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Since the introduction of factorisation machines in 2010, it became a popular
prediction technique amongst machine learners who applied the method with suc-
cess in several data science challenges such as Kaggle or KDD Cup. Despite these
successes, factorisation machines are not often considered as a modelling tech-
nique in business, partly because large companies prefer tried and tested software
for model implementation. Popular modelling techniques for prediction problems,
such as generalised linear models, neural networks, and classification and regression
trees, have been implemented in commercial software such as SAS which is widely
used by banks, insurance, pharmaceutical and telecommunication companies. To
popularise the use of factorisation machines in business, we implement algorithms
for fitting factorisation machines in SAS. These algorithms minimise two loss func-
tions, namely the weighted sum of squared errors and the weighted sum of absolute
deviations using coordinate descent and nonlinear programming procedures. Using
a simulation study, the above-mentioned routines are tested in terms of accuracy
and efficiency. The prediction power of factorisation machines is then illustrated by
analysing two data sets.
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1. Introduction
When Rendle (2010) introduced factorisation machines (FMs), he described it as a new model
class that combines the advantages of support-vector machines (SVMs) with those of factorisation
models. According to Rendle, FMs model all interactions between predictor variables using factorised
parameters that enable FMs to estimate interactions even in problems with huge sparsity where SVMs
fail. Although higher order factorisation machines are defined in Rendle (2010), the models include
many terms and fitting thereof is problematic (see Rendle, 2012). Therefore, in this paper, we will
concentrate on fitting second order factorisation machines only. Yurochkin et al. (2017) describe a
second order factorisation machine (FM) as a linear regression model which include all the predictors
as well as the approximations of all the second order interactions between the predictors. Application
areas of FMs, amongst others, include recommender systems (see e.g. Parsons, 2017), click-through
rate prediction (Juan et al., 2016), marketing prediction problems (Juan et al., 2017), and social
network prediction problems (Hong et al., 2013). We will now define factorisation machines.
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Suppose we have observations {𝑌𝑛, 𝑋𝑛1, . . . , 𝑋𝑛𝐾 } , 𝑛 = 1, . . . , 𝑁 , on a target or response variable
𝑌 and 𝐾 predictor variables 𝑋1, . . . , 𝑋𝐾 . For the moment we will assume that the variable 𝑌 is
continuous, while the predictors can be of any type, i.e. continuous, discrete, nominal or ordinal.
The model equation is given by

𝑌𝑛 = 𝛽0 +
𝐾∑︁
𝑘=1

𝛽𝑘𝑋𝑛𝑘 +
𝐾−1∑︁
𝑘=1

𝐾∑︁
𝑗=𝑘+1

〈
𝜑𝑘 , 𝜑 𝑗

〉
𝑋𝑛𝑘𝑋𝑛 𝑗 + 𝑒𝑛, (1)

where 𝛽0 is the intercept, 𝛽1, . . . , 𝛽𝐾 the regression coefficients, 𝜑𝑘 , 𝑘 = 1, ..𝐾 a 𝐺 dimensional
vector of factor loadings for each variable, and 𝑒𝑛 the error term. Here ⟨𝜑𝑘 , 𝜑 𝑗⟩ =

∑𝐺
𝑔=1 𝜑𝑘𝑔𝜑 𝑗𝑔

denotes the inner product of the vectors 𝜑𝑘 and 𝜑 𝑗 . Note that both 𝛽 and 𝜑 must be estimated and
that 𝐺 is an input parameter for the fitting procedure.

Second order factorisation machines relate to regression with two-way interactions in the following
way. The linear regression model with all possible two-way interactions is

𝑌𝑛 = 𝛽0 +
𝐾∑︁
𝑘=1

𝛽𝑘𝑋𝑛𝑘 +
𝐾−1∑︁
𝑘=1

𝐾∑︁
𝑗=𝑘+1

𝛽𝑘 𝑗𝑋𝑛𝑘𝑋𝑛 𝑗 + 𝑒𝑛, (2)

where, as before, the 𝛽𝑘 are the regression coefficients and the 𝛽𝑘 𝑗 the coefficients of the interactions
that need to be estimated. Careful examination of (1) and (2) indicates that 𝛽𝑘 𝑗 in (2) is replaced by∑𝐺
𝑔=1 𝜑𝑘𝑔𝜑 𝑗𝑔 in (1). Rendle’s key idea emanated from the well-known result that for any (𝐾 × 𝐾)

positive definite matrix {𝛽𝑘 𝑗 }, there exists a (𝐾 × 𝐺) matrix {𝜑𝑘𝑔} such that {𝛽𝑘 𝑗 } = {𝜑𝑘𝑔}{𝜑𝑔 𝑗 },
provided that 𝐺 is sufficiently large. The interaction 𝛽𝑘 𝑗 is therefore approximated by a sum of
simple products consisting of 𝐺 factors, i.e.

𝛽𝑘 𝑗 ≈
𝐺∑︁
𝑔=1

𝜑𝑘𝑔𝜑 𝑗𝑔 . (3)

Clearly, by choosing 𝛽𝑘 𝑗 =
∑𝐺
𝑔=1 𝜑𝑘𝑔𝜑 𝑗𝑔, (1) is a special case of (2). Note that the FM model in (1)

has 1 +𝐾 +𝐾𝐺 parameters (or coefficients) while the regression model (2) has 1 +𝐾 +𝐾 (𝐾 − 1) /2
parameters. Therefore, when 𝐺 < (𝐾 − 1)/2, an FM requires less parameters to be estimated. When
the number of model parameters exceed the number of observations, two-way interaction multiple
regression models are impractical to fit (see e.g. Hastie et al., 2015 or Kutner et al., 2005). This is
frequently the case when dealing with recommender system problems, which are characterised by
many categorical predictor variables, each having many levels (see e.g. Rendle, 2010, and Parsons,
2017). When these variables are encoded as dummy variables, the predictor variable space have
many zeros leading to the problem of high sparsity. Here FMs provide an advantage through the
careful selection of the number of factors 𝐺 which is independent of the number of predictors. To
summarise, the important difference to regression is that the effect of interaction is not modelled by
an independent parameter 𝛽𝑘 𝑗 , but with a factorised parameterisation

∑𝐺
𝑔=1 𝜑𝑘𝑔𝜑 𝑗𝑔, which implies

that the pairwise interactions have low rank. This allows FMs to estimate reliable parameters even
in highly sparse data where standard models fail.

