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ABSTRACT 

The use of data mining within the higher education context has, increasingly, been gaining traction. 

A parallel examination of the accuracy, robustness and utility of the algorithms applied to data 

mining is argued as a necessary step toward entrenching the use of EDM. This article provides a 

comparative analysis of various classification algorithms within an Open Distance Learning 

institution in South Africa. The study compares the performance of the ZeroR, OneR, Naïve Bayes, 

IBk, Simple Logistic Regression and the J48 in classifying students within a cohort over an eight-

year time span. The initial results appear to show that, given the data quality and structure of the 

institution under study, the J48 most consistently performed with the highest levels of accuracy.  

Keywords: Educational Data Mining, learning analytics, WEKA, J48, logistic regression, student 

success 

 

INTRODUCTION 
The University of South Africa (Unisa), as along with many other universities across the world, 

is faced with low graduation rates. Additionally, being an Open Distance Learning (ODL) 

university, Unisa is particularly vulnerable in this area, since the pass rates in ODL institutions 

are typically lower when compared to traditional, contact-based institutions (Letseka and Karel 

2015). The phenomenon of ODL underperformance is so ubiquitous that it is now commonly 

referred to as “the distance education deficit” (Simpson 2013). Student failure and dropout in 

higher education institutions encompasses a number costs which include a loss of revenue, 

prestige, and stakeholder trust for organisations and students alike (Archer, Chetty and Prinsloo 

2014). An example of a detailed financial analysis, in particular, the costs and benefits of 

student retention to various stakeholders is presented in Simpson (2005). He claims that the 
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return on investment is of the order of 2 000 per cent for students successfully graduated from 

ODL institutions. Thus, a considerable benefit may reside in early recognition of the factors 

that negatively influence graduation rates, as these can then be compensated for through the 

application of appropriate interventions before the problem becomes exacerbated.  

Universities and higher education institutions routinely collect an immense amount of data 

concerning students. Therefore, a better comprehension of the reasons for low performance on 

the part of the students might emerge from the knowledge congregated in educational databases. 

Data Mining (DM) is the process of extracting often hidden patterns from pre-existing data and 

may lead to novel insights, new applications or alternative interpretations of institutional 

processes. Educational Data Mining (EDM) is an application of DM procedures to educational 

data and is concerned with developing methods to explore these types of data to improve the 

understanding of the students and the context in which they learn (Romero and Ventura 2010).  

The purpose of this article is to examine which data mining process leads to the most 

efficient estimation of student performance. In particular, we are interested in finding out which 

machine learning algorithm provides the best predictability of student academic success. In our 

context, a successful student is one who has graduated within the maximum time allowed 

which, at Unisa, is eight years. This definition of success is in contrast with Moreno and 

Stephens (2015), who defined success as the achievement of all the credits in regulation time. 

The decision to focus on the maximum allowed time was motivated by the realisation that 

completion rates within minimum time would be negatively skewed as distance education 

students typically take longer to complete their qualifications (Letseka and Karel 2015). 

 

REVIEW OF THE LITERATURE 
Data-intensive science has been described as the fourth research paradigm, where the other 

three are the experimental sciences, the theoretical sciences and computer simulations (Bell, 

Hey and Szalay 2009). Thus, we may be assured that the approach we have taken is recognised 

and approved by the scientific community. As this field is relatively young, there is still a debate 

regarding the naming conventions and definitions describing data-intensive science. The most 

common names for the whole data-related research process appear to be Knowledge Discovery 

and Data Mining, (Piatetsky-Shapiro 2007; Piatetsky-Shapiro and Parker 2011). We will use 

the former in our article, especially given that this designation is widely employed in the 

educational context. A pedagogical approach to data mining from a broader perspective is 

presented in many books (Han, Pei and Kamber 2011; Aggarwal 2015; Bramer 2013; Clarke, 

Fokoue and Zhang 2009; Kantardzic 2011; Ledolter 2013). According to these publications, in 

a most general sense, the data mining process is comprised of several consecutive steps: 
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1. Hypothesis formulation  

2. Data collection  

3. Data pre-processing  

4. Algorithm selection and optimisation  

5. Interpretation of results 

 
Each of the above steps can be split into detailed procedures; for example, data pre-processing 

might be constructed as a two-stage routine: data preparation and data reduction (García, 

Luengo and Herrera 2015). The first of these two stages can be comprised of data cleaning, data 

transformation, data integration, data normalisation, missing data imputation and noise 

identification. The second might involve feature selection, instance selection, discretisation and 

feature extraction (García, Luengo and Herrera 2015). 

