model (1), and this is a benefit flowing from working with the scale invariant
definition of the Δs in (2).

We propose the following search algorithm to calculate good subsets at any given margin 𝜆:

(1) Start with an initial subset 𝑆 (e.g. the most parsimonious choice 𝑆 = ∅ ).

(2) For 𝑘 = 1, 2, . . . , 𝐾 do:

• if 𝑘 ∉ 𝑆 and Δ𝑘 (𝑆) ≥ 𝜆, then replace 𝑆 by 𝑆 ∪ 𝑘;

• if 𝑘 ∈ 𝑆 and Δ𝑘 (𝑆) < 𝜆, then replace 𝑆 by 𝑆 \ 𝑘 .

(3) Repeat step (2) until convergence, which is obtained when a full pass through 𝑘 = 1, 2, . . . , 𝐾
is done without any changes to the current 𝑆.
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At any stage the algorithm simply checks the Δ-value of the 𝑘th regressor associated with the
current subset 𝑆 against the left (right) hand side of (3) and adds 𝑘 to (drops 𝑘 from) 𝑆 if (3) is not
yet met. This algorithm is somewhat comparable to the forward-backward greedy algorithm (FoBa)
introduced by Zhang (2008), but also differs in some respects. We do not evaluate the improvement
(deterioration) by keeping the currently minimising regression coefficients b fixed when considering
a change. Also, we do not use the greedy aspect, since it involves more computation when all possible
changes are considered, to get the single best one before each change. Further we use relative (rather
than absolute) size of change in ESS because this leads to scale invariance regarding the choices of
𝜆. Finally, we work with a fixed margin rather than an adaptive threshold, which, moreover, is then
the same for adding and dropping of variables, thus keeping the number of tuning parameters to one.

As explained the “good” approach to variable selection is subset selection based. Thus, coefficient
estimates are either exactly zero or the least squares estimates. Compared to the regularisation
(penalty) approach either no shrinking or complete shrinking to 0 takes place. The margin 𝜆 may be
thought of as a (single) tuning parameter and as for the regularisation approach, a path of estimated
coefficient values when 𝜆 varies can also be calculated easily. By (4) they may be taken as simple
step functions of 𝜆. We use the following good subsets path generating algorithm:

(0) Start with an initial choice, say 𝜆 = 𝜆0, e.g. a choice larger than the bound in (6) so that 𝑆 = ∅
is good at this level and no regressors are in the model. Then calculate 𝜆1 = Δ𝑙|𝑆 |+1 (𝑆) in (4).

(1) With 𝜆 = 𝜆1 apply the search algorithm above to find a 𝜆1-good subset 𝑆 with its associated
coefficient estimates. The subset of the previous step may be used as starting subset for the
search algorithm here. With the new subset 𝑆, calculate 𝜆2 = Δ𝑙|𝑆 |+1 (𝑆) to use in the next step.

(2) Repeat step (1) but with 𝜆 = 𝜆2 and carry on until a predefined small stopping value of 𝜆 is
reached.

One possible use of the path results to make a specific choice of 𝜆 is to calculate selection criteria,
such as AIC and SBC, to select a “best” choice of 𝜆. One could also use cross-validation and other
strategies for this purpose.

Many variations of the ideas set out above are possible. Instead of defining the Δs using the error
sum of squares in (2) or 𝑅2 in (5), we could work with the mean squared error (MSE) and the adjusted
𝑅2 associated with the subset 𝑆 given by

MSE(𝑆) = 1
𝑁 − |𝑆 | − 1

ESS(𝑆) and 𝑅2
𝑎 (𝑆) = 1 − 𝑁 − 1

𝑁 − |𝑆 | − 1

(
1 − 𝑅2 (𝑆)

)
.

Since MSE(𝑆) is not necessarily decreasing (increasing) when an index is added to (dropped from)
𝑆, the Δ values associated with it are not necessarily non-negative, but this makes no difference to the
definitions, the algorithms and their convergence stated above. We could also replace criteria based
on squared error loss by absolute error and other forms of loss functions and performance criteria
more appropriate for the circumstances (e.g. for robust model selection purposes or in generalised
linear model contexts).

The following sections illustrate the ideas stated above. Section 3 applies it to artificial data in
order to demonstrate the details of the good approach in a context where the true model and its
parameters are known. The subsequent sections deal with practical data sets used in the literature.
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3. Illustration in linear regression using artificial data
In this section we illustrate the essentials of the good methodology in the standard linear re-
gression case using generated data. We took the sample size 𝑁 = 200, used 𝐾 = 10 regres-
sors and generated 200 values for each of 𝑋1, 𝑋2, . . . , 𝑋𝐾 taking them independent unit nor-
mally distributed and calculating the corresponding values for 𝑌 from the model (1). We took
b = (0, 0, 0.2, 0, 0.4, 0, 0.6, 0, 1.0, 0, 0) and assumed 𝑒 also independent unit normally distributed.
Hence the true important regressors in order of increasing size of their regression coefficients are
𝑋2, 𝑋4, 𝑋6 and 𝑋8. We repeated the path generating algorithm until the remaining Δ values were
below 0.001.

