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INTRODUCTION
Alcoholic fermentation, the conversion of the principal grape  
sugars, glucose and fructose, to ethanol and carbon dioxide is 
conducted by yeasts of the genus Saccharomyces, generally 
S. cerevisiae and S. bayanus (Boulton et al., 1996). This complex 
microbial process probably represents the oldest form of biotech-
nological applications of a microorganism and has been used by 
humans for several thousand years (Samuel, 1996).

Despite considerable improvements in our ability to monitor 
and control fermentation, stuck and sluggish fermentations re-
main major challenges for the international wine industry, includ-
ing South Africa. Bisson (1999) defined incomplete or “stuck” 
fermentations as those having a higher than desired residual sugar 
content at the end of alcoholic fermentation, while slow or “slug-
gish” fermentations are characterised by a low rate of sugar con-
sumption by the yeast. Different types of problem fermentations 
are shown in Fig. 1 (discussed in Bisson, 2005). The economic 
and logistical consequences of sluggish and stuck wine fermen- 
tations in industrial cellars demand significant investigation into the 
causes and the determination of methods to avoid this problem.

One of the earliest reports relating to problematic or abnormal 
fermentations date back to the late 1800’s with the pioneering 
work of Louis Pasteur (reviewed by Barnett, 2000). During this 
period Pasteur demonstrated that the desired production of alcohol 
in fermentation is due to yeast and that the undesired production 
of substances (such as lactic acid and acetic acid) which made the 
wine sour was due to the presence of additional organisms such 
as bacteria. Extensive research has been conducted since 1977 
on elucidating problem fermentations and several causes of slug-
gish and stuck fermentation have been identified (Ingledew and  
Kunkee, 1985; Allen and Auld, 1988; Fugelsang et  al., 1991; 
Kunkee, 1991; Bisson, 1993; Henschke and Jiranek, 1993;  
Henschke, 1997; Alexandre and Charpentier, 1998; Bisson, 1999). 
Factors such as high initial sugar content (Lafon-Lafourcade 
et al., 1979), nitrogen deficiency (Agenbach, 1977; Ingledew and 

Kunkee, 1985; Bely et  al., 1990), vitamin deficiency, especial-
ly thiamine (Peynaud and Lafourcade, 1977; Ough et al., 1989; 
Salmon, 1989), oxygen deficiency (Thomas et al., 1978; Traverso 
Rueda and Kunkee, 1982), excessive must clarification (Groat 
and Ough, 1978; Houtman and Du Plessis, 1986; Alexandre et al., 
1994), high ethanol concentrations (Casey and Ingledew, 1986), 
inhibition of yeast cell activity by fermentation by-products, par-
ticularly the fatty acids (Geneix et al., 1983; Lafon-Lafourcade 
et al., 1984; Viegas et al., 1989; Edwards et al., 1990) and ace-
tic acid (Kreger-Van Rij, 1984; Edwards et al., 1999), pH (Kado 
et al., 1998), killer toxins (Barre, 1982; Van Vuuren and Jacobs, 
1992), and pesticides (Doignon and Rozes, 1992) have all been 
identified as potentially responsible for fermentation problems. 
In addition to the individual effects of each of these factors, pos-
sible synergistic effects amongst them add to the complexity of 
understanding problem fermentations. For this reason the predic-
tion and diagnosis of the exact causes of problem fermentations 
are often rendered extremely challenging.

Similar to alcoholic fermentation, stuck and sluggish malolactic 
fermentations are also frequently occurring and difficult to man-
age in the wine industry. Malolactic fermentation is the second-
ary fermentation during the winemaking process and especially 
important for the ageing of red wines and certain white wines 
(Fugelsang, 1996; Du Plessis, 2005). During this process, cata-
lysed by lactic acid bacteria, malic acid is converted to lactic acid. 
Factors influencing the successful onset and completion of malol-
actic fermentation include ethanol content, pH, SO2 levels, tem-
perature, nutritional requirements and microbial incompatibility 
(reviewed by Davis et al., 1985, 1986, 1988).

In this literature review, the causative factors of problem fer-
mentations and general factors influencing fermentation efficiency 
will be discussed in more detail for both alcoholic and malolactic 
fermentation. These will include physical (pH and temperature), 
chemical (nutrients and inhibitory substances) and microbiologi-
cal factors (microbial competition) and the potential synergistic 
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effects amongst these factors. The issue of must composition, 
especially the nitrogen content and glucose:fructose ratio, has a 
definite impact on fermentation efficiency. Since the must com-
position is also dependent on viticultural practices and harvest 
considerations, these factors will also be discussed. Along with 
the development of analytical technology and increased availabil-
ity of statistical techniques (chemometrics), potentially new and 
alternative techniques to monitor fermentation evolved. The last 
section of this review will highlight a selection of these analytical 
methods and chemometric applications, which could potentially 
be used to effectively monitor fermentation progress.
CAUSES OF FERMENTATION ARREST
A spectrum of possible factors, from the vineyard to the cellar, 
will be discussed in this section. The layout of these sections are 
summarised in Table 1.
Vineyard and viticultural factors
Fermentation problems can already originate from the vineyard 
as the must composition influences the fermentation efficiency. 
The concentration of nitrogen and yeast-required micronutrients 
is influenced by a variety of parameters. These include grapevine 
nutrient deficiencies, fungal degradation and degree of fruit ma-
turity at harvest which is predetermined by cultivar, rootstock, 
crop load, canopy management, vineyard fertilization and climate 
(Kliewer, 1970).

Vineyard nitrogen fertilization influences the concentrations of 
nitrogenous compounds in juice (Spayd et al., 1991, 1994). This 
affects the formation of higher alcohols and esters by yeast during 
fermentation (Ough and Bell, 1980; Ough and Lee, 1981; Galland-
er et al., 1989; Webster et al., 1993) and therefore indirectly wine 
quality. Spayd et al. (1994) found that an increased rate of nitro-

gen fertilization resulted in increased concentrations of all nitro-
gen fractions, including individual amino acids, in White Riesling 
juice. Nitrogen fertilization increased Merlot must arginine con-
centrations from 279 to 798 mg/L and proline from 1062 to 1639 
mg/L in a Bordeaux study (Bertrand et al., 1991). Nitrogen defi-
ciencies in juice can limit yeast growth (Agenbach, 1977; Salm-
on, 1989; Monteiro and Bisson, 1991; Reed and Nagodawithana, 
1991; Spayd et al., 1991) therefore resulting in sluggish or stuck 
fermentations (Agenbach, 1977; Vos, 1981; Salmon, 1989; Kun-
kee, 1991; Spayd et al., 1991) and in the release of H2S (Vos and 
Gray, 1979; Henschke and Jiranek, 1991; Jiranek, 1995a).

Agricultural residues (pesticides, fungicides, herbicides) on the 
exterior surface of grape fruit could also influence fermentation 
performance (further discussed in the section on inhibitory sub-
stances).