DM can be useful in answering queries on forecasting, object classification, associating 

similar events, clustering objects into groups and discovering causal relationships (Pal 2011). 

The area of applicability encompasses various industries in the private and public economic 

sectors, the research communities (Baker and Yacef 2009) and, in particular, the researchers in 

education.  

EDM methods integrate concepts and applications from a wide area of research which 

include data mining, machine learning, psychometrics, statistics, information visualisation, and 

computational modelling (Moreno and Stephens 2015).  

The applications of EDM are manifold, for example Moreno and Stephens (2015) group 

them into the following categories: data analysis, data visualisation, generating information to 

support instruction, courseware construction and planning and scheduling. From a student 

perspective, EDM can provide recommendations for students, predict student performance, 

provide models of student profiles, detect undesirable student behaviours, group student by 

predefined criteria, perform social network analysis to highlight interaction and, develop 

concept maps of learning programmes to inform design (Moreno and Stephens 2015). A more 

accurate categorisation about performance analysis and prediction is described in (Thakar, 

Mehta and Manisha 2015). The authors consider the pre and post-enrolment factors, the 

relationship of these factors to employability and the power of various DM techniques in 

predicting academic performance.  

Ferguson (2012) looks at the relationship between academic and learning and EDM by 

focusing on the four challenges: connectivity with the learning sciences, development of ways 

to handle a broad range of datasets, involvement of learners, and establishment of ethical 
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guidelines. Papamitsiou and Economides (2014) investigated the fundamental research 

objectives of learning analytics and EDM, the methods by which these aims were achieved, and 

the exploration of other emerging research technologies. The authors use SWOT (strength, 

weaknesses, opportunities and threats) methodology to present the findings. A similar approach 

is illustrated by Peña-Ayala (2014), together with a chronicle in EDM development. 

Unisa developed the socio-critical model of understand, predict and enhancing student 

success (Subotzky and Prinsloo 2011). The consecutive development of the socio-critical model 

about emerging big data, as well as the issues to be addressed, are discussed in Prinsloo et al. 

(2015). The overview of analytics, as used by Unisa and in comparison with Open University 

in the UK are explored in Prinsloo, Slade and Galpin (2012) as well as in Prinsloo and Slade 

(2013). 

 

LEGAL AND ETHICAL CONSIDERATIONS IN LEARNING ANALYTICS 
The initial optimism and hype driving the use learning analytics in teaching and learning has 

recently slowed due to concerns about privacy and the impact on individual integrity and 

identity (Drachsler and Greller 2016). The concerns raised pertaining to learning analytics are 

parallel to concerns relating to internet safety, surveillance and commercial exploitation of data 

(Drachsler and Greller 2016). Proponents of EDM emphasise the benefits of increased 

efficiency and cost effectiveness related to delivering education and conducting research in the 

field (Eynon 2013). While it is beyond the scope of this article to provide a detailed discussion 

of the legal and ethical implications of Learning Analytics and EDM, we intend to briefly 

highlight the key principles guiding the legal and ethical frameworks that, in turn, guide the use 

of analytics in higher education. 

The use of EDM places unprecedented access to analytics about students in the hands of 

institutions. Concomitantly it has also created new obligations and responsibilities for 

institutions regarding ensuring data privacy, ethical use of student data, complying with 

legislation protecting personal information and the duty to act on intelligence derived from 

analyses (Prinsloo and Slade 2013; 2014). Sclater (2015) proposes key principles for the 

utilisation of EDM to enhance teaching and learning. These principles include identifying and 

providing specific responsibility for the use of EDM; ensuring transparency and consent; 

protecting individual privacy; ensuring data and predictive validity of analyses; taking measures 

to ensure access to the analyses and results; enabling positive interventions; minimising adverse 

impacts and providing an environment for the responsible stewardship of data. 