Table 1 summarises the main features of the method applied to this data. The top panel of Table 1
shows the details as the steps of the path generation algorithm proceed. For ease of presentation, we
used the average sum of squared errors (𝐴𝑆𝐸 = 𝐸𝑆𝑆/𝑁) as criterion of fit. The 𝜆 values along the
path and the 𝐴𝑆𝐸 values are shown in the second and third rows and the number of passes (count)
required for convergence on each step are in the fourth row. The subset sizes are in row five of the top
panel and the corresponding coefficient estimates are shown in the middle panel. The Δ values for the
ASE criterion are shown in the bottom panel of Table 1. On step 0 they are all below the value 𝜆 = 1
and the empty subset is 1-good. The largest Δ value is 0.4569 (that of 𝑋8 ) and this is the 𝜆 value
taken for step 1. On step 1 the Δ of 𝑋8 stays at 0.4569 but the Δ values of all other regressors are
smaller than 0.4569 so that selecting only 𝑋8 at this stage yields a 0.4569-good subset. The largest
Δ value among the other regressors is 0.3226 (that of 𝑋6 ). Hence the subset consisting of only 𝑋8
is 𝜆-good for any 𝜆 in the interval (0.3226, 0.4569]. For step 2 the algorithm takes 𝜆 = 0.3226 and
then selects the subset consisting of 𝑋8 and 𝑋6. This yields a 𝜆-good subset for any 𝜆 in the interval
(0.1042, 0.3226] since 0.1042 is the largest Δ value among the other regressors not in this subset.
Step 3 then carries on with 𝜆 = 0.1042 and adds 𝑋4. Step 4 proceeds in the same manner, adding 𝑋2
to get a subset which is a 𝜆-good subset for any 𝜆 in the interval (0.0187, 0.0342]. The coefficient
estimates in the middle panel show that at step 4 all four known important regressors were identified
and included in the selected subset and that the estimates are quite in line with the true coefficient
values. One more regressor was added at each of steps 5 to 8, at which stage the selected subset
consisted of all but the regressors 𝑋1 and 𝑋7. Their Δ values were below the level of 0.001 and the
algorithm stopped. The coefficient estimates as functions of 𝜆 are shown graphically in the lefthand
panel of Figure 1, making it clear that they form simple step functions here.

Rows 6 to 8 of the top panel in Table 1 show the 𝑅2,AIC and SBC criteria of the subsets at each
step. The 𝑅2 values increase but are quite constant from step 4 onwards. AIC has a shallow minimum
at step 6 and the SBC has a somewhat clearer minimum at step 4. These indications are in line with
the true model on which this data was based.

In the exposition of the 𝜆-good method in Section 2, no distributional assumptions were made
regarding the error terms 𝑒𝑛. If we assume that they are independent and identically distributed (iid)
with zero expectation and variance 𝜎2, then an estimate of 𝜎2 corresponding the selected subset 𝑆
are given by 𝜎̂2 (𝑆) = 𝐸𝑆𝑆(𝑆)/(𝑁 −1− |𝑆 |). Row 9 of Table 1 shows the values of 𝜎̂ for each subset.
The right-hand panel of Figure 1 plots these estimates as functions of 𝜆. This graph is also a step
function since the selected subset do not change when 𝜆 varies over the successive intervals.
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Table 1. Illustration of path features of good subsets algorithm using ASE as criterion applied to the
generated data.

Details on each step
step 0 1 2 3 4 5 6 7 8
𝜆 1.0000 0.4569 0.3226 0.1042 0.0342 0.0189 0.0134 0.0026 0.0022
ASE 2.1416 1.3614 0.9874 0.8897 0.8598 0.8437 0.8325 0.8303 0.8285
count 1 2 2 2 2 2 2 2 2
size 0 1 2 3 4 5 6 7 8
R-square 0.0000 0.3643 0.5389 0.5846 0.5985 0.6060 0.6113 0.6123 0.6131
AIC 356.31 267.71 205.46 186.62 181.79 180.02 179.35 180.82 182.38
SBC 157.61 72.31 13.36 −2.18 −3.72 −2.19 0.43 5.20 10.06
𝜎̂ 1.4671 1.1727 1.0012 0.9528 0.9391 0.9327 0.9288 0.9300 0.9314

Regressor coefficient estimates on each step
intcpt -0.0522 0.0138 -0.0119 -0.0055 0.0155 0.0036 -0.0007 -0.0033 -0.0019
X1 0 0 0 0 0 0 0 0 0
X2 0 0 0 0 0.1718 0.1730 0.1689 0.1641 0.1665
X3 0 0 0 0 0 -0.1322 -0.1228 -0.1256 -0.1304
X4 0 0 0 0.3431 0.3440 0.3418 0.3545 0.3503 0.3491
X5 0 0 0 0 0 0 0.1041 0.1061 0.1054
X6 0 0 0.6622 0.6699 0.6538 0.6548 0.6628 0.6631 0.6571
X7 0 0 0 0 0 0 0 0 0
X8 0 0.8585 0.9701 0.9871 0.9764 0.9811 0.9907 0.9885 0.9839
X9 0 0 0 0 0 0 0 0 -0.0408
X10 0 0 0 0 0 0 0 -0.0474 -0.0464

Deltas on each step when using ASE as criterion
X1 0.0013 0.0028 0.0002 0.0001 0.0000 0.0001 0.0002 0.0001 0.0002
X2 0.0334 0.0373 0.0302 0.0342 0.0342 0.0353 0.0340 0.0319 0.0328
X3 0.0039 0.0115 0.0173 0.0178 0.0189 0.0189 0.0164 0.0171 0.0183
X4 0.0302 0.0677 0.1042 0.1042 0.1082 0.1088 0.1168 0.1137 0.1131
X5 0.0001 0.0017 0.0079 0.0171 0.0158 0.0134 0.0134 0.0139 0.0137
X6 0.0939 0.3226 0.3226 0.3596 0.3529 0.3596 0.3698 0.3709 0.3607
X7 0.0136 0.0097 0.0012 0.0001 0.0011 0.0005 0.0001 0.0001 0.0001
X8 0.4569 0.4569 0.6935 0.7674 0.7722 0.7877 0.8020 0.7994 0.7887
X9 0.0151 0.0081 0.0009 0.0006 0.0012 0.0024 0.0023 0.0022 0.0022
X10 0.0080 0.0048 0.0062 0.0030 0.0014 0.0021 0.0026 0.0026 0.0025
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Figure 1. Path of estimated regression coefficients (left panel) and standard deviation estimate as
functions of 𝜆.

4. Illustration in standard regression using the Boston housing data
The well-known Boston housing data set is used this section. This data set has been used for
illustration purposes in many papers (e.g. Zhang, 2008). It has 506 observations with housing price
as response variable and 13 other regressors as listed in Table 2 . We used Proc IML of SAS to
program the algorithms together with the SUBMIT call to Proc GENMOD to compute the model
fitting details and criteria.

