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Fourier transform near-infrared (FT-NIR) spectroscopy can be used as a rapid method to measure the percentage
of sugar and to discriminate between different must samples in terms of their free amino nitrogen (FAN) values. It
can also be used as a rapid method to discriminate between Chardonnay wine samples in terms of their malolactic
fermentation (MLF) status. By monitoring the conversion of malic to lactic acid, the samples could be classified on
the basis of whether MLF has started, is in progress or has been completed. Furthermore, FT-NIR spectroscopy
can be used as a rapid method to discriminate between table wine samples in terms of their ethyl carbamate (EC)
content. It is claimed that high concentrations of ethyl carbamate in wine can pose a health threat and has to be
monitored by determining the EC content in relation to the regulatory limits set by authorities. For each of the
above-mentioned parameters QUANT+™ methods were built and calibrations were derived and it was found that
a very strong correlation existed in the sample set for the FT-NIR spectroscopic predictions of the percentage of
sugar (r = 0.99, SEP = 0.31 °Brix). However, the correlation for the FAN predictions (r = 0.602, SEP = 272.1 g.L"),
malic acid (r = 0.64, SEP = 1.02 g.L""), lactic acid (r = 0.61, SEP = 1.35 g.L!) and EC predictions (r = 0.47, SEP =
3.6 pg.kg?') were not good. The must samples could be classified in terms of their FAN values when Soft
Independent Modelling by Class Analogy (SIMCA) diagnostics and validation were applied as a discriminative
method, with recognition rates exceeding 80% in all cases. When SIMCA diagnostics and validation were applied
to the Chardonnay and EC wine samples, recognition rates exceeding 88% and 80% respectively were obtained.

These results therefore confirm that this method is successful in discriminating between samples.

Near-infrared spectroscopy

The NIR spectroscopy method of analysis is an instrumental
method for rapid and reproducible measurement of the chemical
composition of samples, requiring little or no sample preparation
(Norris, 1989). Each of the major chemical components of a food
sample has NIR absorption properties, which can be used to dif-
ferentiate one component from the other. By using NIR
Spectrophotometers and Fourier transform interferometers, FI-
NIR diffuse reflectance signals are formed that contain informa-
tion about the composition of the sample (Willard et al., 1988).
Such information can be extracted by the appropriate mathemat-
ical treatment of the data (Willard ez al., 1988). NIR spectroscopy
is being used for the determination of the alcohol content of wine
and preliminary investigations have been carried out to determine
the glycosyl-glucose content of grapes (quality indicator) and the
methanol concentration in spirits (Gishen & Dambergs, 1998).
This means that a calibration or learning set of samples is
analysed by standard laboratory methods for reference and that
the same samples are then scanned by the NIR spectrophotome-
ter. The data obtained by the reference method are correlated with
the large amount of spectral data, using sophisticated multivariate
statistical data analysis techniques, in order to find a correlation

that can predict the analytical results from the spectral data. The
NIR spectroscopic instrument can then be used to scan new sam-
ples to obtain analytical data (Gishen & Dambergs, 1998). A
measurement can be made in as few as 10 seconds, although the
average would be between 30 seconds and three minutes. Little or
no sample preparation is needed and the technique can be used by
employees without extensive training. It is also applicable to on-
line measuring systems (Willard et al., 1988; Wehling, 1994).

FT-NIR spectroscopy can also be used for the classification and
verification of raw materials (Downey & Beauschéne, 1997). In
many cases in which sample classification is applied, it is only
necessary to know whether a sample belongs to a specific class or
not, or whether it is above or below a specific cut-off point. In
such cases the data sets are divided into classes to differentiate
between the specified properties. FT-NIR was used to discrimi-
nate between pure Arabica and pure Robusta coffees and blends
of these two (Downey et al., 1994). If the materials to be identi-
fied are spectroscopically dissimilar, it is often only necessary to
use a simple distance measure, such as a spectral difference. If the
spectra are similar, such as must and wine spectra (Fig. 1), it may
be necessary to include slightly more sophisticated techniques
that take both the variability of the spectra of interest and the dif-
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94 The Applicability of FT-NIR Spectroscopy in Must and Wine

ferences between the spectra into consideration. The Soft
Independent Modelling by Class Analogy (SIMCA) technique
provides such a method (Downey & Beauschéne, 1997).