In addition to the legal and broader ethical principles mentioned above, due consideration 

must be given to the agency of the data subjects for whom the system may be designed. 
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According to Drachsler and Greller (2016), acceptance of technological solutions based on 

learning analytics depends on data subjects being sufficiently aware of the consequences of 

using the system, of the validity and relevance of the results obtained, and of the level of 

transparency of the data model. Wook, Yusof and Nazri (2016) found that relevance of the 

analysis, self-efficacy of individual users, conducive environmental conditions, perceived 

usefulness, perceived ease of use, optimism about learning analytics and discomfort 

experienced about learning analytics influenced the acceptance of EDM among 211 

undergraduate students at six public universities in Malaysia. In summary, their results indicate 

that students who are optimistic toward technological advancements, and who are self-

efficacious, are more likely to use EDM when the usefulness and usability of the analytics are 

made readily apparent. Furthermore, they state that the relevance of the analysis, paired with 

conditions that facilitate access to and the application of EDM, further enhances the likelihood 

of EDM uptake among the sample (Wook, Yusof and Nazri 2016). The focus of this study is 

on addressing the principle of increasing the transparency of the data model by making explicit 

the underlying accuracy and performance of the algorithms utilised to make predictions as to 

student success. 

 

METHODOLOGY 
In this section, we will summarise the applied data mining process, from obtaining the data to 

the summary and visualisation of results. In particular, we will pursue the process detailed in 

Ball and Brunner (2010), since the application of DM in the applied sciences is already well 

researched and standardised. Currently, Unisa harvests from five distinct data warehouses that 

are structured along the primary functions of the institution (Prinsloo et al. 2015):  

 

1. Student administration 

2. Learner management  

3. Human resources 

4. Finance, space and the built environment  

 

Each data warehouse has its origins in separate but interlinked functions. The consequence of 

this is that procedures for data capturing, processing, dissemination and data warehouse 

structures vary between these roles. The disparate nature of the data sources requires specialised 

expertise to translate the business rules embedded in the design and function of each data 

warehouse into extracts that can be utilised within an analytic framework (Prinsloo et al. 2015). 

Conducting data mining processes, therefore, requires data reconfiguration. The inherent risk 

with the process described above is that, with each new configuration of the data, the original 
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context, assumptions and ideologies underpinning the data are lost (Prinsloo et al. 2015). 

The Waikato Environment for Knowledge Analysis (WEKA) is a collection of machine 

learning algorithms, data pre-processing and visualisation tools (Witten, Eibe and Hall 2011). 

WEKA has been is widely accepted for DM and EDM applications in both the business and 

academic sectors (Hall et al. 2009).  

 
Data acquisition  
The data was obtained from the institutional databases and included the socio-demographic 

information, registration details, high school learning achievements and university academic 

results of the students. The research team provided the institutional ICT services with a request 

specifying the variables required for the analysis, as well as the cohort years which spanned the 

period 2008 to 2010. The data tables were then joined with the various institutional databases 

and provisioned. The initial data set received from the institutional ICT department comprised 

269 274 instances of undergraduate students. The data was then processed, and cases with 

missing module performance or missing matric performance data were discarded on a per-case 

basis. The rationale behind the per-case exclusion is that some of the algorithms used in this 

study are not able to process missing data. 

 
Data pre-processing 
Data pre-processing procedures entailed identifying and excluding all cases with missing data 

on performance. Demographic data were categorised as indicated in Table 1, while the average 

of the matric performance was calculated. Duplicate cases were identified and removed, and 

individual cases were randomly selected to check against institutional systems for accuracy.  

 
Table 1: The set of features describing students’ data 
 

Name Type Description 

Qualification Nominal Three categories: Degree, Diploma, Certificate 

Age category Nominal 6 categories: <24, 25‒29, 30‒39, 40‒49, 50‒59, 60<  

Gender Nominal Three categories: Male, Female, Unknown 

Occupation Nominal Four categories: Unemployed, Employed, Full-time student at Unisa, 
Full-time student (elsewhere) 

Race Nominal Five categories: White, Coloured, Indian, Black, Other 

Language Nominal Two categories: English, Other 

College Nominal Seven categories: CAES, CAS, CEDU, CEMS, CHS, CLAW, CSET* 

Matric Average Numeric Arithmetic average 

Outcome Nominal  Categories: Pass, Fail 

 
The final dataset comprised 186 174 instances of undergraduate students in three year- 

consecutive cohorts. The cohorts for the 2008, 2009 and 2010 academic years were used as the 
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data sample for the study. The choice of cohort years was based on the assumption that the time 

to completion for each cohort year selected was greater than five years. The analysis, therefore, 

considered which students had completed their qualifications within a five-to-eight-year period. 