The linear model (2) may be extended to a generalised linear model (GLM), which allows the
modelling of nominal or ordinal target variables by postulating a linear relationship between the
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target and predictors, even though their underlying relationship is not linear. This is made possible by
using a link function, which links the target variable to a model that is linear in its parameters. Unlike
linear regression, the error distribution of the target variable need not be normally distributed but are
assumed to follow an exponential family of distributions such as normal, binomial, Poisson or gamma
distributions. For example, if the target variable is binary the logistic link function may be used
to link the target variable to a linear model including the predictors and their two-way interactions.
Such models are easy to fit using PROC GLM in SAS through maximisation of the appropriate log
likelihood function. Algorithms for fitting FMs with different loss functions are discussed in Rendle
(2012) and incorporated in his LibFM package. Rendle (2012) estimates the model parameters by
defining a loss function and then minimising the sum of losses over the observed data. He considered
squared error and logit loss, as well as L2 regularisation. LibFM, written in C, uses logit loss
that may be used to fit logistic regression FM analogues of GLMs (see Pĳnenburg and Kowalczyk,
2017). Note that when the underlying model is not intrinsically linear, care should be taken when
interpreting the interaction effects (see Norton et al., 2004). FM extensions of GLM models, such
as logistic FMs, will not be considered in this paper, but in a future paper in which we investigate
alternative credit scoring modelling techniques.

Apart from LibFM, a number of FM fitting routines are available, such as PROC FACTMAC
in SAS® Visual Data Mining and Machine Learning (SAS Viya), fastFM in Python (see Bayer,
2016) and rsparse an R package for statistical learning on sparse matrices (see Selivanov, 2021).
In a previous paper (Slabber et al., 2021), we illustrated the use of LibFM and PROC FACTMAC
and highlighted some of the shortcomings of these routines. For example, LibFM only outputs the
predicted values of the model but not the estimated parameters, while PROC FACTMAC outputs the
predicted values and the estimated parameters but has the limitation that it can only handle nominal
predictor variables and an interval scaled target variable (see SAS Institute Inc., 2017, 2019). LibFM
does not have these limitations and can handle any type of predictor or target variable, while PROC
FACTMAC is restricted to recommender system type applications.

To make the application of FMs more accessible to business, we implement our FM fitting
routines in SAS, which is widely used, especially by large corporates such as banks, insurance
and telecommunication companies. We consider two algorithms for fitting FMs namely coordinate
descent (CD) and nonlinear programming (NLP). The CD algorithm is implemented in PROC IML
and the NLP algorithm in PROC OPTMODEL of SAS. Two loss functions are considered, namely
the weighted sum of squared errors (WSSE) and the weighted sum of absolute deviations (WSAD).
While WSSE is the most common loss function used to fit FMs, WSAD provides a robust alternative,
since it is less sensitive to outliers. For more information on robust estimation and outlier detection,
see for example Rousseeuw and Leroy (2005).

The layout of the paper is as follows. In the next section, for both loss functions, we show how
the CD method may be implemented to fit FMs. The NLP implementation of these loss functions
in PROC OPT MODEL is straightforward and will be mentioned briefly. In Section 3, the accuracy
and efficiency of these routines are tested by means of a simulation study, and then the routines are
applied to an artificially generated and real data set. Section 4 contains some concluding remarks
and ideas for future research.

ALGORITHMS FOR ESTIMATING THE PARAMETERS OF FACTORISATION MACHINES 71



2. Fitting factorisation machines
Given estimators 𝑏0, 𝑏1, . . . , 𝑏𝐾 and 𝑓𝑘𝑔, 𝑘 = 1, . . . , 𝐾 , 𝑔 = 1, . . . , 𝐺, of the parameters, we denote
the corresponding estimator of 𝑌𝑛 by

𝑌𝑛 = 𝑏0 +
𝐾∑︁
𝑘=1

𝑏𝑘𝑋𝑛𝑘 + 1
2

𝐺∑︁
𝑔=1


(
𝐾∑︁
𝑘=1

𝑓𝑘𝑔𝑋𝑛𝑘

)2

−
𝐾∑︁
𝑘=1

𝑓 2
𝑘𝑔𝑋

2
𝑛𝑘


, (4)

which is equivalent (see Rendle 2010, 2012 or Slabber et al. 2021) to

𝑌𝑛 = 𝑏0 +
𝐾∑︁
𝑘=1

𝑏𝑘𝑋𝑛𝑘 +
𝐾−1∑︁
𝑘=1

𝐾∑︁
𝑗=𝑘+1

𝐺∑︁
𝑔=1

𝑓𝑘𝑔 𝑓 𝑗𝑔𝑋𝑛𝑘𝑋𝑛 𝑗 .

We chose to use (4), because it simplified the formulation of the CD algorithm for the loss functions
in (5) and (6) below. In the case of least squares, the estimators of 𝑌𝑛 are obtained by minimising the
weighted sum of squared errors (WSSE) given by

𝑊𝑆𝑆𝐸 =
𝑁∑︁
𝑛=1

𝑤𝑛

[
𝑌𝑛 − 𝑌𝑛

]2
(5)

with respect to 𝑏0, 𝑏1, . . . , 𝑏𝐾 and 𝑓𝑘𝑔, 𝑘 = 1, . . . 𝐾 𝑔 = 1, . . . 𝐺. Here {𝑌𝑛} denotes the data on the
target variable 𝑌 and 𝑤1, . . . , 𝑤𝑁 are non-negative weights that sum to 1. Since it is well-known that
least squares estimators are sensitive to outliers (e.g. see Maronna et al., 2019), we also consider a
least absolute deviation (LAD) estimator, which minimises the weighted sum of absolute deviations
(WSAD). This estimator is obtained by minimising

𝑊𝑆𝐴𝐷 =
𝑁∑︁
𝑛=1

𝑤𝑛

���𝑌𝑛 − 𝑌𝑛��� (6)

with respect to 𝑏0, 𝑏1, . . . , 𝑏𝐾 and 𝑓𝑘𝑔, 𝑘 = 1, . . . 𝐾 , 𝑔 = 1, . . . 𝐺. Again𝑤1, . . . , 𝑤𝑁 are non-negative
weights which sum to 1.

Remarks

• Note that the loss functions in (5) and (6) are both convex.

• Minimisation of (5) can be done using standard minimisation routines. However, the objective
function (6) is non-differentiable making the minimisation problem difficult.

• In the equally weighted case (𝑤𝑖 = 𝑁−1 for all 𝑖 = 1, . . . , 𝑁), WSSE becomes mean squared
error (MSE) and WSAD becomes mean absolute deviation (MAD).

• The weights 𝑤𝑖 could be defined to produce bounded-influence type estimators by using, for
example, Mallows weights (see de Jongh et al., 1988).