Various cultivars exhibit different glucose and fructose levels in 
their berries (Kliewer, 1965; Snyman, 2006). The glucose:fructose 
ratio changes from season to season as a result of climate and 
ripeness level. Snyman (2006) reported increased fructose levels 
(lower glucose:fructose ratio) in the grapes of different cultivars 
during warm and dry seasons. This corresponds to the results 
obtained by Kliewer (1965). Theories to explain this phenom-
enon include the conversion of glucose to fructose with sorbitol 
as an intermediate product. It is not clear whether this reaction 
is enhanced by increased temperature and/or whether a closer 
link with other complex biochemical processes exist (Snyman, 
2006). Another theory involves the degradation of glucose in 
the grape berry by the pentose phosphate cycle. If sucrose enters 
the berry and glucose is metabolised, the fructose levels would 
increase and the ratio of glucose:fructose would be reduced. In 
the case of overripe grapes, increased time on the vine would re-

FIGURE 1
Types of problem fermentations observed in Californian production conditions (Bisson, 2005).
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sult in more glucose degradation through respiration leading to 
a reduced glucose:fructose ratio. The majority of biochemical 
reactions occur faster during warmer seasons and this could ex-
plain the lower levels of glucose in relation to fructose present 
in the berry (Snyman, 2006). Viticulturally, overripeness can be 
avoided by monitoring the glucose:fructose ratio during ripening 
to avoid consequent fermentation problems. The aspects related 
to glucose:fructose ratios and harvest will be discussed in more 
detail in the following section on harvest conditions.
Harvest conditions
The rate of fermentation by yeast and bacteria is considerably in-
fluenced by the amino acid composition of the must. It has been 
reported that the fruit proline concentrations increase as the °Brix 
increase during ripening (Ough, 1968; Kliewer, 1970). The in-
crease or decrease of arginine with increased fruit maturity is 
reported as dependent on the specific cultivar (Kliewer, 1970). 
Changes in the amino acid profile of grapes during the ripening 
process have been studied extensively (Kliewer, 1968, 1970; 
Huang and Ough, 1991; Lehtonen, 1996; Spayd and Andersen-
Bagge, 1996; Hernández-Orte et al., 1999; Nicolini et al., 2001) 
and a wide range of free amino nitrogen concentrations at harvest 
maturity has been reported (Vos, 1981), depending on the region, 
cultivar and growing conditions of the grapevine. Peynaud and 
Lafon-Lafourcade (1961) reported an increase in the less assimi-
lable nitrogen forms (proline and threonine) as grapes ripen. This 
could explain why musts of overripe grapes sometimes ferment 
slowly (Kliewer, 1968).

Climatic changes each year often result in various vineyards in 
a specific viticultural region achieving optimal ripeness simulta-
neously. This puts enormous pressure on cellars to process these 
grapes and could result in the pressing of certain vineyards at 
higher sugar levels and increased grape maturity than desired. In 
addition to the influence of grape nitrogen content on fermenta-
tion, the glucose and fructose concentrations in grapes also exhib-
it a tremendous effect on fermentation performance. The subject 
of glucose and fructose concentrations in grapes has been exten-
sively investigated over the years (Amerine, 1954; Amerine and 
Thoukis, 1958; Kliewer, 1965, 1968; Snyman, 2006). It was found 
that glucose predominates in unripe grapes, the glucose:fructose 
ratio at fruit maturity is about 1 and that fructose constitutes the 
major sugar in overripe grapes. Kliewer (1965) reported a sudden 
decrease in the glucose:fructose ratio as fruit becomes over ma-
tured and Snyman (2006) reported similar results. These results 

TABLE 1
The causes of fermentation arrest can originate from multiple 
factors some of which are already present in the vineyard. This 
section is therefore divided into various subsections explaining in 
each section where fermentation problems could originate from. 

Causes of Fermentation Arrest

Factors

Vineyard and viticultural
Harvest conditions
Cellar management: alcoholic fermentation
Cellar management: malolactic fermentation

indicate that over mature grapes become increasingly detrimental 
for successful fermentation unless the correct yeast strain is used 
or a different wine style is desired.

Vineyard mechanization includes mechanical leaf removal, 
pruning, fruit thinning and harvesting and is a reality of modern 
viticultural technology (Morris, 2000). The major quality problem 
associated with machine harvested grapes is the fruit damage and 
the handling after harvest (Moyer et al., 1961; Shepardson and 
Miller, 1962; Bourne et al., 1963; Marshall et al., 1971; Chris-
tensen et al., 1973). However, with the development of technol-
ogy, the harvesting machine improved with regard to less fruit 
damage (Morris, 2000). It should still be kept in mind that a con-
siderable interval between machine harvesting and processing of 
the grapes can result in increased enzymatic activity and brown-
ing, oxidation (loss of color) and development of off-flavours 
and microbial growth (Bourne et al., 1963; Marshall et al., 1971; 
Marshall et al., 1972; Christensen et al., 1973; Splittstoesser et al. 
1974; Peterson, 1979). Temperature during this time interval in-
fluences the quality of machine harvested grapes tremendously 
(Marshall et al., 1971; 1972; Morris et al., 1972, 1973, 1979; Pe-
terson, 1979). The transport of machine harvested grapes from the 
vineyard to wineries could enhance the onset of alcoholic fermen-
tation (of the released juice) by wild yeasts. The resulting high in-
itial wild yeast populations could produce high concentrations of 
acetic acid and ethanol resulting in inhibition of the desired yeast 
starter culture or fermentation difficulties (Morris et  al., 1973; 
Alexandre and Charpentier, 1998). Sulphur dioxide addition to 
machine harvested grapes has been shown to discourage bacterial 
spoilage and can serve as an antioxidant to prevent juice brown-
ing (Bourne et al., 1963; Morris et al., 1972, 1973, 1979; Nelson 
and Ahmedullah, 1972; Benedict et al., 1973; Christensen, 1973; 
O’Brien and Studer, 1977). The above-mentioned considerations 
and precautions are also applicable for hand harvested grapes, 
however, due to the increased fruit damage observed for machine 
harvested grapes, the effect might be more detrimental to yeast 
fermentation.

Cellar management: alcoholic fermentation

This section discusses factors in the cellar which could influence 
alcoholic fermentation. A summary of the different sections is 
given in Table 2.

Yeast strain

Yeast performance is determined partly by its genetic makeup 
(genotype), which is species and strain dependent. Strain differ-
ences are more pronounced in stress conditions, suggesting differ-
ences in adaptation to the environment, a hypothesis that is sup-
ported by transcriptome data (Gasch, 2003). Wine yeast strains 
differ largely in nitrogen requirements and ability to utilise sug-
ars, especially during the later stages of fermentation (McClellan 
et al., 1989; Schütz and Gafner, 1995). Selection of yeast strains 
which efficiently utilise available nitrogen in low nitrogen musts 
and juices, in addition to nitrogen supplementation appears to be 
one approach to resolve fermentation difficulties due to nitrogen 
deficiencies (Jiranek et  al., 1991, 1995b). Strains also differ in 
their ability to utilise glucose (glucophilic yeast) and fructose 
(fructophilic yeast). The selection of appropriate fructophilic 
yeasts for fermentations of grapes suspected to have low glucose: 
fructose ratios could avoid fermentation problems.
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Challenging fermentation conditions such as high level of juice 
clarification, high protection from air (low oxygen content), low 
assimilable nitrogen and high sugar content requires yeast strains 
to have a high sugar and ethanol tolerance to complete fermenta-
tion successfully without producing any off-flavours (Henschke, 
1997). Degré (1993) described various characteristics for the se-
lection of good wine yeast strains to conduct fermentation suc-
cessfully. Tolerance to both ethanol and temperature is also very 
strain dependent (Bisson, 1999).
Yeast preparation
Apart from the importance of yeast strain selection, the prepa-
ration of the inoculum is equally critical. In order to achieve 
maximum viability, commercial active dried yeast should not be 
directly inoculated into the must. Rehydration, according to the 
manufacturer’s instructions, at the recommended temperature 
without exceeding the recommended rehydration period is re-
quired to re-establish functional membranes and metabolic activ-
ity (Boulton et al., 1996). The suspension should be mixed prop-
erly, although excessive mixing could result in loss of cell viabil-
ity (Bisson, 2005). Deviations from the rehydration instructions 
such as extended rehydration in water and cold or hot rehydration 
will reduce the yeast viability (Bisson, 2005). During rehydration 
and inoculation the yeast is exposed to respectively hypo-osmotic 
and hyper-osmotic shock (Bauer and Pretorius, 2000). Additional 
temperature shock (5 to 7°C difference between culture and must 
temperature) when rehydrated yeast is introduced into the must 
greatly reduces the cell concentration of the inoculum (Zoecklein, 
2005). Ingledew and Kunkee (1985) showed high cell numbers 
promoted faster rates of fermentation. The use of old or expired 
active dried yeasts might also cause fermentation problems.