The size of the 2008 cohort after data processing comprised 98 880, the 2009 cohort 78 663 and 

the 2010 cohort 91 731 undergraduate students. 

The data was then imported into WEKA, and the outcome classes identified as pass or 

fail. The choice of a dichotomous outcome was based on the assumption that students either 

completed their qualification within the defined period or failed to do so. The variables adopted 

in the current analysis, along with their respective domains, are presented in Table 1. 

The college acronyms are defined as follows: CAES: College of Agriculture and 

Environmental Sciences, CAS: College of Accounting Sciences, CEDU: College of Education, 

CEMS: College of Economic and Management Sciences, CHS: College of Human Sciences, 

CLAW: College of Law, CSET: College of Science, Engineering and Technology. 

The Outcome indicator was computed by averaging the marks students obtained during 

their studies at Unisa. The “Pass” indicator was assigned to average marks greater than or equal 

to 50 per cent. Otherwise, the indicator was set as “Fail”. (The outcome indicators could have 

been more accurately labelled as complete and incomplete.) For ease of reference, the reader 

should consider “pass” as meaning completed and “fail” as meaning incomplete. Further on in 

the process, the dataset was oversampled in order to adjust the Outcome indicator to real 

graduation rates.  

 

Feature and instances selection 
The selection of a relevant subset of features was conducted using two independent methods. 

The first of these methods employed the “wrapper” approach that evaluates attribute sets by 

using a machine learning algorithm (Kohavi and John1997). Then, the consideration of this 

approach, along with the J48 classifier, indicated that the dominant features comprised 

Qualification, Age Category, Race, College and Matric Average. The second method involved 

scheme-independent Correlation-based Feature Subset Evaluation (CfsSubsetEval). In 

particular, this technique evaluates a subset of attributes and evaluates the individual predictive 

ability of each feature in conjunction with the degree of redundancy between them (Hall 1999). 

Consequently, the CfsSubsetEval method singled out College and Matric Average as the 

dominant attributes (Table 2). The latter is strongly related to the student’s path and constitutes 

an important factor in determining student success (Islam and Al-Ghassani 2015). The former, 

however, might rather suggest that the colleges should be addressed separately during the data 

mining process. Also, the additional justification originates from the fact that the curriculum is 
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structured differently in each college and that the students’ trajectories vary substantially 

between the colleges. Hence, we split the original dataset into seven separate “chunks”, one for 

each college.  

 
Table 2:  The importance of particular features evaluated via Wrapper, CfsSubsetEval and decision 

tree split methods 
 

Name Wrapper CfsSubsetEval Splits 

Qualification D* 
 

8 

Age category D 
 

9 

Gender 
  

2 

Occupation 
  

9 

Race D 
 

5 

Language 
  

4 

College D D N/A 

Matric Average D D 24 

Outcome 
  

N/A 

 

In Table 2, the D symbol means that the feature is dominant according to the given method. 

The Splits value indicates how many times the feature has been used in the final model to 

perform the split. 

We compared the indicator outcome with the institutional graduation summaries and 

selected the 2008 cohort as having the best fit to these summaries. This action limited the 

number of data instances to 62 246. Then, the datasets were processed with the application of 

the Synthetic Minority Oversampling Technique (SMOTE) algorithm to adjust the indicator to 

the institutional summary throughput rates (Chawla et al. 2002). These were provided per 

college for a six year period. Consequently, the data were passed through a SMOTE filter with 

the percentage of instances calibrated appropriately for each college. 

 

Algorithm selection 
Machine learning is a scientific discipline and has both theoretical and empirical aspects 

(Langley 1988). For this reason, it was incumbent on us to perform a range of experiments 

under different conditions and conclude them with a statistical test (Drummond 2006). An 

emphasis on the empirical side of data mining makes a stronger case for the scientific validity 

of generated models. 