In the SIMCA method, a principal component model is created
for each class. An envelope is constructed to contain the standards
of a class. If one principal component is used, the class mean and
a line are needed to model the data. If two principal components
are used, the class mean and a plane are required, and with three
principal components, the class mean and a volume are required.
If there are more than three components, the envelope can be
thought of as a box with more than three dimensions (a hyperbox)
(Anonymous, 1997). In a SIMCA classification, the unknown
spectrum is classified according to whether it lies inside or out-
side the hyperbox (this is the model residual).

An advantage of SIMCA is the use of an objective statistical
test, the F-test, to establish the probability of a sample belonging
to any given class (Anonymous, 1997). SIMCA is thus a method
that provides a set of parameters that characterises each class and
forms the basis for other quantities that describe the data. The
procedure checks every standard spectrum to ensure that the ones
from a single class fit that class (recognition) and that those from
other classes that were selected are rejected (rejection).

The recognition rate, also known as the sensitivity, is the num-
ber of spectra that are assigned to the class as a percentage of the
number of spectra that should have been assigned to the class
(Anonymous, 1997). The rejection rate, also known as the speci-
ficity, is the number of spectra that are rejected, thus not assigned
to the class, as a percentage of the number of spectra that should
have been rejected (Anonymous, 1997).

0.03

Fermentation and the optimal nitrogen balance of must

The nitrogen content of grapes affects the production of yeast
biomass, the fermentation rate and the time taken to complete a
fermentation and can influence the spectrum of end products of
yeast metabolism (Bisson, 1991). A value of 500 mg.L"! of nitro-
gen in must was reported as being necessary to achieve maximal
yeast biomass production (Agenbach, 1978). In addition to the
impact of the nitrogen content on cell production, nitrogen also
affects the fermentation rate. At least 140 mg.L! of assimilable
nitrogen is needed in juice or must in order for the yeast to com-
plete fermentation to dryness (Agenbach, 1978).

Free amino (or alpha) nitrogen (FAN) has often been utilised as
an indicator of the nitrogen richness or nitrogen availability for
yeast growth and fermentation (Amerine & Ough, 1980).
Statistical analyses established the FAN/°Brix ratio as the most
reliable means of determining optimal nitrogen balances in must
(Vos et al., 1980). The natural FAN content of musts from mature
grapes of most cultivars (Pinotage is the exception) ranges from
approximately 400 to 1000 mg.L-' N when ammonium sulphate
is used as reference standard. With must samples at lower levels
the addition of a maximum of 500 mg.L"! N would thus ensure a
total FAN content of at least 800 mg.L-! N, the minimum con-
centration required for maximum fermentation rates (Vos et al.,
1980).

The FAN content should be an accurate index of the nitrogen
requirements of yeast and hence of fermentation rates. The
FAN/°Brix ratio is now established as a superior index and indi-
cates that the FAN requirement of yeast is influenced by the sugar
content of the musts (Vos et al., 1980).
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FIGURE 1
FT-NIR spectra of must (a) and wine (b) samples. Absorption (A) vs. wave number (cm™).
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Malolactic fermentation in wine

Most red wines and some white wines in colder wine regions are
subjected to the secondary malolactic fermentation (MLF) during
or soon after alcoholic fermentation (Volschenk et al., 1997).
Malolactic fermentation in wine is caused by the metabolic activ-
ity of certain lactic acid bacteria (LAB), the most important
aspect being the microbial deacidification that results from the
decarboxylation of malic acid to lactic acid (Nielsen et al., 1996).
The total acidity decreases and the pH increases, resulting in wine
with a softer palate (mouthfeel). Malolactic fermentation also
contributes to the flavour and complexity, and it increases the
microbiological stability of the wine (Nielsen ez al., 1996).

However, malolactic fermentation can also be considered a
spoilage factor if it takes place under the wrong conditions, such
as in wines to which microbial stabilisation agents have not been
added carefully (Kunkee, 1991).