• The idea of robust factorisation machines is not new, and some researchers have explored
the idea (see e.g. Punjabi and Bhatt, 2018 and Liu et al., 2019), but we are not aware of an
implementation of the LAD estimator considered here.
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2.1 CD algorithm for minimising WSSE
Suppose we have current estimates 𝑏0, 𝑏1, . . . , 𝑏𝐾 and 𝑓𝑘𝑔, 𝑘 = 1, . . . 𝐾 , 𝑔 = 1, . . . 𝐺, which we wish
to update via the CD algorithm. We begin with the intercept or bias term. Write

𝑌𝑛 (0) =
𝐾∑︁
𝑘=1

𝑏𝑘𝑋𝑛𝑘 + 1
2

𝐺∑︁
𝑔=1


(
𝐾∑︁
𝑘=1

𝑓𝑘𝑔𝑋𝑛𝑘

)2

−
𝐾∑︁
𝑘=1

𝑓 2
𝑘𝑔𝑋

2
𝑛𝑘


= 𝑌𝑛 − 𝑏0, (7)

that is, 𝑌𝑛 (0) is (4) without the intercept term. The updated version of the intercept, say �̃�0, is
obtained by minimising

𝑊𝑆𝑆𝐸 =
𝑁∑︁
𝑛=1

𝑤𝑛

[
𝑌𝑛 − 𝑌𝑛 (0) − �̃�0

]2
(8)

w.r.t. �̃�0. The choice of �̃�0 that minimises this expression is

�̃�0 =
𝑁∑︁
𝑛=1

𝑤𝑛 [𝑌𝑛 − 𝑌𝑛 (0)] =
𝑁∑︁
𝑛=1

𝑤𝑛 [𝑌𝑛 − 𝑌𝑛 + 𝑏0] = 𝑏0 +
𝑁∑︁
𝑛=1

𝑤𝑛 [𝑌𝑛 − 𝑌𝑛] . (9)

Next consider 𝑏 𝑗 and write

𝑌𝑛 ( 𝑗) = 𝑏0 +
𝐾∑︁
𝑘≠ 𝑗

𝑏𝑘𝑋𝑛𝑘 + 1
2

𝐺∑︁
𝑔=1


(
𝐾∑︁
𝑘=1

𝑓𝑘𝑔𝑋𝑛𝑘

)2

−
𝐾∑︁
𝑘=1

𝑓 2
𝑘𝑔𝑋

2
𝑛𝑘


= 𝑌𝑛 − 𝑏 𝑗𝑋𝑛 𝑗 , (10)

so 𝑌𝑛 ( 𝑗) is (4) without 𝑏 𝑗𝑋𝑛 𝑗 .
Minimising

𝑊𝑆𝑆𝐸 =
𝑁∑︁
𝑛=1

𝑤𝑛

[
𝑌𝑛 − 𝑌𝑛 ( 𝑗) − �̃� 𝑗𝑋𝑛 𝑗

]2
(11)

w.r.t. �̃� 𝑗 , we obtain the updated version of the 𝑗-th regression coefficient �̃� 𝑗 .To minimise this with
respect to �̃� 𝑗 , note that we have a regression problem in which the 𝑋𝑛 𝑗 are regressed on the residuals
𝑌𝑛 − 𝑌𝑛 ( 𝑗) = 𝑌𝑛 − 𝑌𝑛 + 𝑏 𝑗𝑋𝑛 𝑗 and the minimising choice of �̃� 𝑗 is given by

�̃� 𝑗 = 𝑏 𝑗 +
∑𝑁
𝑛=1 𝑤𝑛 [𝑌𝑛 − 𝑌𝑛]𝑋𝑛 𝑗∑𝑁

𝑛=1 𝑤𝑛𝑋
2
𝑛 𝑗

. (12)

Next, we consider 𝑓 𝑗ℎ. To isolate the contribution of 𝑓 𝑗ℎ to (5) is somewhat more complicated but
manipulation leads to

𝑌𝑛 = 𝑏0 +
𝐾∑︁
𝑘=1

𝑏𝑘𝑋𝑛𝑘 + 1
2

𝐺∑︁
𝑔≠ℎ


(
𝐾∑︁
𝑘=1

𝑓𝑘𝑔𝑋𝑛𝑘

)2

−
𝐾∑︁
𝑘=1

𝑓 2
𝑘ℎ𝑋

2
𝑛𝑘


+ 1

2


©«
𝐾∑︁
𝑘≠ 𝑗

𝑓𝑘ℎ𝑋𝑛𝑘
ª®¬

2

−
𝐾∑︁
𝑘≠ 𝑗

𝑓 2
𝑘ℎ𝑋

2
𝑛𝑘


+ 𝑓 𝑗ℎ𝑋𝑛 𝑗

𝐾∑︁
𝑘≠ 𝑗

𝑓𝑘ℎ𝑋𝑛𝑘 .
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Denoting the sum of all but the last term by 𝑌𝑛 ( 𝑗 , ℎ) we get

𝑌𝑛 = 𝑌𝑛 ( 𝑗 , ℎ) + 𝑓 𝑗ℎ𝑍𝑛 ( 𝑗 , ℎ),

with

𝑍𝑛 ( 𝑗 , ℎ) = 𝑋𝑛 𝑗
𝐾∑︁
𝑘≠ 𝑗

𝑓𝑘ℎ𝑋𝑛𝑘 . (13)

Again 𝑌𝑛 ( 𝑗 , ℎ) is (4) without the term 𝑓 𝑗ℎ𝑍𝑛 ( 𝑗 , ℎ). Let �̃� 𝑗ℎ denote the updated version of 𝑓 𝑗ℎ, then
it must minimise

𝑊𝑆𝑆𝐸 =
𝑁∑︁
𝑛=1

𝑤𝑛

[
𝑌𝑛 − 𝑌𝑛 ( 𝑗 , ℎ) − �̃� 𝑗ℎ𝑍𝑛 ( 𝑗 , ℎ)

]2
. (14)

To minimise this equation with respect to �̃� 𝑗ℎ, note that we again have a regression problem in which
𝑍𝑛 ( 𝑗 , ℎ) is regressed on the residuals 𝑌𝑛 − 𝑌𝑛 ( 𝑗 , ℎ) = 𝑌𝑛 − 𝑌𝑛 + 𝑓 𝑗ℎ𝑍𝑛 ( 𝑗 , ℎ) and the minimising
choice of �̃� 𝑗ℎ is given by

�̃� 𝑗ℎ = 𝑓 𝑗ℎ +
∑𝑁
𝑛=1 𝑤𝑛 [𝑌𝑛 − 𝑌𝑛]𝑍𝑛 ( 𝑗 , ℎ)∑𝑁

𝑛=1 𝑤𝑛𝑍
2
𝑛 ( 𝑗 , ℎ)

. (15)

Thus, the coordinate descend algorithm for minimising WSSE proceeds as follows:

(a) Start with some initial choice of the estimates (more below).

