BASIC SCIENCES IN HIGHER EDUCATION, AND TEACHING APPROACHES IN THE CONTEXT OF 21ST-CENTURY ADVANCES: TIME FOR A CHANGE?

G. J. Maarman
Department of Biomedical Sciences
Centre for Cardio-Metabolic Research in Africa
Stellenbosch University,
Stellenbosch, South Africa
https://orcid.org/0000-0003-3336-5594

ABSTRACT

Higher education has become a leading life goal for youth across the world. More specifically, the higher education of basic scientists is key in the creation of new developments in economics, healthcare, science, and technology. However, advances and challenges that came with the 21st century have impacted how basic science research is conducted and how basic scientists function within a rapidly changing world. Without a doubt, the way in which basic scientists are trained at higher education institutions needs to be revisited and adapted where needed. By means of a literature review, this article demonstrates the significant challenges and advances in the 21st century, and how these impact the higher education of basic scientists. To summarise, training programmes must include a digitalisation focus and teach the use of digital technology to disseminate research findings to the lay public. Training must hone the skills that will help scientists to survive job scarcity in academia, skills such as curriculum vitae writing, promoting oneself as employable to industry companies and how to repurpose academic experiences for a different job market. Other aspects that need to be included are raising awareness, among the next generation of basic scientists, of the need to conduct research that has nationally and internationally relevant foci. Training must include mentorship during postgraduate training, the use of hybrid models of teaching, curricular integration and interdisciplinary learning and practices during the early stages of these scientists’ careers. Lastly, undergraduate degrees give a general introduction to the basic sciences, but leave graduates with insufficient laboratory experience, and thus they struggle to enter the job market after their undergraduate degree is completed. In other fields, a B. in Accounting makes a graduate an accountant, B. Eng makes them an engineer, but BSc. equates to nothing besides several introductions to various fields. More must be done.

Keywords: higher education, teaching, basic sciences, undergraduate, postgraduate, pedagogy, South Africa

INTRODUCTION

Basic science, albeit known to the medical fraternity and scientific community, has shot to fame
with the COVID-19 pandemic (Evans et al. 2020). Its importance in combating the global
disease burden (Bedford et al. 2019) and strengthening the healthcare sector (Sheikh, George,
and Gilson 2014) cannot be denied. The higher education of basic scientists is vitally important
as it leads to the training and development of the next generation of scientists in the basic
sciences (Arias 1989) or biomedical researchers in a clinical setting (Burman et al. 2019). The
profound impact of the higher education of basic scientists has been demonstrated for as long
as one can remember, with discoveries such as the eradication of smallpox in 1757 (Riedel
2005) and penicillin in 1928 (Foletti and Fais 2019).

The 21st century came with several challenges and advances in economics, healthcare,
science and technology (Northam 2015). These have made a significant impact on the way basic
scientists are trained at higher education institutions (Tang Wee, Tan, and Yann 2020). In brief,
the 21st-century world has new needs to which basic science education and research must adapt
to remain relevant and to fulfil more prominent leadership roles. There is a need to address
several challenges that basic sciences have encountered in the last few decades, including job
scarcity, graduate unemployment, a trend to shift from academia to industry etc. In order to
draw meaningful inferences about how the higher education of basic scientists can be improved,
this article reviews higher education globally and reviews higher education approaches in basic
sciences with a strong African perspective. Subsequently, recommendations are made based on
the reviewed literature. To achieve these aims, the relevant literature was perused and reviewed
via the search engines PubMed, LISTA (EBSCO), Web of Science Core, Google, and Google
Scholar.