Path results
Table 2 shows the results in similar form to Table 1 above. Again, on step 0 the empty subset is
1-good. The largest Δ value on this step is 0.8059 (that of “lstat”) and this is the 𝜆 value taken
for step 1. Selecting only lstat yields 0.8059-good subset. The largest Δ value among the other
regressors is 0.2326, that of “rooms”. Hence selecting only lstat is 𝜆-good for any 𝜆 in the interval
(0.2326, 0.8059]. For step 2 the algorithm takes 𝜆 = 0.2326 and then selects both lstat and rooms as
variables to include and go on to the subsequent steps. The coefficient estimates in the middle panel
show that one more regressor was added at step 3, two more at step 4, then again one more on steps
5, 6 and 7, three more on step 8 and one more on step 9. At that stage the selected subset consisted
of all but the regressor “age” whose Δ value was zero (to four decimals) and the algorithm stopped.

We calculated the ASEs of all subsets of given sizes separately, compared them to those of the
good subsets in Table 2 and found that the good subsets were in all cases actually the best of their
sizes, i.e. they possessed the smallest ASEs among all subsets of their respective sizes. While this
is true for this data set (and some others we looked at), we doubt that it would be generally true, and
this note leads to the issue of finding conditions under which the “good” subsets are guaranteed to
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Table 2. Illustration of path features of good subsets algorithm using ASE as criterion applied to the
Boston housing data.

Details on each step

step 0 1 2 3 4 5 6 7 8 9
𝜆 1.0000 0.8059 0.2326 0.1175 0.0370 0.0267 0.0227 0.0161 0.0081 0.0002
ASE 84.42 38.48 30.51 27.13 24.64 23.99 23.46 23.08 21.90 21.89
count 1 2 2 2 3 2 2 2 4 2
size 0 1 2 3 5 6 7 8 11 12
𝑅2 0.0000 0.5441 0.6386 0.6786 0.7081 0.7158 0.7222 0.7266 0.7406 0.7406
AIC 2755 2359 2244 2186 2141 2130 2120 2114 2094 2096
SBC 2251 1859 1748 1695 1659 1652 1646 1644 1636 1643

Regressor coefficient estimates on each step

intcpt 22.533 34.554 -1.358 18.567 37.499 36.923 30.412 30.317 36.341 36.437
crim 0 0 0 0 0 0 0 0 -0.1084 -0.1080
zn 0 0 0 0 0 0 0 0.0378 0.0458 0.0463
indus 0 0 0 0 0 0 0 0 0 0.0206
chas 0 0 0 0 0 3.2443 3.0519 3.1111 2.7187 2.6890
nox 0 0 0 0 -17.997 -18.740 -16.677 -16.687 -17.376 -17.714
rooms 0 0 5.0948 4.5154 4.1633 4.1118 4.2944 4.1161 3.8016 3.8144
age 0 0 0 0 0 0 0 0 0 0
distance 0 0 0 0 -1.1847 -1.1446 -1.1235 -1.3827 -1.4927 -1.4786
radial 0 0 0 0 0 0 0 0 0.2996 0.3058
tax 0 0 0 0 0 0 0 0 -0.0118 -0.0123
pt 0 0 0 -0.9307 -1.0458 -1.0027 -0.9737 -0.8819 -0.9465 -0.9522
b 0 0 0 0 0 0 0.0090 0.0094 0.0093 0.0093
lstat 0 -0.9500 -0.6424 -0.5718 -0.5811 -0.5698 -0.5372 -0.5431 -0.5226 -0.5239

Deltas on each step when using ASE as criterion

crim 0.1636 0.0076 0.0204 0.0090 0.0114 0.0096 0.0047 0.0081 0.0081 0.0217
zn 0.1393 0.0083 0.0037 0.0011 0.0122 0.0136 0.0161 0.0161 0.0230 0.0232
indus 0.2674 0.0051 0.0040 0.0001 0.0014 0.0022 0.0013 0.0014 0.0002 0.0002
chas 0.0312 0.0412 0.0362 0.0279 0.0267 0.0267 0.0241 0.0254 0.0203 0.0197
nox 0.2020 0.0002 0.0010 0.0018 0.0591 0.0654 0.0515 0.0524 0.0477 0.0459
rooms 0.6728 0.2326 0.2326 0.2024 0.1861 0.1862 0.2024 0.1861 0.1633 0.1630
age 0.1534 0.0157 0.0013 0.0048 0.0000 0.0002 0.0008 0.0001 0.0000 0.0000
distance 0.0645 0.0405 0.0230 0.0370 0.0944 0.0903 0.0889 0.1038 0.1230 0.1152
radial 0.1576 0.0013 0.0118 0.0004 0.0043 0.0048 0.0122 0.0080 0.0442 0.0425
tax 0.2485 0.0142 0.0279 0.0032 0.0008 0.0003 0.0002 0.0003 0.0244 0.0216
pt 0.2993 0.1476 0.1175 0.1175 0.1569 0.1473 0.1416 0.1106 0.1034 0.1029
b 0.1179 0.0102 0.0337 0.0288 0.0253 0.0227 0.0227 0.0252 0.0241 0.0243
lstat 0.8059 0.8059 0.3588 0.3126 0.2583 0.2546 0.2253 0.2327 0.2202 0.2199
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be the “best” subsets. This issue is an open problem at present. Note also that the results potentially
depend on the order in which the regressors are presented. To check on whether this is the case here,
we randomly permuted the sequencing of the regressors in the data set and presented the permuted
data to the algorithm but found that this made no difference to the results. Again, it is an open issue
to what extent this is generally true.

Further, we calculated the 𝑅2,AIC and SBC values along the path and show them in rows 6 to
8 of Table 2. 𝑅2 increases with model size but only slowly towards the end; both AIC and SBC
achieve their minima on step 8, suggesting a choice of 𝜆 in the interval [0.0081, 0.0002) and the
corresponding model with 11 regressors shown in the table.