The implication of ethyl carbamate for the wine industry

Ethyl carbamate (EC) or urethane occurs naturally in all ferment-
ed foods and beverages. Because EC has been shown to be a
potential carcinogenic when administered in high doses in animal
tests and some countries (e.g. Canada) have set rather strict lim-
its, the wine industries have to monitor the EC levels in their
products (Butzke & Bisson, 1997). Ethyl carbamate is not an
added substance, but forms during the fermentation of alcoholic
beverages. If the fermented product is heated, such as in “baking”
sherry or distilling spirits, its levels can increase (Segal, 1988).

Urea, a natural by-product of yeast metabolism, is the main pre-
cursor of ethyl carbamate in wines (Monteiro et al., 1989).
Arginine and proline are generally the major amino acids found
in grape juice. The enzyme arginase catalyses the cleavage of
arginine to ornithine and urea. The resulting urea can also be used
as a nitrogen source and is further broken down to ammonia and
carbon dioxide by the yeast Saccharomyces cerevisiae. This takes
place via a degradative enzyme complex, composed of urea car-
boxylase and allophanate hydrolase (Henschke & Ough, 1991).
However, this process may not be complete before the end of fer-
mentation if the must originally contained high levels of nitroge-
nous compounds (i.e. high alpha-amino acids), which are
metabolised by yeast before arginine and urea. Residual levels of
urea remaining after fermentation can react with ethyl alcohol to
form EC. This reaction is dependent on temperature and time
(Henschke & Ough, 1991).

No regulatory limits for EC levels in wines exist in South
Africa, but wines that are exported to countries with regulatory
limits have to show the EC content (M. Waldner, ARC Infruitec-
Nietvoorbij, personal communication). It is therefore necessary to
monitor the EC content in some export wines to determine
whether they fall within the regulatory boundaries of these coun-
tries.

Currently the FAN, malic and lactic acid and EC measurements
are monitored using expensive, quantitative, time-consuming
analytical methods, such as GC-MS and HPLC. FT-NIR spec-
troscopy, on the other hand, can be used as a rapid, alternative
method that requires no sample preparation. Although the mea-
surement of the sugar content only by use of a Balling meter is a
simple and fast method, simultaneous determination of the FAN
together with the percentage of sugar will save time.

MATERIALS AND METHODS
Wine samples

A selection of 97 must samples of white grape varieties, repre-
sentative of the wine regions of the Western Cape, was drawn
from settling tanks at the cellars of Distell in Stellenbosch, South
Africa to carry out sugar and FAN determinations. The set includ-
ed the following samples: 46 Chenin blanc, 29 Sauvignon blanc,
9 Chardonnay, 9 South African Riesling; 5 Pinot noir and
2 Gewiirztraminer. The must samples were collected during the
harvest period over two consecutive seasons (1999 & 2000) after
one day in the settling tanks.

For the MLF determinations 65 Chardonnay wine samples
were drawn from barrels at the cellars of Distillers Corporation
and another 43 Chardonnay samples were received from the
Institute for Wine Biotechnology at the University of Stellen-
bosch, South Africa. The samples, stored at 4°C, were collected
over a three-month period.

A selection of 200 wine samples was drawn from barrels at the
cellars of the ARC Infruitec-Nietvoorbij in Stellenbosch, South
Africa for EC determinations. The samples were collected over a
period of two months (February 1999 and January 2000). All the
above samples were analysed on receipt at the Department of
Food Science, University of Stellenbosch by FI-NIR.

Reference analyses

The FAN content of the must samples was determined spec-
trophotometrically by means of an auto-analyser (Vos, 1977-
1980). The sugar content (°Brix) of the must samples was deter-
mined by means of a Balling meter. Determinations of the malic
and lactic acid content of the wine samples were done by means
of high-pressure liquid chromatography (HPLC) (Schneider et al.,
1987), while the EC content of the wine samples was determined
by means of gas chromatography with mass selective detection
(GC/MS) according to the OIV method (Canas et al., 1994).

Fourier transform near-infrared (FT-NIR) spectroscopy mea-
surements

Fourier transform near-infrared (FT-NIR) spectroscopy analyses
of the must and wine samples were carried out in transmission
mode. The spectra were recorded in a 0.5 mm quartz cuvette at 4
cm! intervals with an 8-scan sequence for the must samples and
a 16-scan sequence for the wine samples, using a Perkin Elmer
Spectrum IdentiCheck™ 2.0 FI-NIR System. The wavelength
region for all calibrations was 1000 to 2500 nm (10 000 to 4000
cm'), resulting in a total of 1501 data points per spectrum.