THE MEDICAL SCIENCES
In the medical arena, several branches are commonly referred to as “basic sciences” (Yograj et
al. 2019). These include disciplines such as human genetics, medical immunology, medical
microbiology, medical biochemistry and medical physiology (Joyner 2011). They are called
basic sciences largely because of their fundamentality in medicine (Dominguez and Zumwalt
2020) and research (La Caze 2011). Basic sciences are instrumental in research in which studies
are conducted on cell lines and laboratory animals (Bhatt 2010). Inferences drawn from these
studies are translated to the first four phases of clinical trials (Friedman 2016), and the latter
should usually not be attempted without being substantiated by good basic science research
(Mohs and Greig 2017). The COVID-19 pandemic has shone more light on the roles of basic
science (Dobson 2020) and has reiterated its importance in the clinical management of patients
(Biochemistry 2020). To people who are unfamiliar with research, COVID-19 and especially
the development of a vaccine have provided insight into the important role that basic science
research play in the development of vaccines and new medications. COVID-19 vaccines are grounded on years of basic science research, which has led to a better understanding of coronaviruses (Marian 2021). Moreover, vaccine concepts were first tested on cell lines and laboratory animals before vaccine candidates reached the clinical trial phases. It is safe to say that without basic science, COVID-19 vaccines would not have been possible (Bok et al. 2021). Basic science has also played an important role in the development of vaccines for diseases such as tuberculosis (Kaufmann 2020) and smallpox (Bidgood 2019). In line with this, the World Heart Federation contends that in order to combat cardiovascular disease, more should be done to ensure translation from basic science research to the clinical arena, for example, support structures that promote translation of experimental research to clinical trials (Maarman, Chakafana, and Sliwa 2020).

Basic sciences are also key to the management of many diseases (Filewod et al. 2018) because they deal with gaining a better understanding of how and why diseases occur, and how medication and therapies alter diseases to promote health. The life-changing impact of basic sciences was further shown when basic science research led to the development of better medication for heart (Dzau and Balatbat 2017; Lim and Hausenloy 2012) and lung (Maarman 2019; Maarman 2020; Maarman and Lecour 2021) diseases.

Furthermore, every physician should have a good understanding of the basic sciences (especially medical physiology) when practising medicine in a clinical setting. Medical physiology is crucial to the understanding of clinical tests such as those for electrolytes and plasma creatinine, the basics of an electrocardiogram, the use of a sphygmomanometer or the application of lung function tests (Joyner 2011) when managing patient diseases. Albeit common sense to the experienced eye, there is a difference between beta-adrenergic receptor blockers, calcium channel blockers, alpha-2 receptor agonists and angiotensin II receptor blockers, even if they all influence blood pressure (Opie 1980; 1997). Doctors should know this and can only do so with a good command of the basic concepts of medical physiology. Basic sciences certainly form the cornerstone of the first phases of the training and education of health professionals (DeFranco and Sowa 2014).

Higher education is defined as tertiary education that leads to the award of an academic degree (Bartik and Erickcek 2007). At university level, higher education is further divided into undergraduate and postgraduate degree programmes, and in this context, basic science students usually enrol in BSc programmes that are followed by BSc honours, MSc, and PhD programmes. Higher education in the basic sciences aid in the moulding of the next generation of scientists and biomedical researchers, who are the future of the field (Campbell 2003).
HIGHER EDUCATION IN FIRST WORLD COUNTRIES: A HISTORIC VIEW

Higher education has become a leading life goal for young people 20–24 years old across the world. According to the Higher Education Statistics Agency, there were 165 higher education institutions in the United Kingdom in 2020 (HESA 2020), whereas Statista show that from 2019 to 2020, more than 2.53 million students were enrolled in higher education courses in the United Kingdom (Statista 2020b). The United States of America had 3 764 institutions from 2019 to 2020 (Statista 2020a), and in the same period, close to 17 million students were enrolled in higher education institutions on this continent. According to the National Science Foundation, in 2017, 62 per cent of all international students in graduate programmes at United States of America institutions were enrolled in science-related fields (Foundation, National Science 2018). These are some of the countries that boast with the best education in the world, together with others such as Australia and the Netherlands. They have moved away from an isolated disciplinary model of education that lacks connectedness among different learning experiences (Islam et al. 2016) and have promoted curricular integration and interdisciplinary learning and practices (Irby, Cooke, and O’Brien 2010; Wartman et al. 2001). These countries have managed to achieve great success in higher education, and basic scientists from these countries often move to less fortunate countries to make a global impact through research.