Other choices of 𝜆
Next, we discuss two other methods to choose 𝜆. The first one is based on data-splitting and cross-
validation ideas. Some notation is needed to formulate this clearly. LetN = {1, 2, . . . , 𝑁} denote the
indices of the observations and letD ⊂ N denote a subset consisting of 𝑁/2 indices when 𝑁 is even
and one more otherwise. Cross-validation fits a model on the part of the data inD (orD𝑐 = N \D)
and uses the fitted model to judge how well it predicts the responses in D𝑐 (or D). More formally,
for a given subset of regressors 𝑆 define the average total squared error when fitting separate models
to the two data parts by

ASE(𝑆,D) = 1
𝑁


min
b

∑︁
𝑛∈D

[
𝑌𝑛 − 𝑏0 −

∑︁
𝑘∈𝑆

𝑏𝑘𝑋𝑛𝑘

]2

+min
b

∑︁
𝑛∈D𝑐

[
𝑌𝑛 − 𝑏0 −

∑︁
𝑘∈𝑆

𝑏𝑘𝑋𝑛𝑘

]2
. (7)

With bD = (𝑏D0 , 𝑏D1 , . . . , 𝑏D𝐾 ) and bD
𝑐
= (𝑏D𝑐0 , 𝑏D

𝑐

1 , . . . , 𝑏D
𝑐

𝐾 ) denoting the choices of b at which
the two minima in (7) are achieved, define the average squared error when cross-predicting between
the data parts by

APSE(𝑆,D) = 1
𝑁


∑︁
𝑛∈D

[
𝑌𝑛 − 𝑏D𝑐0 −

∑︁
𝑘∈𝑆

𝑏D
𝑐

𝑘 𝑋𝑛𝑘

]2

+
∑︁
𝑛∈D𝑐

[
𝑌𝑛 − 𝑏D0 −

∑︁
𝑘∈𝑆

𝑏D𝑘 𝑋𝑛𝑘

]2
.

Then take theΔs as in (2) with 𝐴𝑆𝐸 (𝑆) replaced by 𝐴𝑆𝐸 (𝑆,D), apply the path generating algorithm to
obtain the sequence of 𝜆 value intervals and associated subsets 𝑆 and also calculate their APSE(𝑆,D)
values. Then a choice 𝜆 = 𝜆min (D) that is in the interval minimising APSE(𝑆,D) along the path
is reasonable from a cross-validation point of view. This still depends on the choice of subset D
and the question now is what to do about this. One possibility is to try to match the data items in
D and D𝑐 as closely as possible, but this will not be pursued here. The more usual way is to take
many random choices and average the 𝜆min (D) over repetitions. Doing this 1000 times delivered the
average value of 0.0019 when we took the 𝜆min (D) at the midpoint of the minimising intervals in
each case. The value 0.0019 for 𝜆 is in the interval of step 7 in Table 2 suggesting a somewhat more
parsimonious model than that suggested by AIC and SBC, involving only eight regressors rather than
11 . We also calculated the average of the minimised APSE(𝑆,D) over repetitions and found that
this was 24.50 which is only about 6% above the ASE of 23.08 in Table 2 on step 7. This suggests
that the ASE of 23.08 for the chosen model is only slightly overoptimistic in terms of error sizes that
may be expected when predicting out-of-sample with it.
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Another method to choose 𝜆 can be based on the addition to the data of pseudoregressors which
are known to be unrelated to the response. Adapting from Wu et al. (2007), we randomly permuted
the rows of the regressor data and then added them to the existing data as new (or pseudo-) regressors.
The random permutation destroys the relationship between the response and the regressors so that
these pseudoregressors should not be included in the selected model. A table similar to Table 2
showed that when the good approach is applied to this extended data set, everything stayed the same
up to step 7 with the coefficient estimates of the pseudoregressors all having the value zero. On step 8
one of the pseudoregressors (nox) was included in the selected model with a non-zero coefficient. So,
at this point a regressor that is known to be unrelated to the response (at least to the extent to which
the randomisation destroyed their relationship), is selected ahead of the remaining actual regressors.
This suggests that the remaining unselected regressors are also likely to be unrelated to the response
and that we could therefore stop at the previous step, i.e. choose 𝜆 in [0.0160, 0.0081). But this
was just one randomised addition of pseudoregressors. We repeated the process independently 1000
times and averaged the resulting 𝜆-values, getting 0.0090. This value is also in step 8 of Table 2 and
therefore agrees with the choice found by the cross-validation method above. There are many other
ways to generate pseudoregressors. Taking them to be independent standard normally distributed
leads to virtually the same results. There are some further issues with this method of choosing 𝜆. We
took their number equal to the number of actual regressors, but it is not clear that this is necessary
or desirable, especially when we already have a large number of regressors, where this will double
their number and add to the computational burden. Our application of the pseudoregressors method
is rather different from that given in Wu et al. (2007) and it is evident that further research is required
to establish the properties of our adaptation of this idea.

Adding interactions
To see what happens when the number of regressors are larger, we added all interactions to the main
regressors, thus increasing the number of regressors to 91 . Table 3 shows the results when the good
approach is applied to the data with this much extended set of variables. Table 3 is similar in form to
Table 2 but leaves out the coefficient estimates of the variables that did not enter up to step 9. Also,
all the Δs were left out since their use is as before.

Among notable features when comparing Tables 2 and 3 are the following. The three main
regressors rooms, pt and lstat which entered early in Table 2 also enter early in Table 3 and moreover
figure prominently in many of the interactions in the selected subsets. This suggests that they are
indeed relevant to modeling this data. Main regressors such as crim, indus, age, radial and tax
that entered late in Table 2, tend to enter late both as main regressors and as interactions. This
suggests that they are relatively irrelevant. The 𝑅2 criterion increases faster in Table 3 as the steps
proceed. For example, on step 5 the selected subsets in both tables contained 6 variables, while the
𝑅2 values were 0.792 and 0.716 respectively. This implies that the good approach did indeed find
better variables to select when the interactions were allowed. The AIC and SBC criteria continued
to decline as the steps progressed, suggesting that from the point of view of these criteria, even better
models are beyond those in Table 3 . However, to go beyond the steps in the tables imply using very
small 𝜆-values which may be a case of scraping the bottom of the barrel and leading to overfitting.
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Table 3. Illustration of path features of good subsets algorithm using ASE as criterion applied to the
Boston housing data with interactions added as variables.