(b) Keeping the 𝑏𝑘 and the 𝑓𝑘𝑔 at their values, compute a new value for 𝑏0 from (9).

(c) Then, keeping all else fixed cycle through 𝑗 = 1, . . . , 𝐾 , computing new values for 𝑏 𝑗 from
(12).

(d) Again, keeping all else fixed, cycle through 𝑗 = 1, . . . , 𝐾 , ℎ = 1, . . . , 𝐺, computing new values
for 𝑓 𝑗ℎ from (15).

(e) Repeat steps (b)–(d) until convergence, giving the final CD estimates.

Regarding the choice of initial estimates, we can take 𝑏𝑘 = 0 for 𝑘 = 1, . . . , 𝐾 , or as the regression
coefficient estimates resulting from a multiple regression fit to the data. We cannot set the 𝑓 𝑗ℎ equal
to 0 since we then have 𝑍𝑛 ( 𝑗 , ℎ) = 0 by (13), and (15) fails to produce an update. Hence, something
else is needed and in our experiments we followed Rendle (2012) by choosing the initial 𝑓 𝑗ℎ randomly
from a standard uniform distribution denoted by U(0,1) or a standard normal distribution denoted by
N(0,1).

2.2 CD algorithm for minimising WSAD
In this subsection, the algorithm for WSAD is described. It follows the same steps as for WSSE
except that the squared deviations in (8), (11) and (14) are replaced by absolute deviations.

Taking 𝑌𝑛 (0), 𝑌𝑛 ( 𝑗) , 𝑌𝑛 ( 𝑗 , ℎ) and 𝑍𝑛 ( 𝑗 , ℎ) as defined before, we have current estimates 𝑏0,
𝑏1, . . . , 𝑏𝐾 and 𝑓𝑘𝑔, 𝑘 = 1, . . . , 𝐾 , 𝑔 = 1, . . . , 𝐺 which we wish to update via the CD algorithm.
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If �̃�0 denotes the updated version of the intercept, then

𝑊𝑆𝐴𝐷 =
𝑁∑︁
𝑛=1

𝑤𝑛

���𝑌𝑛 − 𝑌𝑛 (0) − �̃�0

���
must be minimised w.r.t. �̃�0. The choice of �̃�0 that minimises this expression is difficult to obtain,
and we will use linear programming software to solve for �̃�0.

If �̃� 𝑗 denotes the updated version of the 𝑗 th regression coefficient, then �̃� 𝑗 must minimise

𝑊𝑆𝐴𝐷 =
𝑁∑︁
𝑛=1

𝑤𝑛

���𝑌𝑛 − 𝑌𝑛 ( 𝑗) − �̃� 𝑗𝑋𝑛 𝑗 ��� .
To minimise this with respect to �̃� 𝑗 , note that we just have a regression problem in which the 𝑋𝑛 𝑗 are
regressed on the residuals 𝑌𝑛 − 𝑌𝑛 ( 𝑗) = 𝑌𝑛 − 𝑌𝑛 + 𝑏 𝑗𝑋𝑛 𝑗 and the minimising choice of �̃� 𝑗 is again
not straightforward and will be solved by using linear programming.

If �̃� 𝑗ℎ denotes the updated version of 𝑓 𝑗ℎ, it must be chosen to minimise

𝑊𝑆𝐴𝐷 =
𝑁∑︁
𝑛=1

𝑤𝑛

���𝑌𝑛 − 𝑌𝑛 ( 𝑗 , ℎ) − �̃� 𝑗ℎ𝑍𝑛 ( 𝑗 , ℎ)
��� .

To minimise this with respect to �̃� 𝑗ℎ , note that we again have a regression problem in which 𝑍𝑛 ( 𝑗 , ℎ)
is regressed on the residuals 𝑌𝑛 −𝑌𝑛 ( 𝑗 , ℎ) = 𝑌𝑛 −𝑌𝑛 + 𝑓 𝑗ℎ𝑍𝑛 ( 𝑗 , ℎ) and the minimising choice of �̃� 𝑗ℎ
will again be solved by linear programming.

The coordinate descend algorithm for minimising WSAD follows the same steps as the WSSE
routine, but by substituting the WSSE parameter updating equations (9), (12) and (15) with the
linear programming equivalent. The initial estimates may be obtained as before, however one might
consider substituting the multiple regression coefficient estimates with the estimates obtained from a
LAD regression.

2.3 Implementation of the algorithms
Both the above-mentioned algorithms were programmed in SAS using PROC IML and we used
PROC LPSOLVE for solving the linear programming problems. See SAS Institute Inc. (2017) for
more information on PROC IML and PROC LPSOLVE. As convergence criterion we used the mean
squared differences of the change in adjusted coefficients at each subsequent iteration and as a measure
of the prediction performance we used the mean squared error. Although CD does not guarantee
a global minimum, the loss functions considered here are both convex having a unique minimum,
and therefore concern regarding the convergence of the algorithms is alleviated. We will refer to the
WSSE CD implementation as the WSSE CD routine and to the WSAD CD implementation as the
WSAD CD routine.

Both loss functions were also implemented using the general nonlinear programming (NLP) solver
implemented in SAS PROC OPTMODEL. Implementation is straight forward since it only requires
the specification of the FM model and the loss function to be minimised. PROC OPTMODEL is a
versatile solution giving the programmer the benefit of powerful tried and tested built-in optimisation
routines as well as intelligent selection of the starting values for the parameters (see SAS Institute
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Inc., 2014). We will refer to these OPTMODEL implementations as the WSSE NLP and WSAD
NLP routines. Note that a drawback of these routines is that it requires the SAS/OR license at a
substantial cost. Because of this high price tag, the CD algorithms offer a useful alternative since it
can be implemented in any programming language. Using both the CD and NLP implementations
allow us to validate the numerical accuracy of the two optimisation implementations.

Note that all analyses were performed on a laptop computer (i7 processor, CPU = 1.8 GHz).

3. Examples
In this section, we firstly test the accuracy of our algorithms by means of a simulation study, and
secondly fit FMs to an artificially constructed ratings data set and lastly to the well-known Boston
house price data set. Note that we used equally weighted loss functions in all calculations performed
in this section.

3.1 Testing the accuracy of the fitting routines
Consider the FM model given in (1). We will first fit a 1-factor and then a 2-factor FM on two
artificially generated data sets using the WSSE CD routine and secondly, test the accuracy of all the
above-mentioned routines by means of a simulation study.

Data set 1
For the first dataset we took 𝐾 = 5 predictors and 𝐺 = 1 factor. The true values chosen for the
parameters are shown in Table 1. 𝑁 = 1000 observations were generated with all 5 predictors taken
to be independent and identically distributed according to the standard normal distribution N(0,1)
and the error term was taken to be N(0,0.25) distributed. Using equally weighted WSSE, the resulting
estimates are shown in Table 1.