Data manipulation

Multiplicative scatter correction (MSC) was applied to the spectra
to remove unwanted variability due to variations in particle size or
path length. Without the application of MSC spectral noise would
have influenced the goodness of the calibrations. The spectra were
further transformed with second derivative processing.
Pretreatment and calibration model development was performed
using Perkin Elmer’s QUANT+™ 4.1 software. The partial least
squares (PLS) algorithm was used to derive calibrations for pre-
dictions in must and wine samples. Partial least squares regression
can be described as a projection of the NIR spectral data and the
chemical data onto a few latent orthogonal factors, retaining the
main part of the information for both spectral and chemical data
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(Garcia-Jares & Medina, 1997). This results in reduced spectral
data without discarding useful information (Osborne et al., 1993).
In the PLS model both the independent (spectral data) and depen-
dent (chemical data) variables participate in the construction of the
latent variables. The latent variables of the independent set of data
not only represent the original data, but are also correlated with the
dependent set of data by their latent variables. Partial least square
regression achieves a compromise between the explanation of the
spectral variables and the prediction of the chemical variables.

Upon completion of the respective calibrations, the models
were validated with independent sample sets. The spectra were
randomly divided into two sets: ca. 70% of the samples were used
for the calibration set and ca. 30% for the validation set. The
accuracy of the calibrations was expressed as the standard error
of prediction (SEP) of the bias-corrected residuals (equation 1).
The bias (equation 2) is interpreted as the average difference
between y and y, in the prediction set. If the bias is near a value of
zero, the overall error of validation can be interpreted as the stan-
dard deviation (SD) of the NIR prediction. Alternatively, the
accuracy of the calibrations when predicting an independent set
of samples was expressed as the root mean square error of pre-
diction (RMSEP) (equation 3). RMSEP is an estimate of the
accuracy of the calibration against the reference method and is
calculated using an independent test set.

n
A 2

SEP = ¥ (v:—9: - BIAS) ol

i=1

n-1
. 1 N N
Bias= -3 (i=9) 2
n -

and RMSEP = .3
Where: Yi = the reference value for the i sample

3 = the predicted value of the i* sample

n = the number of samples.

The standard deviation of the reference data (SD) divided by the
SEP is called the standard deviation of reference data (RPD)
(equation 4) (Williams, 1991). The RPD is an indication of the
efficiency of a calibration (Table 1).

RPD _SD 4
= —pp .
SIMCA classification

The spectra of the must samples for FAN classifications were
divided into Class 1 (1 — 800 mg.L! N), where it might be neces-
sary to add extra nitrogen for a complete fermentation, and Class
2 (800 — 2000 mg.L-! N), where enough nitrogen is present to

TABLE 1

Interpretation of RPD statistics (P.C. Williams, Canadian Grain
Commission, personal communication).

RPD value Classification Application
00-23 not recommended -

24-3.0 poor very rough screening
31-49 fair screening

50-64 good quality control
6.5-8.0 very good process control

8.1+ excellent any application

complete the fermentation. Principal component analyses (PCA)
models were derived for the two classes and SIMCA models were
created to allow differentiation between the classes. The validation
set was constituted by selecting samples from the two classes prior
to SIMCA model building and consisted of 12 samples. The diag-
nostic procedure checks every standard spectrum to ensure that the
spectra from a single class fit that class (recognition) and that
those from other classes selected are rejected (rejection). After
diagnostics was performed on the SIMCA models, the validation
set was predicted by each of the models and decisions on their
affiliation were made based on their distance from the nearest
cluster model. This validation procedure validates the methods
(data divided into classes) that have been constructed, using test
spectra that were removed from the data sets before the PCA mod-
els were built, i.e. a validation of the independent spectra.

The three respective classes used for the three SIMCA models
from the MLF wine samples were: Class 1 (0 - 0.3 g.L1), repre-
senting the samples where MLF has not started; Class 2 (0.3 - 2
g.L'!), where MLF is underway; and Class 3 (> 3 g.L'!), where
MLF has been completed. The accuracy of the SIMCA models,
derived from PCA models, was determined using an independent
validation set (n = 22) to perform the future classification of
unknown samples.