Details on each step
step 0 1 2 3 4 5 6 7 8 9
𝜆 1.000 0.852 0.241 0.080 0.074 0.065 0.063 0.023 0.020 0.014
ASE 84.42 36.88 29.00 20.20 18.76 17.58 15.48 12.60 11.84 11.68
count 1 2 2 4 2 2 2 4 2 2
size 0 1 2 4 5 6 8 12 14 15
𝑅2 0.000 0.563 0.657 0.761 0.778 0.792 0.817 0.851 0.860 0.862
AIC 2755 2338 2218 2039 2004 1973 1912 1816 1789 1784
SBC 2251 1838 1722 1552 1521 1494 1442 1363 1344 1343

Regressor coefficient estimates on each step
intcpt 22.53 33.86 -1.07 -22.82 -17.25 -91.47 -110.3 -158.0 -200.8 -205.0
nox 0 0 0 0 0 0 0 0 129.9 134.0
rooms 0 0 5.006 10.54 10.05 21.46 24.07 31.63 35.37 35.70
pt 0 0 0 0 0 4.402 5.239 7.596 7.745 7.969
lstat 0 0 0 1.857 1.720 1.290 1.539 3.014 1.555 1.429
crim*chas 0 0 0 0 0 0 1.316 1.098 1.162 1.066
nox*room 0 0 0 0 0 0 0 -3.747 -15.50 -15.68
crim*dist 0 0 0 0 0 0 0 -0.094 -0.098 -0.212
indu*radi 0 0 0 0 0 0 0 0.028 0.037 0.044
dist*tax 0 0 0 0 -0.002 -0.002 -0.002 -0.003 -0.003 -0.003
nox*pt 0 0 0 0 0 0 0 0 -3.196 -3.374
room*pt 0 0 0 -0.107 -0.099 -0.781 -0.904 -1.188 -1.049 -1.068
crim*lstat 0 0 0 0 0 0 -0.006 0 0 0.009
indu*lstat 0 0 0 0 0 0 0 0 -0.011 -0.013
room*lstat 0 0 0 -0.419 -0.406 -0.335 -0.359 -0.337 -0.277 -0.248
radil*lstat 0 0 0 0 0 0 0 -0.017 -0.024 -0.030
pt*lstat 0 -0.047 -0.033 0 0 0 0 -0.074 0 0
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Remarks
We also carried out the above calculations using MSE (rather than ASE) as fitting criterion and
found that while the 𝜆-values along the path were slightly different from those in the tables above,
the selected models and their coefficient estimates were the same in the non-interactions case and
closely similar in the interactions case.

5. Robust regression illustration
Using only ASE or MSE as measures of performance in regression do not allow for issues of possible
outliers and lack of robustness. To illustrate that the good subsets approach can be applied with only
little adaptation in robust contexts, we use the college data set AER in the R package. This data set is
also used by Dupuis and Victoria-Feser (2013) to illustrate their robust version of the VIF-regression
forward subset selection method of Lin et al. (2011). It has 4739 observations and 14 regressors.
Following Dupuis and Victoria-Feser (2013), we have standardised the regressors data in the results
below.

There are presently many possible criteria of fit that do take robustness issues into account. To
make our results comparable to those of Dupuis and Victoria-Feser (2013), we use the weighted
least squares criterion of M-estimation as implemented in SAS Proc Robustreg, taking for the weight
function the Tukey biweights with constant 𝑐 = 4.685. For a given subset 𝑆, Robustreg produces a
robust version of the ASE which we can use to calculate the corresponding Δs and the rest of the
good subsets method then proceeds as before. Table 4 shows the results in the same form as the
previous tables. The robust 𝑅2 quickly rises, achieving the value 0.3658 on step 4 and thereafter
only rises slowly to 0.3706 on step 7. Both the robust AIC values achieve their minimum on step 7,
suggesting a model with 9 regressors, while SBC flags a model with one less regressors on step 6.
The middle panel of Table 4 shows the coefficient estimates and, except for including the regressor
gender and excluding urban, these agree well with those of robVIF in Table 3 of Dupuis and Victoria-
Feser (2013). The bottom panel of Table 4 shows the observation numbers identified as outliers by
RobustReg along the 𝜆-path. Except for number 4515, once an outlier is flagged it stays flagged
along the path, so that the choice of 𝜆 is not very important in this regard.

To apply the cross-validation method of choosing 𝜆, requires some adaptation to take the possibility
of outliers into account. One way to do it is to find the outliers identified in each data part by Robustreg
when fitting the model to that part and then to ignore these outliers when calculating the APSE from
the cross-predictions. The average choice of 𝜆 minimising this adapted APSE is then calculated
as before. The pseudoregressors method do not require adaptation for possible outliers and can be
applied as before. We found that the average 𝜆 choices according to the two methods were 0.0028
and 0.0010 which both lie in the interval of step 6 of Table 4 and therefore substantially agree with
the choice suggested by AIC and SBC in this case.

Overall, the 𝜆-good approach to variable selection applies readily in robust regression contexts
and needs only little adaptation and programming. We found this also to be the case when dealing
with generalised linear models, as illustrated in the next section.
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Table 4. Illustration of path features of good subsets algorithm using robust ASE as criterion applied
to the college data.