We experimented with a number of algorithms to ascertain the appropriate choice of the 

optimal scheme in the context, and at the same time to avoid any complexity that would result 

in longer durations and implementation difficulties. The accuracy, in other words, the 
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percentage of dataset instances correctly classified by the classifier, was chosen as the measure 

of the scheme appropriateness. Overfitting, an undesirable phenomenon in DM, is the use of 

unnecessarily complicated approaches or models or procedures with superfluous terms included 

(Hawkins 2004). We controlled this with the help of cross-validation rather than making use of 

a single training and testing data setup. As part of this approach, the dataset is split into equal 

folds, and the iteration is performed over these folds. During each iteration, one of the folds is 

used for testing and all the others for training. The learning procedure executes as many times 

as the number of folds, then the scores and errors are averaged. WEKA implements, by default, 

stratified cross-validation, which means that the folds are selected in such a way that the mean 

response value is relatively equal in all the folds. Since our Outcome class is dichotomous, each 

fold would contain approximately the same fraction of the two class label types. For the 

consistency, the 10-fold cross-validation was utilised as a test option for all the experiments, 

and the statistical significance was determined by the application of paired t-test. We started 

with simple machine learning algorithms, ZeroR and OneR to get a reasonable estimate of the 

lower bound for more sophisticated schemas (Holte 1993).  

ZeroR chooses the most common category all the time, whereas, OneR chooses the rule 

with the lowest error rate (Devasena et al. 2011). Consequently, the four other popular schemes 

were utilised, namely Naive Bayes, IBk, Simple Logistics and J48, which is a Java 

implementation of the C4.5 algorithm (Quinlan 1993). These results are presented in Table 3. 

In this table, the brackets indicate the standard deviation, statistically better performance of the 

algorithm is indicated with the v symbol (p = 0.05) than ZeroR. The symbol * means that the 

algorithm performs significantly worse than ZeroR and the performance is presented as an 

accuracy percentage. 
 
Table 3: Comparative performance of algorithms per faculty 
  

College #Students ZeroR OneR Naïve Bayes IBk Simple 
Logistics J48 

CAES 1,182 77.06(0.23) 74.61(2.15)* 76.74(1.83) 68.25(3.13)* 77.01(0.48) 76.79(1.03) 

CAS 6,883 79.62(0.07) 81.21(0.75)v 80.78(1.24)v 74.18(1.33)* 81.22(0.71)v 80.92(0.82)v 

CEDU 11,109 53.49(0.02) 56.73(1.26)v 59.40(1.20)v 59.55(1.29)v 60.78(1.28)v 60.54(1.27)v 

CEMS 28,130 85.29(0.01) 85.25(0.13) 85.26(0.19) 81.69(0.48)* 85.29(0.01) 85.37(0.14) 

CHS 4,920 74.91(0.07) 74.55(1.05) 75.60(1.14) 69.11(1.76)* 76.39(0.83)v 77.15(0.94)v 

CLAW 2,692 85.49(0.07) 85.24(0.67) 84.77(0.77)* 81.10(1.24)* 85.48(0.14) 85.44(0.36) 

CSET 7,330 90.26(0.04) 90.27(0.31) 90.21(0.34) 85.79(0.73)* 90.26(0.05) 90.56(0.26)v 
 
The best performing algorithm across all the colleges is J48 (better than the baseline in four 

cases), followed by Simple Logistics (better than the baseline in three cases). Thus, we decided 

to select decision trees as a primary scheme for the investigation of our educational datasets. 
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Some authors (Nghe, Janecek and Haddawy 2007; Molina et al. 2012; Sharma and Mavani 

2011; Kaur, Singh and Josan 2015; Shahiri and Husain 2015) also favour this algorithm, placing 

it in the top, or near-top, position with regard to the accuracy estimate. Consequently, we 

proceeded with fine-tuning the J48 algorithm.  