Principal component analyses models were also derived for the
samples on which EC determinations were done. The spectra
were classified into Class 1 (0 - 10 pg.kg?), Class 2 (10 - 15
ngkg!) and Class 3 (>15 pg.kg!), based on the EC values of the
samples. Class 1 represents the samples where the EC content has
no regulatory or legal threat. Class 2 consists of those samples in
which the EC content is close to the restricted value and should
be tested to determine the exact EC value. Class 3 contains the
samples where the EC content is above the restricted values. The
three SIMCA models were validated by the validation set, con-
sisting of 10 samples, after diagnostics have been performed on
the SIMCA models.

RESULTS AND DISCUSSION
Sugar content and FAN

It was found that a very strong correlation existed in the sample
set (combined seasons: 1999 & 2000) for the FI-NIR spectro-
scopic predictions of the percentage of sugar (measured in °Brix)
in the must (r = 0.99, SEP = 0.31 ®Brix) (Table 2, Fig. 2). The
strong correlation for the percentage of sugar was expected, given
that the measurement of °Brix in grape juices by NIR spec-
troscopy has been well established (Gishen & Dambergs, 1998).
A good RPD value of 5.95 was obtained for the validation set.
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TABLE 2
Summary of the results obtained from the independently validated calibrations on the FAN, percentage sugar, MLF and EC data sets.

Independent validation

% Sugar FAN Malic acid Lactic acid EC
(°Brix) (gL (gL (gL (ngkg1)

Range 17 -27 590 — 2100 0-4.78 0-5.62 0.41 -19.30
Mean 21.54 1217 1.158 1.856 5.85
SEP ‘ 0.31 294 1.024 1.345 3.6
RMSEP 0.343 351 0.967 1.102 3.51
BIAS 0.128 52.73 0.027 0.243 -
r 0.99 0.405 0.636 0.608 0.47
n (calibr.) 84 100 73 73 115
n (indep.) 43 52 36 36 56
No of PLS factors 5 1 4 4 4
SD 2.64 3243 1.217 1.292 3.79
RPD 5.95 1.1 1.188 0.961 1.06

FAN = free amino nitrogen.

MLF = malolactic fermentation.

EC = ethyl carbamate.

SEP = standard error of prediction of the bias-corrected residual.
RMSEP = root mean square error of prediction.

BIAS = average residuals.

n = number of samples.
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FIGURE 2

A plot of the estimated percentage sugar values (by FT-NIR) versus actual percentage sugar values (by means of ballingmeter)
of the validation of must samples.
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The calibrations that were established for the FT-NIR spectro-
scopic prediction of the FAN content in the must were not as
accurate (r = 0.405, SEP = 294 g.L!) (Table 2, Fig. 3). The RPD
value was 1.1 for the validation set, which is not recommended in
terms of classification.

As a result of the poor calibration obtained with the FAN val-
ues, SIMCA classification was applied to the FAN data. The two
models that were created (Class 1 with FAN values between 1 and
800 mg.L! N and Class 2 with FAN values between 800 and 2000
mg.L! N) showed good classification possibilities. The recogni-

tion rates were above 87% for both the data sets (Class 1 = 100%,
Class 2 = 87%), indicating good separation of each class (Fig. 4).

The two models were validated on the results from the diag-
nostic procedure. Good results were obtained again, with recog-
nition rates above 88% (Class 1 = 88%, Class 2 = 100%), indi-
cating that the classification had been successful (Fig. 4).

Malolactic fermentation

The calibrations obtained for the prediction of malic acid (r =
0.64, SEP = 1.024 g.L'!) (Table 2) and for lactic acid (r = 0.61,
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FIGURE 3

A plot of the estimated FAN values (by FT-NIR) versus actual FAN values (by means of physical analyses)
of the validation must samples.
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FIGURE 4

Graphic representation of SIMCA diagnostic and validation results for FAN classification. Class 1 representing the samples with a FAN
value between 1 and 800 mg.L! N, indicating the need to add extra nitrogen, and Class 2 representing the samples with a FAN value
between 800 and 2000 mg.L! N, showing sufficient nitrogen for a complete fermentation.