Details on each step
step 0 1 2 3 4 5 6 7
𝜆 1.0000 0.3653 0.0532 0.0113 0.0068 0.0035 0.0034 0.0006
cnt 1 2 2 2 3 2 2 2
size 0 1 2 3 6 7 8 9
𝑅2 0.0000 0.3047 0.3407 0.3481 0.3658 0.3680 0.3702 0.3706
AIC 9892 8172 7922 7870 7746 7731 7717 7716
SBC 5157 3444 3200 3155 3050 3042 3034 3040

Regressor coefficient estimates on each step
intcp 13.77 13.77 13.77 13.76 13.76 13.76 13.76 13.76
gender 0 0 0 0 0 0.0680 0.0671 0.0651
afam 0 0 0 0 0.1460 0.1459 0.1370 0.1382
hisp 0 0 0 0 0.1360 0.1384 0.1389 0.1361
score 0 0.9006 0.8097 0.7952 0.8379 0.8426 0.8387 0.8373
fcoll 0 0 0.3440 0.2758 0.2377 0.2383 0.2338 0.2369
mcoll 0 0 0 0.1659 0.1453 0.1443 0.1428 0.1445
home 0 0 0 0 0 0 0 0
urban 0 0 0 0 0 0 0 0
unemp 0 0 0 0 0 0 0 0.0578
wage 0 0 0 0 0 0 0 0
distance 0 0 0 0 0 0 -0.0647 -0.0809
tuition 0 0 0 0 0 0 0 0
income 0 0 0 0 0.1841 0.1879 0.1844 0.1855
region 0 0 0 0 0 0 0 0

Obs No Outlier indicators on each step
1614 0 0 0 0 0 1 1 1
1649 0 1 1 1 1 1 1 1
1976 0 0 0 0 0 1 1 1
2161 0 0 0 1 1 1 1 1
2963 0 1 1 1 1 1 1 1
3107 0 1 1 1 1 1 1 1
4194 0 0 0 0 0 0 1 1
4515 0 0 1 1 0 0 0 0
4594 0 1 1 1 1 1 1 1
4711 0 1 1 1 1 1 1 1
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6. Logistic regression illustration
In this section we illustrate the 𝜆-good approach when dealing with a large data set and a response
variable 𝑌 taking only two values, namely 0 or 1. The standard model in this context is logistic
regression and we base fitting on the log-likelihood function. Some additional notation is required.
For a given subset 𝑆 of the regressors, put

𝑃𝑛 (𝑆) = 1/
{

1 + exp

(
−𝑏0 −

∑︁
𝑘∈𝑆

𝑏𝑘𝑋𝑛𝑘

)}
(8)

and denote the negative of twice the weighted log-likelihood function corresponding to S by

𝑀2𝐿𝐿 (𝑆) = −2
𝑁∑︁
𝑛=1

𝑤𝑛 [𝑌𝑛 log (𝑃𝑛 (𝑆)) + (1 − 𝑌𝑛) log (1 − 𝑃𝑛 (𝑆))] .

Here, 𝑤𝑛 is the weight assigned to the 𝑛th observation, more details of which are given below.
𝑀2𝐿𝐿 (𝑆) is the fitting criterion that now replaces the SSE and other criteria used above. In this
case, scale invariance is no longer of concern and we define the Δ𝑘 (𝑆) simply as the differences

Δ𝑘 (𝑆) =
{
𝑀2𝐿𝐿 (𝑆 \ 𝑘) − 𝑀2𝐿𝐿 (𝑆) if 𝑘 ∈ 𝑆,
𝑀2𝐿𝐿 (𝑆) − 𝑀2𝐿𝐿 (𝑆 ∪ 𝑘) if 𝑘 ∉ 𝑆.

The rest of the 𝜆-good approach then operates as before. For illustration purposes, the credit
card dataset available on the website of Kaggle (see https://www.kaggle.com/datasets/mlg-ulb/
creditcardfraud) is used. The contents and context of this dataset are described in that reference.
In brief, it contains data on 𝑁 = 284807 transactions of which 492 are fraudulent (𝑌𝑛 = 1) and the
remainder clean (𝑌𝑛 = 0). There are 𝐾 = 30 regressors of which 28 are PCA transformations of
features that are not detailed due to confidentiality issues; the other two regressors are described
as ’Time’ and ’Amount’. Here we refer to the regressors simply as 𝑋1, 𝑋2, . . . , 𝑋30. This is a
large dataset and the illustration below follows the modelling paradigm of dividing the dataset into
training and testing sets. The rows of the dataset were permutated randomly, and then half of them
were put into the training set and the remainder into the testing set. Thus, the training dataset has
𝑁train = 142404 observations with 𝑁train,1 = 245 frauds and 𝑁train,0 = 142159 cleans. This dataset is
highly unbalanced since the fraction of frauds is only 0.172% of the total. The assignments of the
weights in the fitting criterion are used to address this matter. We take 𝑤𝑛 = 1/2𝑁train,1 if 𝑌𝑛 = 1
and 𝑤𝑛 = 1/2𝑁train,0 if 𝑌𝑛 = 0. Then the totals of the weights for the frauds and the cleans are 1/2
each and the overall total of all the weights is 1 . This enables the small number of frauds to play a
meaningful role in the model training. Table 5 presents the results.

The 𝜆 used on each step is in the second row. The third row shows the values of the present fitting
criterion M2LL, decreasing as more variables are added. Rows four and five show the number of
passes in the search required for convergence and the subset sizes on each step.

Instead of recording criteria such as the AIC and SBC of the previous tables, rows six to nine show
various fractions of correct classification for the models on each step. Row six shows the fraction
of correct classifications of the frauds in the training data when the fitted model is applied. Here
the probability of a fraud for each transaction is calculated using (8) with the estimated regression
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Table 5. Illustration of path features of good subsets algorithm using logistic regression with fitting
criterion based on weighted log-likelihood applied to the credit card fraud data.

Details on each step
step 0 1 2 3 4 5 6 7 8 9
𝜆 1 0.9189 0.1399 0.0242 0.0159 0.0139 0.0068 0.0050 0.0048 0.0046
M2LL 1.386 0.4674 0.3275 0.3033 0.2873 0.2734 0.2595 0.2545 0.2497 0.2451
count 1 2 2 2 2 3 2 2 2 2
size 0 1 2 3 4 5 7 8 9 10
𝑐𝑜𝑟𝑡𝑟𝑛1 0 0.8645 0.9124 0.9044 0.9124 0.9163 0.9243 0.9283 0.9323 0.9323
𝑐𝑜𝑟𝑡𝑟𝑛0 1 0.9728 0.9657 0.9710 0.9706 0.9699 0.9720 0.9698 0.9716 0.9745
𝑐𝑜𝑟𝑡𝑠𝑡1 0 0.8672 0.8797 0.8880 0.8963 0.8921 0.8963 0.8963 0.9004 0.8921
𝑐𝑜𝑟𝑡𝑠𝑡0 1 0.9725 0.9667 0.9722 0.9713 0.9704 0.9723 0.9704 0.9720 0.9745