Initial yeast populations should be large enough (2x106 to 5x106 
yeast cells/mL) (Zoecklein, 2005) to dominate indigenous micro-

TABLE 2
Factors in the cellar environment that could influence alcoholic 
fermentation. 

Cellar Management: Alcoholic Fermentation

Sections	 Subsections

Yeast strain	
Yeast preparation	
Yeast nutrition	 Nitrogen
	 Phosphate
	 Oxygen and other survival factors
	 Vitamins
	 Minerals
Inhibitory substances	 Ethanol
	 Acetic acid
	 Medium chain fatty acids
	 Toxins and killer toxins
	 Sulphites
	 Agricultural residues
Physical factors	 Excessive must clarification
	 pH
	 Temperature extremes
Microbial incompatibility	
Metabolic basis of stuck and sluggish fermentations

flora and ensure rapid, complete fermentation (Bauer and Preto-
rius, 2000). Unsuccessful inoculation could result in incomplete 
fermentation due to the growth of less alcohol tolerant indigenous 
yeast (Henschke, 1997).
Yeast nutrition
Nitrogen – essential macronutrients
Nitrogenous compounds are important components of grape juice 
and impact on the production of yeast biomass, fermentation rate 
and time to complete fermentation (Bisson, 1991). The forma-
tion of fermentation flavours, such as hydrogen sulphide, organic 
acids (excluding tartaric acid), higher alcohols and esters are also 
influenced by nitrogen (Bell et al., 1979; Simpson, 1979; Vos and 
Gray, 1979; Ough and Bell, 1980; Vos, 1981; Juhasz and Torley, 
1985; Dukes et al., 1991; Henschke and Jiranek, 1991; Rapp and 
Versini, 1991; Jiranek et al., 1995a; Webster et al., 1993). This 
spectrum of yeast metabolism end products directly influences 
wine quality.

Saccharomyces yeast species are capable of synthesizing all re-
quired nitrogen-containing compounds from ammonium (NH4

+), 
carbon and energy sources. Ammonia and free alpha amino acids 
(collectively referred to as FAN) are therefore readily assimilated, 
while peptides and proteins are assimilated for the production of 
amino acids via hydrolysis (Reed and Nagodawithana, 1991). Ni-
trogenous compounds are used by yeast to produce structural and 
functional proteins that result in increased yeast biomass and the 
production of enzymes that facilitate many biochemical changes 
occurring during yeast fermentation (Spayd and Andersen-Bagge, 
1996). The importance of nitrogenous compounds in fermentation 
of grape juice and beer worts were reviewed by Bisson (1991) and 
O’Connor‑Cox and Ingledew (1989), respectively.

Nitrogen deficiency (less than 150 mg/L FAN) slows down yeast 
growth and the fermentation or may even result in a stuck fermen-
tation (Agenbach, 1977; Vos et  al., 1978; Monk, 1982; Jiranek 
et al., 1991; Kunkee, 1991; Monteiro and Bisson, 1991; Butzke 
and Dukes, 1996), possibly due to the inhibition of the synthesis 
of proteins transporting sugar through the cell membrane to the 
interior of the cells (Busturia and Lagunas, 1986; Salmon, 1989; 
Huang and Ough, 1991). It has been shown that an adequate sup-
ply of nitrogen increases yeast growth provided the other essential 
yeast nutrients are not lacking (Aries and Kirsop, 1977; Strydom 
et al., 1982; Ingledew and Kunkee, 1985; Henschke, 1990; Dukes 
et al., 1991). However, additions of ammonia after the early yeast 
growth phase may be ineffective in that the inhibited sugar trans-
port into yeast cells may be irreversible in low nitrogen juices 
(Salmon, 1989). Yeast may use amino acids not only as nitrogen 
sources but also as redox agents to balance the oxidation-reduc-
tion potential under conditions of restricted oxygen (Albers et al., 
1996; Mauricio et al., 2001).
Phosphate
Phosphate limitation has been shown to affect cell growth and 
biomass formation as well as directly affecting fermentation rate 
(Lafon-Lafourcade and Ribéreau-Gayon, 1984; Gancedo and Ser-
rano, 1989; Boulton et al., 1996).
Oxygen and other survival factors
Oxygen and/or the presence of certain lipids, referred to as oxygen 
substitutes, are critical for yeast growth (Munoz and Ingledew, 
1989a, 1989b, 1990). These ‘survival factors’ are compounds 
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that decrease the inhibitory effects of ethanol (Lafon-Lafourcade 
et al., 1979; Lafon-Lafourcade and Ribéreau-Gayon, 1984).

During the early stages of growth, the oxygen consumed by 
yeast appears to have an energy role (Henschke, 1997). Oxygen 
is essential for the biosynthesis of sterols and unsaturated fatty 
acids which are both essential to membrane structure and function  
(Casey and Ingledew, 1986) and cell viability.

The production of toxic fatty acids, octanoic and decanoic acid, 
are affected by oxygen deprivation (Bardi et al., 1999) and the 
toxicity of these medium chain fatty acids (MCFA) increases as 
the ethanol concentration increases (Henschke, 1997). This effect 
elevates the risk of problem fermentations to occur.

Oxygen deficiency could be responsible for sluggish fermentation 
as a consequence of inhibition of lipid biosynthesis which results in 
decreased ergosterol and unsaturated fatty acid content (‘survival 
factors’), decreased biomass production and yeast viability.

Must aeration could therefore stimulate lipid biosynthesis, in-
crease ethanol tolerance as a result of increased lipid composi-
tion in the cell membrane, decrease the release of MCFA and re-
duce the potential toxicity and the risk of fermentation problems  
(Henschke, 1997; Alexandre and Charpentier, 1998).

The addition of yeast hulls, the cell wall material remaining af-
ter yeast extract preparation, has been suggested as supplements 
to juice to prevent stuck fermentations (Ribereau-Gayon, 1985).  
Studies showed the ability of yeast hulls to remove certain toxic 
fermentation side-products (Lafon-Lafourcade, 1984). In addition, 
Munoz and Ingledew (1989b) reported that yeast hulls could also 
supply beneficial unsaturated fatty acids and the importance of yeast 
hulls in the stimulation of fermentation and prevention of stuck and 
sluggish fermentations was verified (Munoz and Ingledew,1989a).
Vitamins
Insufficient availability of vitamins (essentially thiamine) has 
been associated with sluggish fermentations (Peynaud and Lafon-
Lafourcade, 1977; Ough et al., 1989). Saccharomyces cerevisiae 
is capable of synthesising all essential vitamins except biotin, 
however, research has shown the presence of extracellular vita-
mins is highly stimulatory to growth and fermentation (Monk, 
1982; Lafon-Lafourcade and Ribéreau-Gayon, 1984; Ough et al., 
1989; Fleet and Heard, 1993). It was shown that wild yeasts, such 
as Kloeckera apiculata, decrease thiamine levels to a deficient 
situation for Saccharomyces (Bataillon et al., 1996). Acetic acid 
has been reported to reduce the ability of Saccharomyces to trans-
port and retain thiamine (Iwashima et  al., 1973). Thiamine is 
cleaved and its biological activity destroyed by sulphur dioxide, 
further reducing the concentration of this vitamin (Alexandre and  
Charpentier, 1998; Bisson, 1999).
Minerals
Deficiencies and imbalances in minerals and cations, serving as 
co-factors for glycolytic and other enzymatic reactions, can result 
in fermentation arrest (Dombeck and Ingram, 1986; Blackwell 
et al., 1997; Walker and Maynard, 1997). Magnesium plays a key 
role in metabolic control, growth and cell proliferation, glyco-
lytic pathway and subsequently ethanol production (reviewed by 
Walker, 1994). Limitation of zinc and magnesium directly affects 
sugar catabolism and consequently fermentative activity (Jones 
et  al., 1981; Jones and Greenfield, 1984; Dombek and Ingram, 
1986; D’Amore et al., 1987; Monk, 1994). Calcium limitation in-