Except for the intercept, the estimates of the regression coefficients are quite close to their true
values. This is also true for the estimates of the factor loadings provided that we change their signs.
From (1) we note that replacing all the 𝜑𝑘 by −𝜑𝑘 yields the exact same model so that changing the
signs of the estimates is valid. The MSE of the fitted model is 0.3225, which is nearly 30% larger
than the true error variance of 0.25. The discrepancies noted in the estimates of the intercept and
MSE could be due to sampling error, and this will be investigated in more detail in the simulation
study.

Table 1. WSSE CD fit on data set 1.

Parm True Parm True
𝛽 value Estimate 𝜑 value Estimate
𝛽0 0.5 0.29
𝛽1 0.8 0.79 𝜑11 0.5 −0.52
𝛽2 0.3 0.27 𝜑21 −0.6 0.54
𝛽3 0.2 0.17 𝜑31 0.2 −0.18
𝛽4 0.0 0.00 𝜑41 0.0 0.00
𝛽5 0.0 0.03 𝜑51 0.0 −0.03
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Data set 2
For the second data set we took 𝐾 = 8 predictors and 𝐺 = 2 factors. The true values chosen for the
parameters are shown in Table 2 below. 𝑁 = 2500 observations were generated with all 8 predictors
taken to be standard normal variates and the error term as before. The estimates are also shown in
the table. Again, except for the intercept, the estimates of the regression coefficients are very close
to their true values. The MSE of the fitted model is 0.3072 and about 22% larger than the true error
variance of 0.25 Again these discrepancies will be studied in the simulation study below.

Note that the estimates of the factor loadings in this example may give the impression that the
estimated factor loadings are always close to the true values up to a sign change. When fitting FMs
to other data sets we found that the estimated factor loadings are not always close to the true values,
but that the inner product of the estimated factor loadings is always close to the inner product of the
true factor loadings.

Simulation study
The objective of this study is to investigate the accuracy and efficiency of the routines implemented.
Assuming the model parameters as given in Table 2, we simulate 100 data sets of 2500 observations
each, by drawing the errors in model (1) from a contaminated normal distribution. Here the errors
were drawn with probability 0.9 from an N(0,0.25) distribution and, in order to simulate the presence
of outliers, with probability 0.1 from an N(0,25) distribution. This was done to check whether the
WSAD routines outperform the WSSE routines when outliers are present. Since the estimates of the
factor loadings sometimes vary in terms of sign and closeness to the true factor loadings, we decided
to report the accuracy of the factor estimates in terms of the deviance of the true inner product of
the factor loadings with that of the associated estimated inner product. For each combination of
predicted variables, the true inner product is given in Table 3. Note from (3) that these values can
also be viewed as the true implied interaction coefficients.

Starting values for the parameters of the NLP routines were not specified and we left that for PROC
OPTMODEL to decide. For the CD routines, the starting values for the coefficients of the predictor
variables and intercept, were obtained by fitting a least squares (LS) regression for WSSE and a LAD

Table 2. WSSE CD fit on data set 2.

Parm True Parm True Parm True
𝛽 value Estimate 𝜑 value Estimate 𝜑 value Estimate
𝛽0 0.5 0.26
𝛽1 0.8 0.80 𝜑11 0.5 0.45 𝜑12 1.0 1.03
𝛽2 0.3 0.30 𝜑21 −0.6 −0.62 𝜑22 0.0 −0.01
𝛽3 0.2 0.20 𝜑31 0.2 0.18 𝜑32 0.0 0.02
𝛽4 0.0 0.00 𝜑41 0.0 −0.03 𝜑42 0.0 −0.01
𝛽5 0.0 0.01 𝜑51 0.0 0.00 𝜑52 0.5 0.49
𝛽6 0.1 0.10 𝜑61 0.0 −0.01 𝜑62 0.5 0.50
𝛽7 0.2 0.20 𝜑71 0.0 0.03 𝜑72 −0.5 −0.50
𝛽8 0.9 0.90 𝜑81 1.0 0.95 𝜑82 0.5 0.53
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Table 3. True inner product of factor loadings.

𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8

𝑋1 −0.30 0.10 0.00 0.50 0.50 −0.50 1.00
𝑋2 −0.12 0.00 0.00 0.00 0.00 −0.60
𝑋3 0.00 0.00 0.00 0.00 0.20
𝑋4 0.00 0.00 0.00 0.00
𝑋5 0.25 −0.25 0.25
𝑋6 −0.25 0.25
𝑋7 −0.25

regression for WSAD. In both cases the starting values for the factor loadings were generated from a
standard uniform distribution.

The results of the simulation study are given in Tables 4, 5, 6 and 7. The performance of the
routines in terms of the number of iterations until convergence and time taken to converge is given
in Table 4. Note that the convergence criteria were calculated for each data set and the table contains
the summary statistics (average, standard deviation, minimum and maximum) obtained over 100
repetitions.

As expected, when compared to the more intricate WSAD routines, the number of iterations needed
until convergence are less for the WSSE routines. Also, the time taken to converge, measured in
hours (h), minutes(m) and seconds(s), clearly shows the superiority of the NLP implementations in
terms of computational efficiency. Interestingly, compared with the WSAD NLP routine, the WSAD
CD routine needs fewer iterations to converge, but takes much longer.

We calculated the MSE for each generated data set and then averaged the MSEs over simulation
runs. As seen in Table 5, the average MSEs obtained by the four routines are within 2% of the
theoretical variance of 2.725. This alleviates the concern we had in the previous section about the
MSE estimate not being close to the true value.

Note that the two WSSE routines give the same answers, as do the two WSAD routines. Closer

Table 4. Summary statistics of performance criteria.

Standard
Average deviation Minimum Maximum

Number of WSSE CD 32.03 9.4 14 62
iterations WSSE NLP 9.32 1.18 7 13

WSAD CD 98.15 36.54 19 240
WSAD NLP 191.27 115.89 105 732

Time to WSSE CD 7.95s 2.70s 3.36s 16.92s
converge WSSE NLP 0.15s 0.03s 0.11s 0.28s

WSAD CD 17m53.84s 1h12m16.15s 2m44.07s 12h15m40.64s
WSAD NLP 6.54s 4.20s 3.22s 31.78s
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Table 5. Summary statistics of mean squared prediction error.

Standard
Average deviation Minimum Maximum

WSSE CD 2.69 0.23 2.20 3.28
WSSE NLP 2.69 0.23 2.20 3.28
WSAD CD 2.71 0.24 2.21 3.30
WSAD NLP 2.71 0.24 2.21 3.30

Table 6. Summary statistics of the coefficient estimates of the predictor variables.