 

Algorithm optimisation 
Optimisation is one of the core goals of machine learning, as many of the schemas reduce to 

optimisation problems (Bennett and Parrado-Hernández 2006). Amongst others, pruning, 

which is a process of removal of unnecessary structures, is one of the major optimisation 

procedures applied to decision trees (Quinlan 1987). In essence, we have two major strategies 

when adopting pruning in respect of a particular model. The first is called pre-pruning, and it 

involves the decision as to when the development of sub-trees has to be stopped. The second 

one, called post-pruning, involves the learning scheme’s decisions regarding whether the sub-

tree should be replaced, raised or left unpruned (Witten, Eibe and Hall 2011). In summary, the 

optimisation processes for J48 scheme in WEKA involve the following implementations of tree 

pruning:  

 
• Switching the pruned/unpruned flag 

• Adjustment of the confidence factor that determines the amount of tree pruning (the C 

factor, equal to 0.25 as a default), and 

• Adjustment of the minimal number of instances per leaf (the M factor, equal to 2 as a 

default) 

 

When we disabled the tree pruning altogether, the performance of J48 on the datasets was 

substantially lowered for all the colleges. Additionally, an unpruned tree tends to over fit the 

data. Thus we further decided to have the pruning switched on at all times. Varying the C factor 

did not bring much difference to the scheme’s performance; apparently, the datasets are not 

especially sensitive to confidence factor manipulation. However, slightly noticeable contrasts 

appeared when the M factor was varied. This factor sets the lower bound on the leaf size and, 

accordingly, it controls the depth of a tree. This arises from the fact that the number of instances 

is constant for each college when the optimisation task is performed. We are mindful, 

nevertheless, that the larger the tree becomes, the more serious the threat of overfitting is, and 

this is why, for the final version of the optimised parameters set, we chose the biggest acceptable 

M. With this strategy come two additional benefits, namely, the eradication of statistically 

unimportant leaves, and the simplicity of the algorithm derived from the decision structure to 
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be implemented in the production environment. The results of the optimisation process, 

presented in Table 4, give us the accuracy as a function of M factor for all the colleges. In Table 

4, brackets denote standard deviation while the symbol * means that the algorithm performs 

statistically worse than one with M=2. The performance of the relative M factor adjustments 

are reported in percentages. 
 
Table 4: Comparative performance of J48 with adjustment on M factor 
 

M 
factor/ 

College 
2 5 10 20 50 100 200 500 1000 

CAES 76.79 
(1.03) 

76.92 
(0.72) 

76.96 
(0.58) 

76.92 
(0.66) 

76.93 
(0.72) 

77.06 
(0.23) 

77.06 
(0.23) 

77.06 
(0.23) 

77.06 
(0.23) 

CAS 80.92 
(0.82) 

80.85 
(0.87) 

81.01 
(0.76) 

81.08 
(0.77) 

81.13 
(0.71) 

81.14 
(0.67) 

81.22 
(0.63) 

79.79 
(0.54)* 

79.62 
(0.07)* 

CEDU 60.54 
(1.27) 

60.65 
(1.29) 

60.67 
(1.29) 

60.57 
(1.28) 

60.58 
(1.16) 

60.71 
(1.21) 

60.77 
(1.17) 

60.79 
(1.29) 

60.63 
(1.34) 

CEMS 85.37 
(0.14) 

85.39 
(0.13) 

85.37 
(0.14) 

85.36 
(0.13) 

85.32 
(0.14) 

85.30 
(0.14) 

85.26 
(0.09)* 

85.29 
(0.01) 

85.29 
(0.01) 

CHS 77.15 
(0.94) 

77.34 
(0.97) 

77.18 
(0.93) 

76.72 
(1.07) 

76.03 
(0.97)* 

75.93 
(1.01)* 

75.44 
(0.84)* 

74.91 
(0.07)* 

74.91 
(0.07)* 

CLAW 85.44 
(0.36) 

85.49 
(0.23) 

85.52 
(0.21) 

85.45 
(0.14) 

85.49 
(0.07) 

85.49 
(0.07) 

85.49 
(0.07) 

85.49 
(0.07) 

85.49 
(0.07) 

CSET 90.56 
(0.26) 

90.55 
(0.28) 

90.55 
(0.28) 

90.54 
(0.29) 

90.35 
(0.24)* 

90.26 
(0.04)* 

90.26 
(0.04) 

90.26 
(0.04)* 

90.26 
(0.04)* 

 
 
The results in Table 4 indicate that, optimisation of the M factor does not produce significantly 

improved accuracy rates for the various colleges. In some cases, the optimisation process 

resulted in the algorithm performing significantly worse than the baseline M factor of two. For 

instance, we see that, in the college of Sciences, M factors over 500 lead to statistically 

significant lower performance levels. Therefore, in this particular case, optimisation did yield 

improved accuracy rates. However, it is important to investigate the optimisation process to 

ascertain whether the performance of the algorithm can be improved on. 