creases ethanol sensitivity (Nabais et al., 1988). High manganese 
depresses uptake of magnesium and vice versa (Blackwell et al., 
1997) which may lead to a deficiency situation. Additionally, an 
imbalance of pH and potassium ions present in grapes from vines 
with poor potassium uptake ability from the soil could result in 
stuck fermentations (Kudo et al., 1998).
Inhibitory substances
Ethanol
Ethanol inhibits different transport systems utilised by S. cerevisiae 
(Leao and Van Uden, 1982; Cartwright et al., 1987b; Pascual et al., 
1988; Mauricio and Salmon, 1992; Salmon et al., 1993), influences 
proton fluxes (Leao and Van Uden, 1984; Cartwright et al., 1986, 
Cartwright et  al., 1987a; Killian et  al., 1989) and affects yeast  
plasma membrane composition (Jones and Greenfield, 1987; Jones, 
1989, 1990) resulting in subsequent growth inhibition (Thomas and 
Rose, 1979; Ingram and Butke, 1984) and decrease in fermentation 
rate as a result of inhibiting sugar transport activity (Salmon et al., 
1993). Fermentation temperature influences ethanol tolerance. At 
lower temperatures, greater tolerance to ethanol occurs (Henschke, 
1997). An important property of ethanol is that it increases the  
toxicity of other compounds. The availability of sterols and fatty 
acids has a definite impact on ethanol sensitivity (Lafon-Lafour-
cade and Ribéreau-Gayon, 1984).
Acetic acid
High levels of acetic acid are often associated with stuck or slug-
gish fermentations. The heterofermentative lactic acid bacteria, 
including strains of Lactobacillus and Oenococcus, certain non-
Saccharomyces yeasts such as Brettanomyces spp., Hansenula 
anomala, Kloeckera apiculata and Candida krusei (Fleet and 
Heard, 1993), commercial wine yeasts (Hanneman, 1985) and 
acetic acid bacteria (Drysdale and Fleet, 1985, 1988, 1989) all 
have the ability to produce high levels of acetic acid that directly 
increases volatile acidity (Lambrechts, 2000). Elevated acetic acid 
concentrations can inhibit yeast growth, enhance ethanol toxicity 
and prevent the completion of fermentation. Contrariwise, the ar-
rest of fermentation could allow the growth of spoilage organisms 
which could lead to high levels of volatile acidity.
Medium chain fatty acids
Medium chain fatty acids which are intermediates in the biosyn-
thesis of long chain fatty acids can inhibit alcoholic fermentation 
(Lafon-Lafourcade et al., 1984). Fatty acid toxicity increases as pH 
decreases with decanoic acid being more inhibitory than octanoic 
acid (Viegas et al., 1989). Both inhibit hexose transporter systems 
resulting in reduced fermentation rate (Zamora et al., 1996).
Toxins and killer toxins
Killer yeast strains (phenotype K+R+) secrete a proteinaceous 
extracellular toxin that kills other sensitive yeast strains (pheno-
type K-R-) of S. cerevisiae. Neutral yeasts (phenotype K‑R+) are 
resistant to killer toxins but do not produce it (Bevan and Ma-
kower, 1963; Woods and Bevan, 1968; Medina et al., 1997). The 
killer toxin can change the nitrogen metabolism by decreasing 
the ion gradient across the membrane of the sensitive yeasts and 
consequently interrupting the coupled transport of protons and 
amino acids (De la Peña et al., 1981). The toxin also causes the  
cellular loss of small metabolites such as ATP, glucose and amino 
acids (Bussey, 1974). Killer toxins can inhibit wine fermentation 
by sensitive yeasts (Van Vuuren and Wingfield, 1986; Radler and 
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Schmitt, 1987; Carrau et  al., 1988, 1993). The interactions be-
tween killer and sensitive yeasts and the effect on nitrogen me-
tabolism in winemaking conditions have been studied extensively 
(Shimizu, 1993; Medina et  al., 1997; Torrea-Goñi and Ancín-
Azpilicueta, 2002).

Moulds present on the berries may produce mycotoxins to which 
Saccharomyces is susceptible (Lafon-Lafourcade and Ribéreau-
Gayon, 1984; Bisson, 1999). In addition, plant produced com-
pounds (the phytoalexins) and enzymes (the pathogenesis-related 
proteins) may impact yeast growth (Bisson, 1999) since these 
compounds are produced in response to fungal infection.
Sulphites
Sulphites are highly toxic to microorganisms. Molecular SO2 is 
more active at low pH. Thus molecular SO2 is extremely active 
against yeasts in low pH (3-3.5) must. Sulphite toxicity to yeast 
is largely dependent on the level of SO2 accumulation in the cell. 
Once inside the cell, the sulphites cause a rapid decrease in the 
intracellular ATP level, resulting in cell death (Hinze and Holzer, 
1986). Excessive use of SO2 is toxic to yeast cells (Alexandre and 
Charpentier, 1998).
Agricultural residues
Fungicides and pesticides used in the vineyard may negatively af-
fect yeast viability if present at high enough residual concentrations 
at the time of harvest (Lafon-Lafourcare and Ribéreau-Gayon, 
1984; Bisson, 1999). These residues can act directly or indirectly to 
inhibit yeast growth during fermentation (Specht, 2003).
Physical factors
Excessive must clarification
Excessive must clarification can often cause sluggish fermentation 
due to the loss in fatty acid content, sterol content and macromol-
ecules (Alexandre and Charpentier, 1998). The level of solids also 
affect alcohol tolerance, therefore the choice of an alcohol toler-
ant strain is more important in a clarified juice than a high solid 
must (Henschke, 1997). Must clarification affects the assimilation 
of nitrogen compounds and reduces nutrients and eliminates fatty 
acids, especially many unsaturated fats. As a result the amino acid 
transport system is affected (Ayestarán et al., 1995; Ancín et al., 
1998; Ayestarán et al., 1998).
pH
Saccharomyces is tolerant to low pH fermentations and can grow 
in a juice pH range of 2.8 to 4.2 (Lafon-Lafourcade and Ribéreau-
Gayon, 1984; Heard and Fleet, 1988; Bisson, 1999). The pH also 
affects the anti-microbial activity of sulphite which could poten-
tially influence yeast viability (as mentioned in Sulphites section) 
and fermentation performance.
Temperature extremes
Temperature extremes during fermentation can severely affect 
yeast growth and metabolism (Specht, 2003). Ethanol resistance 
is also influenced by temperature (Heard and Fleet, 1988; Bisson, 
1999; Bisson and Butzke, 2000). At higher temperatures, the cell 
membrane fluidity increases and ethanol can enter the cell more 
readily, adversely affecting metabolism and cell viability. Cooler 
temperatures may enhance ethanol resistance by increasing sterol 
levels in yeast cell membranes (Suutari et al., 1990; Torija et al., 
2003) resulting in lower accumulation of intracellular ethanol 
(Lucero et al., 2000).