Regressor coefficient estimates on each step
intcpt 0 -2.174 -3.012 -2.984 -3.143 -3.275 -3.463 -3.570 -3.649 -3.647
x1 0 0 0 0 0 0 0 0 0 0
x2 0 0 0 0 0 0 0 0 0 0
x3 0 0 0 0 0 0 0 0 0 0
x4 0 0 0.8614 0.7504 0.7628 0.8052 0.9193 0.9346 0.9395 0.9386
x5 0 0 0 0 0 0 0 0 0 0
x6 0 0 0 0 0 0 0 0 -0.2735 -0.2977
x7 0 0 0 0 0 0 0 0 0 0
x8 0 0 0 0 -0.3918 -0.4188 -0.4610 -0.4507 -0.5107 -0.5309
x9 0 0 0 0 0 0 0 0 0 0
x10 0 0 0 0 0 0 -0.3845 -0.4264 -0.4180 -0.4232
x11 0 0 0 0 0 0 0 0 0 0.3535
x12 0 0 0 -0.660 -0.7104 -0.6737 -0.6678 -0.7002 -0.6977 -0.6660
x13 0 0 0 0 0 0 -0.4223 -0.4131 -0.4030 -0.4044
x14 0 -1.167 -1.0765 -0.944 -0.9472 -1.0328 -0.9084 -0.9199 -0.9270 -0.8680
x15-21 0 0 0 0 0 0 0 0 0 0
X22 0 0 0 0 0 0 0 0.5470 0.6264 0.6468
X23 0 0 0 0 0 -0.3649 -0.3582 -0.4086 -0.3498 -0.3095
X24-30 0 0 0 0 0 0 0 0 0 0
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coefficients. The transaction is classified as fraudulent if this estimated probability is above 0.5 and
as clean otherwise. Other than for step 0 which uses no regressors, the correct classification rates are
about 90% if the best two or more regressors are used. Row eight shows the same rates for the testing
data. Note that these rates are just slightly lower than those for the training data on which the models
are based. Hence, the models performed quite well when applied out of the training sample. Rows
seven and nine show the correct prediction rates of the clean transactions in the training and testing
data. These rates are in the region of 97% when using two or more regressors. That these are higher
than those of the frauds, are due to the small proportion of frauds in the data. However, the choice
of the weights used here is important and beneficial to identifying the frauds. For example, if all
observations in the training data were given the same weight, regardless of whether or not they were
frauds, then it tumed out that the percentage of correct classification of frauds, is typically below
60% while that of cleans is over 99%. Hence the use of the adjusted weights greatly improves the
identification of the extremely rare frauds in the data.

As before, the bottom panel of Table 5 shows the regression coefficient estimates. It is clear that
using a parsimonious model with only the four variables 𝑋14, 𝑋4, 𝑋12 and 𝑋8 would accomplish fraud
identification with quite high certainty and excellent generalisation properties, at least in terms of
the criteria used here. Of course, there are many other criteria in logistic regression that can also be
used. Among these are the “area under the curve” (AUC) and others. The 𝜆-good method can also
be formulated and carried out with such criteria.

7. Conclusion
In this paper we presented a fresh approach to linear regressor subset selection, namely finding
subsets consisting of all those regressors so important that dropping any one of them deteriorates
the fit quality of the model below a specified demarcation level, while simultaneously containing
no regressors without this property. The demarcation level constitutes the single tuning parameter
𝜆 of the approach and such a subset is termed to be 𝜆-good. Using a number of examples, we
demonstrated that this selection method readily applies to standard linear regression and also to
robust regression models. We can also report that it worked well in generalised linear models such
as logistic regression and other examples of which we do not include all the detailed results here.

A number of open issues requiring further research were noted in the text above. Among these are
the possible relation between “good” subsets and “best” subsets and our adaptation and application
of the ideas of cross-validation and pseudoregressors to choose the tuning parameter 𝜆. Moreover,
convergence issues are always pertinent when dealing with search algorithms. In all the illustrations
we found convergence within at most four passes through the list of variables (and often only two).
We never found cases of non-convergence. Still, it would be useful to get theoretical confirmation
that this is generally true. As with the choice of tuning parameters in all subset selection methods,
more can also be done to pin down the choice of 𝜆 when dealing with practical data. Perhaps the most
important outstanding issue at this stage, is to carry out a simulation based systematic comparison
between the 𝜆-good approach and other existing variable selection methods. Future research to this
effect is in progress.
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Appendix: Calculation of the Δs for linear models
Consider an 𝑀 × 𝑀 real positive definite symmetric matrix A partitioned as

A =

[
A11 a12
a′12 𝑎22

]
, (A.1)

with A11 an (𝑀 − 1) × (𝑀 − 1) submatrix. Then we have

A−1 = D =

[
D11 d12
d′12 𝑑22

]
, (A.2)

where
D11 = A−1

11 + 𝑑22A
−1
11 a12a

′
12A

−1
11 ,d12 = −𝑑22A

−1
11 a12,

𝑑22 = 1
/ (
𝑎22 − a′12A

−1
11 a12

)
and A−1

11 = D11 − d12d
′
12/𝑑22.

(A.3)

This follows from simple matrix calculations but is also a special case of Muirhead (1982), The-
orem A5.2. We apply these results to least squares calculations in the context of calculating the
Δ𝑘 (S).