Average of estimates Standard deviation of estimates
True WSSE WSSE WSAD WSAD WSSE WSSE WSAD WSAD

values CD NLP CD NLP CD NLP CD NLP

𝛽0 0.5 0.502 0.502 0.501 0.501 0.031 0.031 0.015 0.016
𝛽1 0.8 0.803 0.803 0.800 0.801 0.032 0.032 0.013 0.013
𝛽2 0.3 0.300 0.300 0.300 0.301 0.034 0.034 0.013 0.014
𝛽3 0.2 0.195 0.195 0.203 0.203 0.031 0.031 0.012 0.013
𝛽4 0.0 0.002 0.002 −0.001 0.000 0.029 0.029 0.014 0.014
𝛽5 0.0 0.000 0.000 0.001 0.001 0.030 0.030 0.014 0.015
𝛽6 0.1 0.098 0.098 0.101 0.100 0.033 0.033 0.014 0.014
𝛽7 0.2 0.205 0.205 0.201 0.202 0.032 0.032 0.014 0.014
𝛽8 0.9 0.899 0.899 0.898 0.898 0.030 0.030 0.013 0.013

Table 7. MSE of true and estimated inner products of factor loadings
(WSSE NLP fit).

𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8

𝑋1 0.0011 0.0005 0.0005 0.0007 0.0009 0.0010 0.0011
𝑋2 0.0005 0.0004 0.0007 0.0006 0.0005 0.0011
𝑋3 0.0000 0.0002 0.0003 0.0003 0.0009
𝑋4 0.0002 0.0002 0.0002 0.0007
𝑋5 0.0006 0.0007 0.0007
𝑋6 0.0007 0.0007
𝑋7 0.0012

ALGORITHMS FOR ESTIMATING THE PARAMETERS OF FACTORISATION MACHINES 79



inspection revealed that when the MSE values for each generated data set were compared, the two
WSSE routines gave the same answers up to seven decimals and the WSAD routines the same answers
up to two decimals. Of course, this should be the case as the loss functions are convex and therefore
both CD and NLP converge to the same solution. Any difference observed relates to the stopping
criteria, which can be adjusted to improve the similarity of the results obtained.

For each of the four routines, Table 6 contains the average and standard deviation of the coefficient
estimates of the predictor variables. Again, the results obtained for both WSSE routines and for
both WSAD routines are the same up to two decimal places. Closer inspection revealed that the
coefficient estimates obtained for each data set were almost exactly the same, i.e. up to five decimals
for the WSSE routines and up to two decimal places for the WSAD routines. Note that the accuracy
with which the intercept term is estimated is close to that of the other regression coefficients, again
alleviating our concern expressed when we analysed data sets 1 and 2.

The average of the coefficient estimates over simulation runs are close to the true values and no
significant bias is observed. As expected, the standard deviation of the coefficient estimates of the
robust WSAD fits are lower than the standard deviations obtained by the WSSE fits, indicating that
robust FMs are worthwhile considering when outliers are present in a data set. Note that the MSE
of the difference between the true and estimated coefficients can be calculated by adding the squared
bias and squared standard deviation. In all cases this number is very small, i.e. about 0.001 or
less. Table 7 contains the MSE of the difference between the estimated and true inner products of
the factor loadings. We only provide the results for the WSSE NLP routine since the MSEs for the
WSSE CD routine was identical and that of the WSAD routines even smaller. The above-mentioned
results confirm that the four routines are numerically accurate, and that the NLP routines converge
much faster than the CD routines.

Remarks

• We investigated the sensitivity of the results of the CD routines to different starting values
by setting the starting values for the coefficients of the predictor variables to zero, and by
generating the starting values for the factor loadings from a standard normal distribution. The
results were virtually identical and led us to believe that the routines are not affected by different
starting values, at least not in this study.

• We conducted a similar simulation study by generating the errors from a N(0, 0.25) distribution.
As expected, the WSSE routines outperformed the WSAD routines in terms of having smaller
standard deviations.

• Assuming model (2), we conducted a similar simulation study, but in this case specified the
values of the interaction coefficients and not that of the factor loadings. Note that now 37
(1 + 8 + 28) parameters have to be estimated whereas a 2-factor FM (𝐺 = 2) only requires the
estimation of 25 (1 + 8 + 16) parameters. Again, the results obtained were very similar to what
we presented here. Therefore, the FM fitting routines did a remarkable job of estimating the
coefficients of the predictor variables and factor loadings using the approximation in (3).

• Compared to the CD routines, the NLP routines are computationally much faster and give very
similar results. Given space considerations, we decided to present only the results of the NLP
routines for the two examples below.
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3.2 Recommender system example
To study the behaviour of FMs in a recommender system context, we decided to construct a ratings
data set exhibiting a structured pattern, and then distort the pattern to see whether FMs can pick
up the original structure. The ratings, on a 5-point scale, are assumed to be provided by 20 users
(denoted by 𝑈1 to 𝑈20) on 20 items (denoted by 𝐼1 to 𝐼20). For example, the items could be movies
that were rated by viewers (users), where a low rating by a viewer indicates a poor movie and high
rating an excellent one. The ratings are given in Table 8, and it should be clear that identical ratings
by users have been organised in five blocks containing four users each. The ratings in this table will
be referred to as the original data set since it contains the original ratings.

We then randomly removed 20% of the ratings, indicated by the grey shaded cells, and introduced
10 errors (or outliers) by changing the ratings in the black shaded cells. In each of these cells a rating
of 1 was replaced with a 5 and a rating of 5 with a 1.

The data set that remains after the removal of the 20% ratings will be referred to as the incomplete
data set (without outliers), and the incomplete data set containing the outliers as the incomplete
data set (with outliers). Note that both the incomplete data sets do not contain identical users and,
should the labels of users and items be randomised, the block structure will not be clearly visible. Our
objective is now to determine whether FMs can correctly predict the missing ratings with and without
the presence of outliers. Since we want to predict an ordinal rating using two nominal predictors, the
relevance of model (1) may be questioned. However, nothing prevents us from applying the WSSE
or WSAD FM fitting routines to this data set; in fact, in his first paper Rendle (2010) used MSE loss
to fit the MovieLens data set which is a ratings data set like the one studied here. See also the last
remark at the end of this section.

Before we can fit an FM to the incomplete data sets, we have to input it into an appropriate
format understood by the algorithms. The data set was encoded using one hot or dummy coding
(see Slabber et al., 2021 or Rendle, 2012). Using this method, the two predictor variables (users
and items) escalate to 40 nominal predictors (the 20 levels of users plus the 20 levels of items).
Suppose we want to fit an FM with 10 factors (FM10), then this will require the estimation of 441
(1 + 𝐾 + 𝐾𝐺 = 1 + 40 + 40(10) = 441) parameters.