Microbial incompatibility

Initial high populations of non-Saccharomyces yeast and bacte-
ria increase the risk of stuck and sluggish fermentations to occur 
(Drysdale and Fleet, 1989; Bisson, 1999; Edwards et al., 1990, 
1998). This is due to competition for nutrients and production of 
toxic substances. Using unsanitized equipment (cellar hygiene) 
increases the possibility for microbiological factors such as wild 
killer yeasts and bacteria (spoilage) influencing the fermentation 
process. The interactions between O. oeni and S. cerevisiae are 
also described by Alexandre et  al. (2004). Lactic acid bacteria 
have elaborate nutritional requirements (Buckenhüskes, 1993) 
and competition for these may inhibit or delay yeast activity dur-
ing the alcoholic fermentation (Huang et al., 1996; Edwards et al., 
1998). Lonvaud-Funel (1995) suggests that inoculation of must 
with starter cultures should take place only after the conclusion of 
the alcoholic fermentation to avoid the increase of wine volatile 
acidity due to sugar metabolism by O. oeni. Incompatible pairings 
of wine yeast and lactic acid bacteria is also a possibility. Edwards 
et al. (1998) reported on Lactobacillus kunkeei frequently causing 
stuck fermentations, regardless of the yeast strain present.

Metabolic basis of stuck and sluggish fermentation

The metabolic basis of stuck and sluggish fermentation has been 
fairly well established. The decrease in rate of sugar consumption 
is correlated with a decrease in sugar uptake capacity. Glucose 
and fructose consumption are reduced in response to various en-
vironmental or cellular stress conditions such as nutrient limitation 
(macronutrient and micronutrient), low pH, lack of oxygen, lack of 
adequate agitation, temperature extremes, presence of toxic sub-
stances, presence of other microorganisms, imbalance of cations, 
and poor strain tolerances (particularly to ethanol or acetaldehyde). 
All of these have been associated with stuck and sluggish fermen-
tations and have an impact on glucose and fructose transporter ex-
pression and activity (Alexandre and Charpentier, 1998).

According to literature (Gafner and Schütz, 1996), fructose 
levels in some stuck wines are found to be 10 times higher than 
the glucose concentration. Stuck fermentation can therefore be 
expected for wines with glucose/fructose ratio smaller than  
0.1 (Gafner and Schütz, 1996).

Apart from the influence of nutrients, physical and microbial 
factors on the metabolism of the yeast which could result in de-
creased rate of fermentation or even complete fermentations ar-
rest, apoptosis have been suggested as an additional mechanism 
influencing fermentation (Büttner et  al., 2006; Ludovico et  al., 
2001). Apoptosis refers to the programmed cell death of the yeast 
cell which is also a regulated suicide program crucial for meta-
zoan development (Madeo et al., 2004; Büttner et al., 2006).

Cellar management: malolactic fermentation

Despite considerable research (reviewed by Wibowo et al., 1985; 
Britz and Tracey, 1990; Nel et al., 2001), the malolactic fermenta-
tion (MLF) process remains to be an imperfectly controlled proc-
ess and at times MLF can be difficult to get started. The occur-
rence of MLF problems and the possible causes thereof has been 
studied less extensively than in the case of alcoholic fermentation 
problems. In the following sections various factors (summarised 
in Table 3) which could potentially influence the start and suc-
cessful completion of MLF will be highlighted.
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Inoculation considerations
Malolactic fermentation is a biological process of wine deacidi-
fication in which the dicarboxylic l-malic acid (malate) is con-
verted to the monocarboxylic l-lactic acid (lactate) and carbon 
dioxide (Davis et al., 1985). This process is normally conducted 
by lactic acid bacteria (LAB) isolated from wine, including Oeno-
coccus oeni (previously Leuconostoc oenos, Dicks et al., 1995), 
Lactobacillus spp. and Pediococcus spp. (Wibowo et al., 1985). 
O. oeni is the preferred starter culture to conduct MLF due to 
its tolerance to low pH, high ethanol and SO2 levels and flavour 
profile produced (Kunkee, 1967; Wibowo et al., 1985; Tracey and 
Britz, 1987; Van Vuuren and Dicks, 1993). It has been shown that 
the ability to perform MLF in harsh conditions is closely related 
to the physiological properties of the O. oeni strain inoculated 
(Nannelli et al., 2004).

Although MLF may occur spontaneously, the fermentation 
management can be simplified with the introduction of O. oeni 
cultures (Krieger, 1993; Nielsen et al., 1996). The lag phase asso-
ciated with spontaneous MLF (wild/uncultured strains) increase 
the risk of spoilage organisms and production of volatile acidity 
(as a result of lactic acid bacterial sugar metabolism) due to the 
low SO2 levels. Inoculation with a LAB culture avoids these prob-
lems by immediately providing the population (more than 2x106 
cells/mL) necessary to conduct MLF. Semon et al. (2001) sug-
gests that pre-fermentation inoculation results in increased vola-
tile acidity concentrations. However, the success of MLF is not al-
ways guaranteed due to changes in fermentation conditions, grape 
must composition and microbial competition (Krieger, 1993). 
Compatibility of yeast and LAB should be considered when time 
of inoculation is considered. Very often, starter culture failures are 
due to improper preparation and inoculation procedures. In some 
cases, starter culture failure may be due to antagonistic interac-
tions between yeast and bacteria.
Nutritional requirements
Malolactic fermentation difficulty could be the result of insuffi-
cient nutrients important for the development of LAB (Nygaard 
and Prahl, 1996). Yeast can reduce the nutrients available to LAB 
considerably and therefore time of inoculation is critically im-
portant to avoid competition for nutrients. For this reason, win-
emakers often add a nutrient when inoculating with MLF starter 
cultures to assist their development. This addition is especially 
important if the must and wine initially has low levels of nutrients 
or if yeast strains with inherently high nutritional requirements 

TABLE 3
Factors in the cellar environment that could influence malolactic 
fermentation. 

Cellar management: Malolactic Fermentation

Sections	 Subsections

Inoculation considerations	
Nutritional requirements	
Inhibitory factors	 Ethanol content
	 pH
	 Temperature
	 Sulphur dioxide
Microbial interactions	

were used. The addition of bacterial nutrients ensures a quick on-
set and completion of MLF and could also prevent delayed and/
or stuck MLF.

LAB have elaborate nutritional requirements (Buckenhüskes, 
1993) with limited means of synthesizing growth requiring com-
pounds (Fourcassier et  al., 1992; Fugelsang, 1996). Oenococcus 
oeni has very specific and at times very fastidious nutritional re-
quirements to support sufficient growth and development of the 
bacteria. Studies suggest that wine carbohydrates (Melamed, 1962; 
Ribéreau-Gayon et al., 1975; Dittrich et al., 1980) and amino ac-
ids (Mayer et al. 1973; Temperli and Kuensch, 1976; Beelman and 
Gallander, 1979) may be utilised by these bacteria during malolactic 
fermentation and this metabolism as well as that of organic acids (Pi-
lone et al. 1966; Kunkee, 1974; Beelman and Gallander, 1979; La-
fon-Lafourcade and Ribéreau-Gayon, 1984; Ribéreau-Gayon et al., 
1975) can lead to changes in the concentration of constituents which 
affect sensory quality of wines (Davis et al., 1986). Inorganic nitro-
gen [supplied in the form of diammonium phosphate (DAP)] can-
not be used by these bacteria (Ribèreau et al., 2000; Loubser, 2005). 
Vitamins, especially from the B-group, as well as pantothenic acid, 
are required. In addition, certain trace elements (including magne-
sium and manganese) also form part of the very specific nutritional 
requirements of O. oeni (Loubser, 2005). Liu (2002) reviewed the 
current knowledge on the metabolism of LAB (predominantly oeno- 
cocci) comprehensively. However, the biochemical mechanisms by 
which LAB grow in wines are still not clearly understood.
Inhibitory factors
The physico-chemical properties that influence LAB growth are 
well known, mainly: pH, acidity, ethanol and SO2 concentrations 
and temperature (Bousbouras and Kunkee, 1971; Ingram and 
Butke, 1984; Wibowo et al., 1985; Davis et al., 1988; Wibowo 
et al. 1988; Henschke, 1993). A study by Vaillant et al. (1995) 
investigating the effects of 11 physico-chemical parameters, iden-
tified ethanol, pH and SO2 as having the greatest inhibitory ef-
fect on the growth of LAB in wine. Another argument is that in-
hibitory substances are accumulated in wine and all these factors 
could have possible synergistic effects on each other, enhancing 
the inhibitory effect of a specific factor.
Ethanol content
Lactic acid bacteria are sensitive to ethanol and usually struggle 
above 13.5% exhibiting very slow or non-existent growth. O. oeni 
is a preferred starter culture due to its tolerance to ethanol. The 
fatty acid composition of the cell membrane of wine LAB can be 
modified by ethanol. The viability of these bacteria is affected in 
particular by the saturated/unsaturated fatty acid ratio (Henick-
Kling, 1995). It was shown that ethanol (12% v/v) had an inhibi-
tory effect only on cell growth but malolactic activity was not 
affected (Capucho and San Romão, 1994).
pH
The effect of pH on the growth rate of LAB in wines is well dem-
onstrated in the literature (Bousbouras and Kunkee, 1971; Castino 
et al., 1975; Liu and Gallander, 1983). Davis et al. (1986) showed 
the rate of bacterial growth and malolactic fermentation increased 
as wine pH was increased from 3.0 to 4.0. The pH of wine has a 
selective effect upon the species that grow in wine. Usually, O. 
oeni is the only species isolated from wines with a pH below 3.5 
(Davis et al., 1986). Generally, LAB favour higher pH’s and for 
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most strains, minimal growth occurs at pH 3.0. Under winemak-
ing conditions, pH’s above 3.2 are advised.