 
RESULTS 
The analyses of comparative performance of algorithms conducted in this article showed that 

the J48 algorithm performed better than the ZeroR in four of the seven colleges, which is in 

broad agreement with similar studies (Nghe, Janecek and Haddawy 2007; Molina et al. 2012; 

Sharma and Mavani 2011; Kaur, Singh and Josan 2015; Shahiri and Husain 2015). Simple 

logistic regression only performed better than ZeroR in three of the seven colleges. For the J48, 

the Colleges of Law, Economic and Management Sciences, Agricultural and Environmental 

Sciences did not perform significantly better than the ZeroR. Further research is required to 

ascertain why the algorithm performance in these colleges is lower. Attempts to optimize the 
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algorithm to improve accuracy and performance, in particular for those colleges where J48 did 

not perform better than ZeroR, yielded marginal improvements which did not translate into 

better performance overall. Consequently, while we recommend the use of the J48 on large data 

sets such as those within ODL institutions such as ours, the optimisation process needs to be 

improved upon to ensure greater consistency across faculties. 

 
Key considerations for the implementation of results from EDM analyses in 
institutions 
Development of a near real time system using the techniques and models described above, 

would require extensive consultation to ensure that privacy issues and potential algorithmic bias 

are openly discussed and contextualised. (Wook, Yusof and Nazri 2016). While the analysis 

presented in this article was aggregated and anonymised, live integration of the analytics into 

the Learning Management System (LMS) would require some level of disaggregation to ensure 

that students in need of support are identified for targeted interventions. This would require 

careful consideration of who should be allowed to view disaggregated student information as 

well as an open discussion about how the information should be made available to students. 

The disaggregation of student information will further require a clear code of practice which 

emphasises the benefits (and under which conditions) for all stakeholders; stipulates the 

conditions for consent, describes the process of de-identification and the implications of opting 

out; details measures to reduce vulnerability and mitigate harm; and prescribes the conditions 

for the collection, analysis, access to and storage of the data (Sclater 2015; Prinsloo and Slade 

2014). 

 
Limitations  
This study has a number of limitations which might be removed in future investigations. The 

dichotomous outcome variable is a crude description of the students’ entire interaction with the 

university. It would be appropriate to define a larger variety of class outcomes that relate to 

different stages of students’ involvement and to generate models for each stage. No data from 

the learning management system was integrated into the current analysis. This is, in part, due 

to the correspondence nature of study that is dominant in many of the modules which does not 

require online interaction and the data would therefore only reflect on the behaviour of a 

minority of students. The model would substantially benefit from the inclusion of assignment 

and raw exam results, as well as information about stop-outs in the study continuum. We only 

explored the use of a few machine learning algorithms and data mining environments for our 

research. The field of data science develops quickly, and there is a substantial wealth of new 
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algorithms that might perform in a superior way on our datasets. 

With the limited number of features used, it was difficult to produce a universal model of 

the successful student. One may attribute such difficulties in identifying a universal model to 

the large scale on which Unisa operates; the diverse student population; the immense variety of 

support services; and the varying socioeconomic spheres of the students. In fact, it is arguable 

whether a universal model is necessary, and posit instead that there may be a number of core 

models that hold more explanatory power. This implies a need for Ockham’s razor to reflect 

Unisa’s complex dynamics. 

Another possible reason for the difficulty in producing a universal model was the 

limitation on the initial variables and on the assumptions that were set.  

 
Future research 
Future research could incorporate a wider utilisation of student data, which would include 

graduation details, and application of natural rather than historical discretisation. Additionally, 

the inclusion of psychological characteristics and a revisited definition of success which 

includes the financial factors as well as the time dimension in studies, would enlarge the feature 

set and provide a number of additional interpretative outcomes. Finally, in the machine learning 

field, we intend to embrace more sophisticated algorithms and compare them in a holistic 

fashion, for instance, by using a cost analysis and ROC area estimation. 
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