Note that the number of parameters are more than the number of observations (320, i.e. 400 minus
the 20% missing values), which is typical when fitting recommender systems. However, compared
to fitting a full two-way interaction regression model (821 parameters), the FM10 model results in a
significant reduction in the number of parameters that need to be estimated. When 𝐺 is equal to 4,
the reduction in the number of parameters is a further 240, since instead of 441, only 201 parameters
need to be estimated.

Once the FM model has been fitted, we obtain 320 estimated ratings �̂�1, . . . , �̂�320 and 80 predicted
ratings �̂�321, . . . , �̂�400. These are all numeric values and do not correspond exactly to a particular
rating category. In order to achieve this, we transform the numeric estimates and predictions to
�̂�∗1, . . . , �̂�

∗
400, where for 𝑖 = 1, . . . , 400,

�̂�∗𝑖 =

{
[0.5 + �̂�𝑖] for 0.5 ≤ �̂�𝑖 < 5.5,
�̂�𝑖 otherwise,

with [𝑥] the largest integer contained in 𝑥. For example, if �̂�1 = 2.4 then �̂�∗1 = 2 or if �̂�2 = 2.6 then
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�̂�∗2 = 3. Let 𝑦𝑖 , 𝑖 = 1, . . . , 400 denote the original (unchanged) ratings, then the fitted MSE is defined
as 1

320
∑320
𝑖=1 ( �̂�∗𝑖 − 𝑦𝑖)2 and the predicted MSE as 1

80
∑400
𝑖=321 ( �̂�∗𝑖 − 𝑦𝑖)2.

Firstly, we fit the algorithms to the encoded incomplete data set (without outliers) for various
choices of 𝐺. The results of the NLP WSSE and WSAD FM fits are given in Table 9 for different
choices of factors 𝐺 = 2, 3, 4, 6, 8 and 10. In addition to the fitted MSE and predicted MSE, we also
counted the number of estimated and predicted transformed ratings that were unequal to the value
of the original ratings and present the results under the headings ‘Incorrectly fitted’ and ‘Incorrectly
predicted’ respectively. This, together with the run time of the algorithms are given in Table 9 for
the NLP implementation.

The results show that, when using less than 4 factors, both the WSSE and WSAD algorithms
struggle to fit the data set. Also, the run time of the WSAD routines is long, especially for smaller
choices of𝐺. As far as model selection is concerned, one would always prefer a model that generalises
well and does not over-fit the data set. An indication of overfitting, and therefore poor generalisation,
would be a very small fitted MSE (overfitting) and a large predicted MSE (poor generalisation).
For an in-depth discussion of these topics the interested reader is referred to the excellent texts by
Hastie et al. (2009), Hastie et al. (2015) and Efron and Hastie (2016). When 4 or more factors are
specified, both the WSSE and WSAD algorithms obtain perfect fits, with the 4-factor models being
the parsimonious choice. It is interesting to note that the untransformed estimated and predicted
ratings, for the perfect fitting models, were all within one hundredth of the corresponding original
ratings.

An obvious question would be to determine how many missing values will be needed before the
model fails to pick up the structure in the data. Although this can be researched further, it remains
remarkable how well the model is able to predict. Part of the success may be attributed to the fact that
the interactions appear as inner products in (1), hence allowing the estimation of each component to
“borrow strength” from other components (see Rendle, 2010, 2012; Slabber et al., 2021).

Table 9. WSSE and WSAD FM fits on the incomplete data set (without outliers).

Fitted Predicted Incorrectly Incorrectly Run
𝐺 MSE MSE fitted predicted time

WSSE 2 0.672 1.013 206 60 0.58s
3 0.328 0.675 105 45 0.01s
4 0.000 0.000 0 0 1.36s
6 0.000 0.000 0 0 0.01s
8 0.000 0.000 0 0 7.17s

10 0.000 0.000 0 0 11.43s

WSAD 2 Did not converge within 10 hours
3 0.700 0.942 18 6 1h18m17.82s
4 0.000 0.000 0 0 1h25m1.43s
6 0.000 0.000 0 0 2m15.30s
8 0.000 0.000 0 0 1m50.22s

10 0.000 0.000 0 0 14m3.06s
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Secondly, for 𝐺 = 4 and 𝐺 = 8, we fit the algorithms to the encoded incomplete data set with
outliers. In Table 10 we present the fitted and predicted MSE of the WSSE and WSAD fits. Again, we
present the number of incorrectly fitted and predicted ratings and the run time of the routines. The last
column contains the number of outliers that are corrected, meaning that the estimated transformed
rating is equal to the original rating and not the value of the outlier.

The results in Table 10 show that the best model is WSAD FM4, since it corrected 9 outliers and
gave only one incorrect prediction and 3 incorrect estimates. When observing the estimated and
predicted ratings of the WSAD FM4 fit (see the first remark at the end of this section), it turns out that
for user𝑈9 the estimated transformed ratings for 𝐼5, 𝐼6, and 𝐼7 as well as the predicted rating for 𝐼8 are
all equal to 2 (untransformed rating estimate 1.92), instead of the original ratings of 5 (refer to Table
8). So, WSAD FM4 only failed in the above-mentioned 4 cases, therefore estimating and predicting
the original ratings in all other cells correctly. When we examined the coefficient estimates of 𝑈9
(see the first remark at the end of this section), we noticed that the vector of coefficient estimates
of 𝑈9, which should ideally be the same as that of 𝑈10, 𝑈11 and 𝑈12, does not fit the general block
structure as if the algorithm had difficulty deciding whether 𝑈9 is closer to 𝑈8 or 𝑈10. Interestingly,
the coefficient estimates for items 𝐼5, 𝐼6, 𝐼7,and 𝐼8 are almost exactly the same. Consider Table 8 and
observe the location of the outlier (𝑈9’s rating on 𝐼7, which is now 1 instead of 5) and the missing
value (𝑈9’s rating on 𝐼8). The two cells find themselves on the edge of a block originally rated as 5s
and adjacent to three other blocks originally rated as 1s (above), 2s (above and to the right), and 1s
(to the right). The FM clearly has difficulty deciding to which of the four blocks the four problematic
cells belong, and therefore the transformed estimated ratings of 2 is understandable.

When comparing the 8-factor WSSE FM fit with that of the 4-factor WSSE FM fit, the much
higher predicted MSE of the former might seem strange given the much lower number of incorrect
predictions. Closer inspection revealed that a few very large prediction errors caused the high
predicted MSE. The 8-factor fits of both WSSE and WSAD seem to overfit since they predict poorly,
but fit the data well. This was confirmed when we inspected the estimated ratings for the non-
corrected outliers. In all cases the transformed estimated ratings were equal to the value of the
outliers.