The lag phase before MLF, in the case of spontaneous MLF, 
can be prolonged the lower the pH. The species of LAB dominant 
in the must or wine is determined by the pH (Bousbouras and 
Kunkee, 1971). At a low pH (3.2 to 3.4) O. oeni is the primary 
LAB species, different strains of which will dominate throughout 
MLF. At a higher pH (3.5 to 4.0), Lactobacillus and Pediococcus 
dominate over Oenococcus (Costello et al., 1983).
Temperature
The influence of temperature on the growth of LAB and the occur-
rence of MLF has been thoroughly researched (Van der Westhui-
zen & Loos, 1981; Wibowo et al., 1985). Research results confirm 
that MLF occurs much more rapidly at temperatures of 20°C and 
above than 15°C and below (Loubser, 1999; Du Plessis, 2005). 
In the absence of SO2 the optimum temperature range for MLF 
is 23 to 25°C. Maximum malic acid degradation will occur at 20 
to 25°C. However, these temperatures decrease with an increase 
in SO2 concentrations resulting in 20°C being more acceptable. 
Most strains of O. oeni grow very slowly or cease to grow below 
15°C. Cells may however remain viable at low temperatures.
Sulphur dioxide
Yeast produce SO2 during alcoholic fermentation and this may 
inhibit the growth of LAB (Lonvaud-Funel et al., 1988; Henick-
Klink and Park, 1994). The levels of SO2 produced by yeast de-
pend on the yeast strain, availability of nutrients and the presence 
of compounds in the must (e.g. acetaldehyde) which binds SO2 
(Nygaard and Prahl, 1996). Already in 1994 Henick-Kling et al. 
demonstrated the inhibition of malolactic starter cultures by ac-
tive growing yeasts due to the production of high levels of SO2 
during the early stage of alcoholic fermentation.

Apart from the selective effect of pH on the growth of LAB, 
the long-term survival of O. oeni under practical wine conditions 
is determined by the addition of SO2 (Lafon-Lafourcade et  al., 
1983). According to other studies (Somers and Wescombe, 1982; 
Lafon-Lafourcade, 1983), a total SO2 concentration of more than 
50 mg/L generally restricts the growth of LAB in wines, espe-
cially at the lower pH values when a greater proportion of the 
SO2 is in the undissociated, antimicrobial form. It is therefore not 
recommended to add SO2 to must after alcoholic fermentation if 
MLF is desired (Henick-Kling, 1994).

TABLE 4
Different technologies could be potentially used to monitor 
fermentations. These are summarised in the following sections 
and subsections. 

Technology To Monitor Fermentation Arrest

Sections	 Subsections

Microbiological	 Enumeration by traditional plating
	 PCR related technologies
	 Flow cytometry
Chemical analysis	 Chromatographic techniques
	 Spectroscopy
	 Electrochemical sensors
Chemometrics

Microbial interactions
Yeast (S. cerevisiae) may deplete complex nutrients and growth 
factors required by LAB and may release bioactive metabolites 
(SO2, fatty acids and macromolecules) that can stimulate, inhibit 
or have negligible effect on the metabolism of LAB (Lonvaud-
Funel et  al., 1988; Edwards et  al., 1990; Capucho and San  
Romao, 1994; Henick-Kling and Park, 1994; Rosi et al., 1999; 
Alexandre et  al., 2004). Interactions between co-existing yeast  
(S. cerevisiae) and O. oeni can cause problems with MLF. Fer-
mentations of must with low levels of nutrients may cause the 
yeast used during alcoholic fermentation to produce increased 
levels of SO2 which may inhibit MLF. In the case of inoculation 
before the completion of alcoholic fermentation, bacterial inhi-
bition decreases towards the end of fermentation. This could be 
explained by the death phase of yeast which reduces the SO2 pro-
duced and the availability of nutrients as a result of yeast autolysis 
(Nygaard and Prahl, 1996).

The presence of bacteriophages (bacterial viruses) can also 
cause sluggish or stuck MLF (Henick-Kling, 1994) and can be 
problematic if wooden barrels used for maturation are contami-
nated (Berthelot, 2000).

The growth of Pediococcus spp. are favoured in high pH wines, 
resulting in volatile acidity or the production of bacteriocins (an-
timicrobial proteins or peptides) which may inhibit the growth of 
O. oeni (Green et al., 1997; Van Reenen et al., 1998).

King and Beelman (1986) suggested that the growth of O. oeni 
during alcoholic fermentation might be retarded by the produc-
tion of toxic compounds by yeasts other than ethanol and sulphur 
dioxide. Alcohol, temperature and pH can modify the fatty acid 
composition of the cell membrane of wine LAB. In particular the 
saturated/unsaturated fatty acids ratio affects the viability of these 
bacteria (Henick-Kling, 1995).
TECHNOLOGY TO MONITOR FERMENTATION
Various technologies are currently available to monitor and in-
vestigate the progress of fermentation. This includes microbio-
logical techniques to evaluate whether sufficient cell numbers are 
present for successful alcoholic (Boulton et al., 1996) or malol-
actic (Semon et al., 2001) fermentation or to determine the iden-
tity of spoilage organisms present (Delaherche et al., 2004) in the 
fermentation. Apart from valuable microbiological information, 
chemical and spectral data also provide important information to 
successfully manage both alcoholic and malolactic fermentation. 
The determination of specific marker compounds such as acetic 
acid which could serve as an indicator of problematic fermenta-
tions (Malherbe, 2007). The combination of microbial, chemical 
and spectral data could be further exploited with the application 
of various data analysis techniques (chemometrics) to investigate 
fermentation patterns, trends or even to identify potential stuck or 
sluggish fermentations (Malherbe, 2007). The following sections 
and subsections (layout presented in Table 4) will discuss some 
techniques which could be of value for the investigation of alco-
holic and malolactic fermentations.
Microbiological
Enumeration by traditional plating
The identification and enumeration of microorganisms through-
out the fermentation process by plating on selective growth media 
is a standard microbiological technique. However, this method 
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of enumeration is often time consuming, laborious and could be 
inaccurate as a result of the possible viable but non-culturable 
(VBNC) state of microorganisms. Cells in VNBC state are de-
fined by Olivier (1993) as cells which are metabolically active but 
unable to undergo the cellular division for growth in liquid or on 
agar. The evolution to a VNBC state is related to the intensity of 
the stress (Olivier et al., 1995).
Polymerase Chain Reaction (PCR) related technologies
Many molecular techniques have been developed for yeast 
identification and characterization (Querol and Ramón, 1996;  
Guillamón et  al., 1998; Esteve-Zarzoso et  al., 1999; Loureiro 
and Querol, 1999; Querol et al., 2000), the majority of which are 
culture-dependent techniques.