HIGHER EDUCATION IN LOW-TO-MIDDLE-INCOME COUNTRIES: A HISTORIC VIEW

Tracing the origin of higher education in developing countries is a challenging task and perhaps a contentious issue for several reasons outside the scope of this article. However, it has long ago been recognised that developing countries are establishing higher education institutions at a fast pace and in parallel with the rate of developed countries (Zhang 1987). Based on a uniRank database report, there were 1 225 higher-education institutions in Africa in 2020 (database 2021). With 48 countries and a population of over one billion, Sub-Saharan Africa is one of the largest regions in the world, with approximately 600 public universities, 1 000 private universities, and approximately nine million enrolled students (Groups, World Bank Country and Lending 2020).

Basic science undoubtedly has a strong foothold in sub-Saharan Africa (Blom, George, and Adil 2016), and a after successful higher education period, basic scientists make meaningful contributions to global development (Chankseliani, Qoraboyev, and Gimranova 2021). However, many challenges in higher education prevail in this region of the world (Goolam 2011). These include poverty (Machika and Johnson 2015), high tuition fees (Wangenge-Ouma 2012), poor funding support (McKay, Naidoo, and Simpson 2018) and challenges with regard
to the implementation of e-learning (Zarei and Mohammadi 2021). UNESCO reported that in 2020, 89 per cent of students in sub-Saharan Africa had no access to household computers and 82 per cent lacked access to the internet (UNESCO 2020). Furthermore, despite Africa having a relatively high graduate output compared to the first world (Dei, Osei-Bonsu, and Amponsah 2019), more development is needed in terms of “under-preparedness” of high school graduates, quality-enhancing investments in facilities and educators, and higher education strategies (Tewari and Ilesanmi 2020).

THE 21ST CENTURY AND ITS IMPACT ON HIGHER EDUCATION

Basic sciences teaching approaches required in the face of 21st-century advances

One must acknowledge that the 21st century came with industrial, social, and technological advances and challenges that have impacted the world in many ways. These include urbanisation and the displacement of animal species, water scarcity, the restriction of energy resources (Gambheera 2016), multidimensional population growth, inconsistency in the policies of various regimes and political instability (Salmi 2020). Furthermore, it came with technological advances such as Bluetooth, social media, self-driving cars, three-dimensional printing, and fibre optics (Yamin 2019). Without a doubt, these advances and challenges have made their impact on the global stage by influencing the global economy, the healthcare sector and higher education (Robertson 2021).

It might be asked, “How do these advances influence higher education in basic sciences?” Most certainly this influence takes place by means of revolutionised information and communications technology practices, digitalisation, internationalisation, globalisation, marketisation, commodification and deregulation policies. Scientists function within a local and global context, and, of course, research is influenced by advances or challenges on a local and global scale. For example, information and communications technology has brought about revolutionary changes in the way that people work, communicate, learn, spend time and interact (Jorgenson and Vu 2016). It has further transformed the practices of businesses, governments and higher education institutions with regard to the use of information and communication (Salmi 2020). These 21st-century advances certainly impact how basic scientists communicate their research findings to the scientific community and the general public (Ross-Hellauer et al. 2020).

Digitalisation

Digitalisation in higher education refers to the use of digital technology to teach students
through desktop computers and/or mobile devices connected to the internet, using software applications, online teaching portals and other types of digital technology for teaching (Schmidt and Tang 2020). Online portals are instrumental in the teaching of basic science theory. However, basic science is largely laboratory-based, and this is challenging because laboratory skills are not easy, albeit not impossible, to teach digitally. Nonetheless, a basic scientist will have to function in a world where digital technology reigns and must therefore be technologically knowledgeable. Many basic science research instruments and tests use digital technology to generate and analyse data, and technology is used to publish and disseminate research findings. In the basic science sphere, the COVID-19 pandemic has influenced the way in which digital technology is used to train basic scientists. During the pandemic, social media platforms have become useful tools for governments and pharmaceutical companies to put the public’s mind at ease regarding vaccines (Abbas et al. 2021). This technology was also utilised by scientists to communicate their research to the public (Song and Karako 2020). Thus, as opposed to previous decades, it has become a requirement to include digitalisation as a key focus in the higher education of basic scientists.