S. Afr. J. Enol. Vitic., Vol. 22, No. 2, 2001



The Applicability of FT-NIR Spectroscopy in Must and Wine 99

SEP = 1.35 g.L'!) (Table 2) were not acceptably accurate. The
RPD values were 1.13 for both the malic and lactic acid calibra-
tions, confirming the inaccuracy of the quantitative calibrations.

Currently the status of the MLF is determined by means of
quantitative analysis (HPLC) or qualitative analysis (paper chro-
matography). As it is only necessary to know whether the MLF
has started, is in progress or has been completed, SIMCA meth-
ods have been constructed. Accurate classifications were possible
with the three models that were created (Class 1 with lactic acid
values between 0 and 0.3 g.L!, Class 2 with values between 0.3
and 2 g.L-! and Class 3 with values above 3 g.L).

Recognition rates of above 95% were reported, indicating good
classification of each class (Fig. 5). Following the diagnostic pro-
cedure, the three data sets were validated using a validation set
with independent spectra. Once again good results were obtained,
with the recognition rates of above 88% being reported (Classes
1 & 2 = 100%, Class 3 = 88%), indicating good separation
(Fig. 5).

Ethyl carbamate

Correlation that was not accurate enough for quantitative predic-
tions occurred in the sample sets for the FT-NIR spectroscopic
predictions of EC (r = 0.47, SEP = 3.60 pg.kg!) (Table 2). ARPD

100 -

80 -
2 Class 1
5 60 - - Class 2
= class 3
S 40 -
[&]
[0
o
® 20

0 .

Recognition diagnostics

Recognition validation

FIGURE 5

Graphic representation of SIMCA diagnostic and validation results for MLF classification. Class 1, representing the samples where MLF
have not started (lactic acid values between O and 0.3 g.L!), Class 2 representing the samples where MLF is underway (lactic acid values
between 0.3 and 2 g.L!) and Class 3 representing the samples where MLF has been completed (lactic acid values above 3 g.L'!).
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FIGURE 6

Graphic representation of SIMCA diagnostic and validation results for EC classification. Class 1 representing the samples where the EC

content possess no regulatory or legal threat (EC values between 0 and 10 pg.kg!), Class 2 where the EC content is close to the restricted

value and should be tested to determine the exact EC value (EC values between 10 and 15 pg.kg?!) and Class 3 representing the samples
where the EC content is above the restricted values (EC values above 15 pg.kg?).
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value of 1.06 for the independent validation set confirmed the
inaccuracy of the quantitative calibrations (Table 1).

As a result of the poor calibration obtained with the EC data
sets, SIMCA classification diagnostics were applied. The three
models that were created (Class 1 with EC values between 0 and
9.99 pg.kg, Class 2 with values between 10 and 15 pg.kg! and
Class 3 with values above 15 pg.kg!) showed good classification
possibilities. The recognition rate columns reported 94% for
Class 1 and 100% for Classes 2 and 3 respectively, indicating that
excellent separation of each class had been achieved. A summary
of the verification diagnostic report is shown graphically in Fig.
6. The three data sets were consequently tested using the valida-
tion procedure in the SIMCA analysis. This procedure validates
the methods (data divided into classes) that have been construct-
ed using test spectra that were removed from the data sets before
the models were built, i.e. a validation of independent spectra.
Good results were obtained, with recognition rates of 80% for
Class 1 and 100% for Classes 2 and 3 respectively (Fig. 6).

CONCLUSIONS

This evaluation of the applicability of FT-NIR spectroscopy in the
measurement of FAN and percentage sugar, malic and lactic acids
and EC classifications in must and wine shows considerable
promise and may have immediate application in the wine indus-
try. The conventional calibration method was tested, but inaccu-
rate results were obtained, causing a shift in focal point. A classi-
fication chemometric method, SIMCA, was then applied with
considerable success; it can discriminate between samples and
has the potential to reduce the analysis times considerably for a
range of measurements commonly used to determine the compo-
sition of samples. For many processes it is only necessary to
know whether a specified cut-off point has been reached or not,
and this method can therefore replace expensive, time-consuming
quantitative analytical methods either completely or partially.
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