Real-time or quantitative PCR (QPCR) methods have been 
developed to enumerate several species of LAB, including those 
found in wine (Delaherche et al., 2004; Furet et al., 2004; Pinzani 
et al., 2004; Neeley et al., 2005). González et al. (2006) reported 
the use of nested PCR and real-time PCR for the detection (quali-
tative) and enumeration (quantitative) of acetic acid bacteria in 
wine conditions.

López et al. (2003) demonstrated the use of a PCR-based meth-
od to monitor inoculated wine fermentations and ensure the fer-
mentation is conducted by the inoculated yeast. The method is 
based on the variation in the number and position of introns in the 
mitochondrial gene COX1 (López et al., 2003).

One of the most commonly used culture-independent finger-
printing techniques is denaturing gradient gel electrophoresis 
(DGGE). It is based on the separation of PCR amplicons of the 
same size but different sequences (Ercolini, 2004). The theoretical 
aspects of this separation were first described by Fisher and Ler-
man (1983). Many applications of PCR-DGGE in microbial ecol-
ogy have been previously described and reviewed (Muyzer et al., 
1997; Muyzer and Smalla, 1998; Muyzer, 1999). Applications 
of PCR-DGGE include the identification of microorganisms, the 
evaluation of microbial diversity and microbiological quality as-
sessment (Ercolini, 2004). A study by Cocolin et al. (2000) dem-
onstrated PCR-DGGE is a viable alternative to standard plating 
methods for qualitative assessment of the microbial constituents 
in model wine fermentations. The quantitation of DGGE profiles 
however, is problematic due to the complex nature of multitem-
plate PCR (Wagner et al., 1994; Suzuki and Giovannoni, 1996; 
Hansen et al., 1998; Polz and Cavanaugh, 1998).
Flow cytometry
In recent years, flow cytometry (Bruetschy et  al., 1994; Bouix 
and Leveau, 2001; Malacrino et al., 2001, 2005; Thornton et al., 
2002; Boyd et al., 2003) has been used to monitor live and dead 
yeast cell concentrations during fermentation (Chaney et  al., 
2006). This technique allows the counting, examining, and sort-
ing of microscopic particles suspended in a stream of fluid. Vali-
dation of this method has been performed by comparison with 
other viability analysis techniques such as haemocytometry and 
plating (Fiala et al., 1999; Thornton et al., 2002). Thiazol orange, 
a permeant DNA-reactive stain that enters live and dead cells, 
fluoresces at 530 nm and is used to differentiate cells from debris. 
Additional staining with propidium iodide, an impermeant DNA-
reactive stain which cannot penetrate cells with intact membranes, 
fluoresces at 625 nm and differentiates live and dead cells.

Since cell viability stains often rely on membrane integrity, they 
do not necessarily report on the metabolic activity of cells. Varela 
et al. (2004) suggested that fermentation rate is a combination of 
intracellular (metabolic) activity and the mass of cells actively 
fermenting. It may therefore be more informative to monitor the 
metabolic activity or yeast ‘vitality’ than the cell viability alone. 
This information could possibly serve as a better predictor of 
stuck fermentations by determining the physiological state of the 
yeast populations using flow cytometry and fluorescent viability 
staining (Bouchez et al., 2004) combined with fluorescent vitality 
staining.
Chemical analysis
An accurate measurement of various chemical components 
throughout the winemaking process is a necessity in determin-
ing causes of stuck fermentations. As a result of the development 
and improvement of technology, the focus of wine analysis has 
shifted towards evaluating and establishing high-throughput ana-
lytical methods.
Chromatographic techniques
High Performance Liquid Chromatography (HPLC) is an analyti-
cal technique for the separation and determination of organic and 
inorganic solutes in a variety of samples. Analysis of the major 
organic acids, carbohydrates, glycerol and ethanol in wine and 
grape must using HPLC systems with refractive index (RI) and 
ultraviolet (UV) detection have been reported in numerous studies 
(McCord et al., 1984; Frayne, 1986; Falque Lopez and Gomeze, 
1996; López-Tamames et al., 1996; Michnick et al., 1997; Aragon 
et al., 1998; Castellari et al., 2000; Reynolds et al., 2001; Palacios 
et al., 2002). The coupling of HPLC and FT-IR for the determina-
tion of carbohydrates, alcohols and organic acids was presented 
by Vonach et  al. (1998). Since most compounds absorb in the 
infrared region, FT-IR can provide qualitative information about 
the compounds and can be regarded a general detector for liquid 
chromatography (reviewed by Somsen and Visser, 2000). Edel-
mann et al. (2003) reported on another HPLC application with 
diamond attenuated total reflectance (ATR)-FT-IR detection for 
the determination of carbohydrates, alcohols and organic acids in 
red wine.

Gas chromatography (GC) is a technique almost routinely used 
to determine the volatile composition of wine and fermenting 
must. Several studies using GC in combination with mass spec-
trometry (GC-MS) and/or additional sorptive extraction tech-
niques such as solid phase micro extraction (SPME), solid phase 
dynamic extraction (SPDE) and solid phase extraction (SPE) 
have been reported (Ferreira et  al., 1996; Vianna and Ebeler, 
2001; Alves et al., 2005; Howard et al., 2005; Liu et al., 2005; 
Câmara et al., 2006; Esti and Tamborra, 2006). Mallouchos et al. 
(2002) and Hernández-Orte et al. (2002) used SPME GC-MS and 
GC-FID (flame ionization detection) respectively to investigate 
the relationship between the amino acid profile and aroma profile 
of wines. Malherbe (2007) showed with a holistic approach that 
volatile compounds determined with gas chromatographic tech-
niques could be used to discriminate between problem and control 
fermentations using multivariate data analysis.
Spectroscopy
Nuclear magnetic resonance (NMR) spectroscopy has become a 
popular technique for wine and grape juice analysis (Clark et al., 
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2006). Many studies have used NMR (13C and 1H) to determine 
amino acids, organic acids, sugars, alcohols, glycerol, polyphe-
nols, catechin, epicatechin and gallic acid in wine or phenolic ex-
tracts (reviewed by Clark et al., 2006) and in grape juice or must 
(reviewed by Clark et al., 2006). Clark et al. (2006) reported on 
monitoring a commercial fermentation using 1H NMR analysis 
and the aid of chemometrics for the simultaneous determination 
of a spectrum organic analytes. The potential of this technique 
as a tool to monitor commercial wine fermentations is however 
limited due to the availability and access to high field NMR in-
strumentation.

Infrared spectroscopy (IR) has been used successfully to moni-
tor large scale fermentations, since various compounds are meas-
ured simultaneously from a single sample without prior treatment 
(Urtubia et al., 2004). Infrared spectroscopy is a technique based 
on the interaction of infrared radiation with the vibrations and 
rotations of atoms of a molecule. Infrared radiation is passed 
through a sample and the fraction of incident radiation absorbed 
at a particular energy results in the absorption spectrum. The vi-
bration frequency of a chemical bond in a molecule is related to 
the energy at which any peak in an absorption spectrum appears. 
Since all molecules absorb infrared radiation at different wave-
lengths, an infrared spectrum therefore contains both qualitative 
and quantitative information of the sample material (Griffiths and 
de Haseth, 1986; Andersen et al., 2002).