Internationalisation

Internationalisation of higher education is the process of integrating an international, intercultural or global dimension into the purpose, functions or delivery of postsecondary education (De Wit and Altbach 2021). This shapes the missions and goals of higher education institutions (Zha 2003), and, moreover, the current labour market requires graduates to have international, foreign language and intercultural skills to be able to interact in a global setting (Hénard, Diamond, and Roseveare 2012). Therefore, higher education institutions are placing increasing importance on internationalisation (Hénard et al. 2012). In the teaching and learning of basic scientists in the higher education sphere, internationalisation has become important because basic science research is generally conducted with a country-level focus, for example, tuberculosis research in South Africa, where the disease is rife. However, this research has global relevance as infectious diseases can spread to other parts of the world or infected individuals may create a less effective workforce, which has a global economic impact. Basic scientists must, therefore, perceive themselves and their work through the lens of internationalisation and conduct research with an international focus. Young budding scientists must be made aware, quite early in their postgraduate careers, of the need to conduct research that has a broader global focus. For example, basic science research in the medical field, such as medical physiology research, should not only focus on in vitro research but should also aim to translate research from bench to bedside (Iyngkaran and Thomas 2015; Martinez and
Kornfeld 2019). This is also relevant to basic science research on, for example, pulmonary hypertension, which is rife in Sub-Saharan Africa but also highly prevalent in developed countries (Maarman, Shaw, and Allwood 2020; Wijeratne et al. 2018). In such a case, conducting basic science research and only focusing on in-country populations or in vitro models is a loss for other countries that could also benefit from research with a broader focus.

Globalisation

Globalisation refers to the interconnectedness of people and institutions globally, which may lead to global cultural, political and economic integration (Dzvimbo and Moloi 2013). Many role players in civil society and industry are focusing their attention on globalising their efforts, and companies are beginning to require job professionals to be aware of and function with a globalised mindset. Global competencies and multicultural skills are needed for a future basic scientist to succeed in such a globalised world (Nayyar 2007; Woodard et al. 2011). These skills include cross-cultural communication skills, excellent networking abilities, the ability to foster cross-disciplinary networks, a strong sense of collaboration across racial and economic divides, and awareness of and the ability to overcome language, communication and cultural differences (Nayyar 2007; Woodard et al. 2011). Therefore, 21st-century advances and challenges necessitate corresponding changes in the higher education of basic scientists so that globalisation is incorporated into the training and learning of basic scientists at universities from an early stage (Kromydas 2017).

Africanisation

The impact of colonialism on African higher education has been reviewed extensively (Abrokwaa 2017). This has led to a deeper academic discourse on the need for, validity and potential outcomes of Africanisation in higher education (Botha 2010). Africanisation aims to affirm African cultures and identities in a global community (Crossman 2004). It further implies that education and training, as well as praxis, be informed by the reality of the African context (Van der Westhuizen, Greuel, and Beukes 2017). Thus, it is important to inspire a consciousness of issues or challenges that are unique to the African continent (Kamwendo 2016), and to do this during the early development of future basic scientists. Questions that are key during the training of next-generation basic scientists include the following, *what does the job market lack in Africa? What are the challenges in Africa that basic science can help overcome? To achieve this, how should basic science curricula be adjusted, if need be?*

For example, a few decades ago, the use of traditional herbs and medicinal plants was frowned upon by the global medical fraternity (Miranda 2021), as Western medicine was
considered the be-all and end-all of the medical field. It is encouraging to see that in the last few years, Universities on the African continent have incorporated traditional herbs and medicinal plants as possible therapies against diseases in their (basic science) research programs (Street and Prinsloo 2013). This approach has also been adopted by the World Health Organization (Lezotre 2014; WHO. Programme on Traditional Medicine 2000) and research funding bodies in Africa who now fund basic science research that focuses on creating medicine from Africa, for Africa. It is important to realise that training future basic scientists who reside in Africa, should provide the opportunity for them to use their skills to create solutions for the context in which they live and practice. This will advance Africanisation in the higher education of basic scientists, leading not only to a change in their training but also in the impact they make in Africa and the world.