Remarks

• Due to space considerations, we do not provide the results of the various FM fits. These results
include the coefficient and factor loading estimates as well as the estimated and predicted
ratings. These results are available from the first author upon request.

Table 10. WSSE and WSAD FM fits on the incomplete data set (with outliers).

Fitted Predicted Incorrectly Incorrectly Run Outliers
𝐺 MSE MSE fitted predicted time corrected

WSSE 4 1492.867 18 588.896 269 68 1.21s 0
8 0.500 224 181.994 10 13 1m59.64s 0

WSAD 4 0.084 0.113 3 1 40m21.64s 9
8 0.325 1.720 7 7 3h36m31.67s 4
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• It should be clear from the discussion here that one should consider various choices of 𝐺,
before selecting the final model.

• When we applied PROC FACTMAC to the ratings data set, the results were similar to the
WSSE routines, which is expected because PROC FACTMAC also employs the MSE loss
function.

• As stated previously, the applicability of the FM model in (1) to this prediction problem might
be questioned. Because the target variable is ordinal, it might be more appropriate to consider
an FM model formulated and fitted analogous to an ordinal logistic regression. However, it
should be clear that the FM models fitted in this section perform remarkably well.

3.3 Boston housing data set
To test FMs on a real-world data set, the well-known publicly available Boston housing data set is
used. This data set was first used by Harrison Jr and Rubinfeld (1978) in a study regarding the impact
of air pollution (as measured by the square of nitrogen oxide concentration) and 12 other explanatory
variables on the price of owner-occupied homes. The data set is a sample of 506 observations on
census tracts in the Boston Standard Metropolitan Statistical Area (SMSA) in 1970. For a detailed
discussion see Belsley et al. (1980) and the more recent paper by Zhang (2008).

The set, which was recently updated and corrected, is freely available on various websites (see e.g.
Perera, 2018). The data set consists of the price variable relevant to the analysis (lmv the logarithm
of the median value of owner-occupied homes) and 13 explanatory variables (crim, zn, indus, chas,
nox, rm, age, dis, rad, tax, ptratio, black, lstat). Here crim is the per capita crime rate by town, zn
the proportion of a town’s residential land zoned for lots greater than 25000 square feet, indus the
proportion of non-retail business acres per town, chas Charles River dummy variable with value 1
if tract bounds on the Charles River, nox the nitric oxide concentration (parts per hundred million)
squared, rm the average number of rooms per dwelling, age the proportion of owner-occupied units
built prior to 1940, dis the logarithm of the weighted distances to five employment centres in the
Boston region, rad the logarithm of the index of accessibility to radial highways, tax the full-value
property tax rate per $10 000, ptratio the pupil-teacher ratio by town, black is 1000(𝐵𝑘 − 0.63)2

where 𝐵𝑘 is the proportion of blacks in the population and lstat the logarithm of the proportion of
the population that is of lower status.

Because of the scale differences among the predictor variables, and because we are interested
in identifying interaction effects amongst the predictor variables, we standardised all the predictor
variables. See for example Frost (2019) on the importance of standardisation in regression analysis
when the model contains polynomial and/or interaction terms. The importance of standardisation
was not mentioned previously, because the predictors in the ratings data set are binary (dummy
variables) and the predictors in the simulation study are standard normal variates, therefore not
requiring standardisation.

To test the performance of FMs on this data set, we split the set in a training and test data set.
As is done frequently in data competitions (see e.g. Mandav, 2021), we selected an 80% random
sample from the full data set as the training set and the remaining observations as the test set. We
then fitted several models on the training data set and tested the prediction performance on the test
set. The models considered were a multiple regression, a multiple regression including all two-way
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Table 11. Boston data: Model comparison on training and test data set.

Model Parameters Fitted RMSE Predicted RMSE
Multiple regression 13 4.794 4.324
Regression (incl. two-way interactions) 92 2.467 4.008
WSSE FM2 40 3.102 3.445
WSAD FM2 40 3.624 3.381
WSSE FM4 66 2.742 5.024
WSAD FM4 66 3.133 4.927

interactions, and 2- and 4-factor (WSSE and WSAD) FMs. SAS PROC GLM was used to fit the
regressions and we present the results of the NLP FM fits in Table 11. Again, the results of the CD
routines were similar to that of the NLP routines, but again it took a much longer time to converge.
Since the data competitions usually measure performance using root mean square error (RMSE) we
report the fitted and predicted RMSE and not the MSE as was done previously.

Note that the models in Table 11 are nested within each other, therefore the smaller model will
always have the larger fitted RMSE. For example, as seen in Table 11, the fitted RMSE obtained by
the two-way interaction regression (the most complex model having 92 parameters) is smallest; while
the fitted RMSE obtained by the multiple regression (the simplest model having 13 parameters), is
the largest. As far as prediction is concerned, WSAD FM2 has the lowest predicted RMSE, closely
followed by WSSE FM2. The good performance of the 2-factor FMs suggests the presence of
interaction effects between the predictor variables, and the superior performance of WSAD FM2
suggests the presence of outliers. The latter has been confirmed by several studies (see e.g. Belsley
et al., 1980).

To investigate the presence of interaction effects, we studied the significant interaction effects as
obtained from the two-way interaction regression model. The model identified significant interaction
effects between variables crim and chas, crim and rm, rm and lstat. The fact that significant interaction
effects are present explains the better performance of the FM2 model. The predicted RMSE of 3.381
obtained by WSAD FM2 and 3.445 obtained by WSSE FM2, compare well with the best performers
on the Kaggle leader boards; see Kaggle (2021). The leader boards list two scores based on RMSE,
one based on 70% of the test data (top scores 3.72, 3.93 and 3.94) and the other one on 30% of the
test data (top scores 3.69, 3.89 and 3.94). Although our scores are not directly comparable it has
lowest predicted RMSE.

4. Conclusion
Assuming a factorisation machine model formulation, we minimise two well-known loss functions
by using coordinate descent and non-linear programming. The coordinate descent routines were im-
plemented in SAS PROC IML and the nonlinear programming routines in SAS PROC OPTMODEL.
We demonstrated that these routines are adequate for fitting factorisation machine models and that
these routines may provide a useful addition to the statistician’s model building toolkit. Furthermore,
the implementation in SAS might stimulate the application of FMs to many prediction problems in
business. We are currently working on extending our routines to include regularisation and are testing
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the performance of the routines on large data sets. Also, we are doing research on the applicability
of FMs in a credit scoring context, using an FM formulation analogous to logistic regression.
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