Initially, routine wine analysis used vibrational spectroscopy 
in the near-infrared (NIR) region (Baumgarten, 1987). The use 
of FT-IR technology in the MIR region for wine analysis is due 
to the need for a more accurate determination of more constitu-
ents and properties than the NIR method (Nieuwoudt, 2004; Patz 
et al., 2004). Application of FT-MIR spectroscopy is of special 
interest due to the presence of sharp and specific absorption bands 
(Schindler et al., 1998). Multivariate prediction models are con-
structed through a calibration process (Eriksson et al., 1999; Es-
bensen, 2002) for predicting wine constituents from the FT-IR 
absorbance spectrum (Andersen et al., 2002). Recently, this tech-
nique has been extensively evaluated for quantification purposes 
in industrial applications (Patz et al., 1999; Dubernet and Duber-
net, 2000; Gishen and Holdstock, 2000; Kupina and Shrikhande, 
2003; Nieuwoudt et al., 2004).

Naumann and co-workers suggested Fourier transform infrared 
(FT-IR) spectroscopy as a rapid and inexpensive method to iden-
tify microorganisms (Naumann, 1985; Naumann et al., 1988, 1990, 
1991; Helm et al., 1991). Absorption of infrared light by cellular 
compounds results in a fingerprint-like spectrum that can be identi-
fied by comparison to reference spectra. The success of the method 
is therefore directly dependent on the complexity of the reference 
spectrum library. The application of FT-IR spectroscopy for the 
identification of microorganisms was firstly reported in the food 
industry for some species of the genera Lactobacillus (Curk et al., 
1994), Actinomyces (Haag et al., 1996), Listeria (Holt et al., 1995), 
Streptococcus (Goodacre et  al., 1996) and Clostridium (Franz, 
1994). Additional research reported the identification of yeasts by 
FT-IR (Serfas et al., 1991; Henderson et al., 1996; Kümmerle et al., 
1998).

FT-IR microspectroscopy is a novel tool to characterize micro-
organisms (Ngo Thi et al., 2000). In this method the spectra of 
single colonies are recorded by a mid-IR spectrometer coupled 

to a microscope. Isolation and purification of the organisms to 
be measured are therefore not necessary. Wenning et al. (2002) 
compared identification by FT-IR macrospectroscopy and FT-IR 
microspectroscopy and found similar results. Therefore, the time-
consuming isolation of organisms prior to identification, as is the 
case with FT-IR macrospectroscopy, is not necessary.
New technology: Electrochemical sensors
One of the most promising directions for the development of in-
novative analytical methods is the use of electrochemical tech-
niques. These devices consist of chemical sensor arrays coupled 
with an appropriate pattern recognition system capable of extract-
ing information from the complex signals. The electronic nose 
consists of an array of gas sensors with different selectivity, a sig-
nal collecting unit and pattern recognition software. It is useful for 
the analysis of headspace of liquid or solid food samples (Schaller 
et al., 1998) and numerous attempts using the electronic nose for 
wine analysis have also been reported (Di Natale et  al., 1995, 
1996). Similar in principal to the electronic nose, the electronic 
tongue consist of an array of sensors designed for liquids for the 
evaluation and classification of complex liquids. Various tech-
niques such as conductimetric, potentiometric and voltammetric 
techniques can be used for the electronic tongue (Winquist et al., 
2000). Studies using potentiometric electronic tongue for bever-
age analysis and wine discrimination (Legin et al., 1999, 2003) 
have been reported. Buratti et al. (2004) used an electronic nose 
and an amperometric electronic tongue to differentiate and classi-
fy Italian wines according to region by applying multi-dimension-
al chemometric techniques. The application of various types of 
electrochemical sensors (electronic nose and tongue) in combina-
tion with other analytical techniques for discrimination and clas-
sification in different media has been reported (Toko, 2000; Legin 
et al., 2004; Ciosek et al., 2005; Cozzolino et al., 2005; Gallardo 
et al., 2005; Lozano et al., 2005; Ciosek and Wróblewski, 2007; 
García et al., 2006; Lvova et al., 2006; Parra et al., 2006). Esti and 
co-workers reported on the use of electrochemical biosensors for 
monitoring alcoholic fermentation (Esti et al., 2003) and malolac-
tic fermentation (Esti et al., 2004) in red wine. The development 
of electronic tongues and their analytical applications in the food 
and beverage industry is reviewed by Vlasov et al. (2002).
Chemometrics
The application of sophisticated statistical techniques, the so-
called “chemometrics”, in wine production and laboratory is 
widely referenced in the literature from several points of view. 
Multivariate data, such as spectra, are often rich in information. 
The methods used in chemometrics for the analysis of such large 
data sets are principal component analysis (PCA Wold et  al., 
1987; Jackson, 1991) and projections to latent structures (PLS 
Wold, 1982; Tenenhaus, 1998; Wold and Josefson, 2000; Wold 
et al., 2001). These methods provide a strategy for utilising this 
richness in information for summarizing data (Wold, 1982; Wold 
et al., 1987), classification and discriminant analysis (Wold, 1976; 
Stahle and Wold, 1987) and modelling relationships between var-
iables (Wold, 1982; Martens and Naes, 1989; Tenenhaus, 1998; 
Wold and Josefson, 2000; Wold et al., 2001).

Supervised and non-supervised pattern recognition techniques 
have been used to distinguish different varieties, geographi-
cal areas, elaboration processes etc. Câmara et  al. (2006) used 
multivariate analysis for the classification and differentiation of 
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Madeira wines according to the main grape varieties using head-
space analysis. Multivariate data analysis have been extensively 
used to differentiate wines with different geographic origins on 
the basis of volatile wine compounds (Noble et al., 1980; García-
Jares et al., 1995; García-Martin et al., 1995), specific compounds 
(hexan-1-ol and cyclo-hexane) (Kwan and Kowalski, 1980),  
sugars, organic acids and amino acids (Guedes de Pinho, 1994) 
and trace elements (Day et al., 1995). The value of chemometrics 
has also been proven a versatile and valuable tool for assessing 
wine authenticity (Arvanitoyannis et al., 1999).

Multivariate regression, such as principal component regression 
(PCR) and partial least squares regression (PLSR) are standard 
procedures in chemometrics, which has been used for developing 
equations for the determination of quantitative parameters in wine 
and other food industries using the data provided by the spectro-
scopic techniques.

FT-IR spectroscopy in combination with chemometric data 
evaluation provides valuable quantitative information even for 
highly complex problems such as wine analysis. This application 
provides high-throughput quantitative information which is im-
portant for monitoring fermentations.
CONCLUSIONS
Fermentation predictability and wine quality are principally de-
pendent on wine yeast attributes even if a wide range of factors 
affect the fermentation performances of yeasts. In particular, the 
ability to adapt to nutritional deficiency and to cope with the pres-
ence of inhibitory substances is of vital importance to fermenta-
tion performance.

Difficulties arise from a combination of factors and a variety of 
sources. It is the impact of two or more conditions together that 
may cause a problem of much greater difficulty than what would 
have been predicted by a single parameter acting alone. Therefore, 
each step of the winemaking process needs to be approached with 
as complete an understanding as possible. The cause of a stuck or 
sluggish fermentation is rarely the result of one factor in isolation. 
Generally, various factors would have a synergistic effect on each 
other, enhancing the effect of a specific factor.

A better understanding of the aspects of wine microorganism 
physiology will allow us to better match combinations of yeast 
and bacteria starter cultures with grape varieties, and select the 
timing of yeast and bacteria inoculations.

Fermentation problems usually arise due to the presence and 
impact of various stress factors in the yeast and bacteria envi-
ronment. Some of these stress factors are however unavoidable 
and others are the result of inappropriate fermentation manage-
ment decisions. New analytical technologies in combination with 
chemometrics such as multivariate data analysis could provide 
powerful tools to monitor industrial fermentations and prevent 
fermentation problems in the future.
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