Personalised medicine

Extraordinary molecular advances have changed the way that doctors treat patients (Hutchinson and DeVita 2008) and have given rise to precision medicine that is used for targeted treatments based on individual patient characteristics (Sigman 2018). Personalised medicine may incorporate biomarkers but also patient preferences and social and economic factors (Fröhlich et al. 2018). Personalised medicine comprises medical decisions, practices, interventions and/or products that are tailored to the individual patient based on his/her predicted response or risk of disease (Fröhlich et al. 2018). This raises the question, “Is basic science still relevant in the era of personalised medicine?” Of course, it is, but it is important to train undergraduate and postgraduate basic science students on how to adapt their research approaches in this context. The training programmes of next-generation basic scientists could include dedicated time spent on clinical research studies to gain more experience and develop a better sense of personalised medicine in real-time.

Job security

Making the transition from an undergraduate or postgraduate student to an employee at a university is challenging (Talgar and Goodey 2015). In the same vein, academia has historically displayed gender disparity (Casad et al. 2020) and racial inequality in many parts of the world (Moore et al. 2018). These challenges have been reviewed and discussed endlessly, and it is time that universities address them early on in undergraduate and postgraduate programmes (Bhopal 2017; Malisch et al. 2020). It is unacceptable that some tertiary institutions still have, for example, senior positions that are largely occupied by white individuals (Arday 2018; Mabokela 2000). It cannot be that academics can conduct highly intelligent research projects
and create solutions for the world’s biggest medical and technological conundrums but cannot find a solution to racial and gender inequality in higher education.

Making the transition from student to an academic employee requires a particular set of skills (Talgar and Goodey 2015). These include grant writing, academic writing, forming professional networks, establishing research collaborations (nationally and internationally) and creating a footprint in research by becoming an internationally recognised researcher. However, although these skills are learnt through a journey of training and practice, more must be done to help the next generation to acquire them earlier (Turner et al. 2012). One of the most effective ways to achieve this is through mentorship (Bäker, Muschallik, and Pull 2020), which is a way to facilitate academic and research development (Kunselman, Hensley, and Tewksbury 2003). An effective mentorship programme during the training of basic scientists can promote the recruitment and retention of promising students and early-career researchers (Marino 2021). Universities should begin to include more formal/structured mentorship programmes for developing basic scientists at the postgraduate level, if not earlier. It may help the next generation of basic scientists and academics to learn early on how to navigate challenges in a work environment (i.e., grant writing, establishing one's own research group, academic writing, prolific publishing, etc.).

Academia is a tough career, often fraught with years of unsuccessful grant applications, more than 80-hour weeks and the psychological atrocities of the tenure system (Van Maanen 2015). The pinnacle of an academic career, desired by many, is a full-time position as a lecturer, associate professor, or full professor. Upon successful completion of postgraduate training, most basic scientists dream of a job in academia (Kenner and Pressler 2006). However, the journey is challenging, especially with a lack of permanent employment, high-performance requirements, strong competition and fixed-term employment contracts (Ortlieb and Weiss 2018). According to a 2021 Statista report, the number of unemployed people rose to 220.5 million globally (Statista 2021). In the last two decades, job scarcity has not only troubled the economic and technology sectors but also higher education and academia (Ortlieb and Weiss 2018). Job loss has become more evident during the COVID-19 pandemic (Blustein et al. 2020). In many countries around the world, graduate unemployment has become a concern (Mgaiwa 2021). It has become more difficult to secure a job in academia, more so if the applicant is a basic scientist because their training is designed to prepare basic scientists for a career in an academic research environment and not an industry (Woolston 2021). It is perhaps time that we rethink the teaching approaches followed during the higher education of basic scientists. Job scarcity is forcing basic scientists to apply their skills outside of academia, and to assist the next generation in this, we need to include the honing of new skills during undergraduate and
postgraduate training. These could include curriculum vitae-writing skills, skills for selling oneself for job opportunities in the industry (outside one’s field of expertise) and making a few weeks during laboratory training available for job shadowing at, for example, pharmaceutical companies. A similar approach is followed for MBChB programmes in certain countries, where students take time off to gain experience in other fields such as research and service delivery. Alternatively, universities can provide support and advisory services to students in terms of their careers and making the transition from education to employment during training.