In matrix form the linear model in Section 2 may be written as Y = Xb + e where Y and
e are the 𝑁 × 1 vectors with 𝑛th components 𝑌𝑛 and 𝑒𝑛 respectively, X is the matrix given by
X = [1X1 X2 . . . X𝐾 ], where 1 is the 𝑁 × 1 vector with all components equal to 1 and, for
𝑘 = 1, 2, . . . , 𝐾,X𝑘 is the 𝑁 × 1 vector with 𝑛th component 𝑋𝑛𝑘 while b is the (𝐾 + 1) × 1 vector
with first component 𝑏0 and (𝑘 + 1)th component 𝑏𝑘 . For a given subset 𝑆 ⊆ 𝐴 = {1, 2, . . . , 𝐾},
write X (𝑆) for the sub-matrix with first column equal to 1 and the remainder those corresponding to
𝑆, i.e. X (𝑆) = [1 {X𝑘 , 𝑘 ∈ 𝑆}]. Similarly, denote by b(𝑆) the sub-vector of b with first component
𝑏0 and the remainder those corresponding to 𝑆. When fitting the model Y = X (𝑆)b(𝑆) + e′, the
least squares estimate of b(𝑆) is b̂(𝑆) = [X (𝑆)′X (𝑆)]−1 X (𝑆)′Y and the minimised error sum of
squares is ESS(𝑆) = Y ′Y − b̂(𝑆)′X (𝑆)′Y . We show how the Δ𝑘 (S) can be calculated efficiently by
matrix multiplications only once we have inverted X (𝑆)′X (𝑆) and have b̂(𝑆) and ESS(𝑆) available.

Consider first 𝑖 ∉ 𝑆. We need to calculate b̂(𝑆 ∪ 𝑖) and ESS(𝑆 ∪ 𝑖). We may write X (𝑆 ∪ 𝑖) =
[X (𝑆)X𝑖] so that

X (𝑆 ∪ 𝑖)′X (𝑆 ∪ 𝑖) =
[
X (𝑆)′X (𝑆) X (𝑆)′X𝑖

X ′𝑖X (𝑆) X ′𝑖X𝑖

]

and X (𝑆 ∪ 𝑖)′Y =

[
X (𝑆)′Y
X ′𝑖Y

]
.

(A.4)

Applying the formulas (A.1)–(A.3) with A = X (𝑆 ∪ 𝑖)′X (𝑆 ∪ 𝑖) and taking

𝑑22 = 𝑑 (𝑆, 𝑖) = 1
/ (

X ′𝑖X𝑖 −X ′𝑖X (𝑆) (X (𝑆)′X (𝑆))−1 X (𝑆)′X𝑖

)
(A.5)

eventually leads to

b̂(𝑆 ∪ 𝑖) =
[
B1 (𝑆, 𝑖)
𝐵2 (𝑆, 𝑖)

]
=

[
b̂(𝑆) − (X (𝑆)′X (𝑆))−1 X (𝑆)′X𝑖𝐵2 (𝑆, 𝑖)

𝑑 (𝑆, 𝑖)
{
X ′𝑖Y −X ′𝑖X (𝑆)b̂(𝑆)

} ]
(A.6)
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and
ESS(𝑆 ∪ 𝑖) = Y ′Y − b̂(𝑆)′X (𝑆)′Y − 𝐵2 (𝑆, 𝑖)2/𝑑 (𝑆, 𝑖)

= ESS(𝑆) − 𝐵2 (𝑆, 𝑖)2/𝑑 (𝑆, 𝑖).
Coming to Δ𝑖 (𝑆) given by (2), this implies that

Δ𝑖 (𝑆) = 𝐵2 (𝑆, 𝑖)2/
{
𝑑 (𝑆, 𝑖)

√︁
ESS(𝑆)𝐸𝑆𝑆(𝑆 ∪ 𝑖)

}
for 𝑖 ∉ 𝑆.

These formulas are convenient: once we have (X (𝑆)′X (𝑆))−1, b̂(𝑆) and ESS(𝑆), we can compute
𝑑 (𝑆, 𝑖) and 𝐵2 (𝑆, 𝑖) by matrix multiplications only, using (A.5) and (A.6), and then b̂(𝑆∪𝑖), ESS(𝑆∪𝑖)
and Δ𝑖 (𝑆) follow for all 𝑖 ∉ 𝑆 without the need for further matrix inversions which would have been
required for each 𝑖 if we used the direct formula b̂(𝑆 ∪ 𝑖) = [X (𝑆 ∪ 𝑖)′X (𝑆 ∪ 𝑖)]−1X (𝑆 ∪ 𝑖)′Y .

Next consider dropping an index 𝑗 from 𝑆. We need to calculate b̂(𝑆 \ 𝑗) and ESS(𝑆 \ 𝑗) assuming
again (X (𝑆)′X (𝑆))−1, b̂(𝑆) and ESS(𝑆) known. We may now write X (𝑆) = [

X (𝑆 \ 𝑗)X 𝑗

]
so

that (A.4) is replaced by

X (𝑆)′X (𝑆) =
[
X (𝑆 \ 𝑗)′X (𝑆 \ 𝑗) X (𝑆 \ 𝑗)′X 𝑗

X ′𝑗X (𝑆 \ 𝑗) X ′𝑗X 𝑗

]

and X (𝑆)′Y =

[
X (𝑆 \ 𝑗)′Y

X ′𝑗Y

]
.

Applying the formulas (A.1)–(A.3) with A = X (𝑆)′X (𝑆), we now have D = A−1 =
(X (𝑆)′X (𝑆))−1 known, and therefore get (X (𝑆 \ 𝑗)′X (𝑆 \ 𝑗))−1 from the last formula in (A.3)
requiring only matrix multiplications. Then

b̂(𝑆 \ 𝑗) = (X (𝑆 \ 𝑗)′X (𝑆 \ 𝑗))−1 X (𝑆 \ 𝑗)′Y

and ESS(𝑆 \ 𝑗) = Y ′Y − b̂(𝑆 \ 𝑗)′X (𝑆 \ 𝑗)′Y follow again requiring no matrix inversions. Then
Δ 𝑗 (𝑆) = [ESS(𝑆 \ 𝑗) − ESS(𝑆)]/

√︁
ESS(𝑆) ESS(𝑆 \ 𝑗).

Another useful feature of the method above is that we can compute Y ′Y , the full vector X ′Y
and matrix X ′X before we start with any variable selection search. All the items involved in the
above calculations are sub-vectors and sub-matrices of these and therefore need not be recomputed
repeatedly. In particular, each summation over observations 𝑛 is done once only initially and this
saves much subsequent computation time, especially for large data sets.
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