The 21st century demands radical advances in training and teaching, new forms of competition, and new configurations and modes of operation for higher education institutions (Salmi 2000). Thus, teaching approaches in the higher education of basic scientists must be adjusted accordingly, and new teaching/learning approaches that enable the development of critical and creative thinking should be integrated. Having established the need for change in higher education of the basic sciences in proportion to global advances in the 21st century, this change must be well-guided (Kang et al. 2020). A recent publication has demarcated four models of higher education that will be crucial: the Tamagotchi, Jenga, Lego Set and Transformer models (Orr et al. 2020). In brief, the Tamagotchi model is the approach of entering higher education directly after secondary school, whereas the Jenga model comprises later phases of self-learning and organisation. The Lego Set model combines modules of different sizes, making for a self-reliant and non-standardised learning path rather than one compact unit (Orr et al. 2020). Lastly, the Transformer model represents learners who return to higher education later in life to acquire new basic knowledge or upskill their formal education [38]. These are only some of the reported models of higher education, and whichever one is implemented depends on the needs of the specific country, based on global changes.

To ensure that humanity is prepared for the next pandemic, we need to produce more next-generation scientists who conduct good-quality research to the benefit of the world. Needless to say, their training has to be improved in parallel with the changing world in which they function.

STRATEGIES IN THE HIGHER EDUCATION OF BASIC SCIENTISTS IN THE 21ST CENTURY

The following has become important in the training of next-generation scientists:

- Include digitalisation and the use of digital technology in research and the dissemination of research findings during training.
- Hone the skill of communicating research to the general public by utilising the latest
technological advances (Martinez 2018) as part of formal training (Brownell, Price, and Steinman 2013).

- Have a strong focus on Africanisation in the training of basic scientists.
- Incorporate internationalisation as a key focus in training.
- Create awareness of the need to conduct research that has a national and an international focus.
- Hone skills such as curriculum vitae writing, promoting oneself as employable and repurposing academic experiences for the job market (Hanlon 2019).
- Make mentorship more prominent and structured during postgraduate training to assist basic scientists (especially postgraduate students) in overcoming challenges in grant writing, establishing a research group, achieving professorships and so forth (Zimmerman 2018).
- Improve and employ hybrid models of teaching, curricular integration and interdisciplinary learning and practices during the early stages of university training.
- Rethink the way in which BSc degrees are designed, as the current format leaves many graduates with a 3-year degree, but they struggle to find jobs. This compares poorly to other undergraduate degrees in other fields, and although a broad introduction to several fields of science has a role, more need to be done to leave graduates skilled and ready for a job, not just in academia or research but industry.

CONCLUSION

This article demonstrates the significant challenges and advances of the 21st Century and how these impact the higher education of basic scientists. Training programmes must include a digitalisation focus and educate basic scientists on the use of digital technology to disseminate research findings to the lay public. Training must hone the skills that will help scientists to survive job scarcity in academia, skills such as curriculum vitae writing, promoting oneself as employable to industry companies and how to repurpose academic experiences for the job market. Other aspects that need to be included are creating awareness among next-generation basic scientists of the need to conduct research that has nationally and internationally relevant foci. Training must include mentorship during postgraduate training, the use of hybrid models of teaching, and curricular integration and interdisciplinary learning and practices during the early stages of their careers. Undergraduate degrees give a general introduction to the basic sciences but leave graduates with insufficient laboratory experience, and thus they struggle to enter the job market after their undergraduate degree is completed. In other fields, a B. in
Accounting makes a graduate an accountant, B. Eng makes them an engineer, but BSc. equates to nothing besides several introductions to various fields. More must be done.

CONFLICT OF INTEREST
None to declare.

REFERENCES

Brownell, Sara, Jordan Price, and Lawrence Steinman. 2013. “Science Communication to the General Public: Why We Need to Teach Undergraduate and Graduate Students this Skill as Part of Their Formal Scientific Training.” *Journal of Undergraduate Neuroscience Education: A publication of FUN, Faculty for Undergraduate Neuroscience* 12: E6–E10.

Hénard, F., L. Diamond, and D. Roseveare. 2012. Approaches to Internationalisation and Their Implications for Strategic Management and Institutional Practice. OECD.

Talgar, C. P. and N. M. Goodey. 2015. “Views from academia and industry on skills needed for the

