Fingerprinting and Identification of Bacteria Present in UASB Granules Used to Treat Winery, Brewery, Distillery or Peach-lye Canning Wastewater

M. Keyser, T.J. Britz and R.C. Witthuhn*

Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Submitted for publication: February 2007

Accepted for publication: April 2007

Key words: fingerprinting and identification; microbial consortium; PCR-based DGGE; UASB; wastewaters

The effective operation of the anaerobic digestion process in an upflow anaerobic sludge blanket (UASB) bioreactor is dependent on the microbial composition of the UASB granules. The granules contain a consortium of bacteria, with a specific metabolic function for each group, contributing to the overall efficiency and stability of the bioreactor. The aim of this study was to fingerprint and identify the bacteria present in four different types of South African UASB granules that are used to treat winery, brewery, distillery and peach-lye canning wastewaters. This was done by combining conventional microbiological platings with PCR-based denaturing gradient gel electrophoresis (DGGE) and DNA sequence analysis. Each granule type showed distinct PCR-based DGGE fingerprints with unique bands, while other bands were found to be present in all the granules, regardless of the wastewater being treated. Sixty-eight different bacteria (40 pure isolates and 28 clones) were partially sequenced and identified from the winery, brewery, distillery and peach-lye canning granules. Thirty-five percent of the identified bacteria represented the unculturable bacteria and 65% represented the culturable bacteria, which included members of the following genera: *Bacillus, Pseudomonas, Bacteroides, Enterococcus, Alcaligenes, Clostridium, Shewanella, Microbacterium, Leuconostoc, Sulfurospirillum, Acidaminococcus, Vibrio, Aeromonas, Nitrospira, Synergistes, Rhodococcus, Rhodocyclus* and *Syntrophobacter*. A DGGE marker was successfully constructed, representing members of the bacterial consortium in UASB granules.

INTRODUCTION

The upflow anaerobic sludge blanket (UASB) process has been widely used for the biological treatment of wastewaters from food and beverage processing (Wolmarans and De Villiers, 2002). These types of wastewaters normally have a high organic content and contain little or no toxic solids, providing the ideal conditions for bioreactor operation (Trnovec and Britz, 1998). The efficiency and stability of UASB bioreactors are dependent on the microbial composition of wastewaters (Roest et al., 2005). The microorganisms present in the seeding sludge form dense aggregates or granules through a granulation process characteristic of these bioreactors. The granules that are formed consist of different trophic groups, which are necessary for anaerobic digestion (Sekiguchi et al., 1998). These are the acidogenic, acetogenic, homoacetogenic and methanogenic bacteria. These microbial groups are responsible for executing the consecutive stages of the anaerobic digestion process, where the metabolic products of one microbial group are assimilated by the next microbial group (Gerardi, 2003).

Acidogens are responsible for the degradation of organic material to form carbon dioxide, hydrogen, acids and alcohols (Wangnai *et al.*, 2004). The acetogenic bacteria convert the fatty acids to acetic acid and hydrogen (Van Andel and Breure, 1984). To prevent hydrogen accumulation, the homoacetogenic bacteria utilise carbon dioxide and hydrogen to form acetate as an end-product. The methanogens convert the acetate and hydrogen to methane and carbon dioxide (Batstone *et al.*, 2002). Variations in the composition of one trophic group as a result of changes in substrate composition, reactor temperature, retention time and even pH may influence the entire microbial community structure (Casserly and Erijman, 2003). It is, therefore, important to identify the bacteria present in each granule type so as to better understand and optimise the metabolic activity of the different trophic groups present in the different granules, which will result in the successful operation of a UASB bioreactor.

When treated, different types of wastewaters also have an influence on the microbial consortium present in the granules. Keyser *et al.* (2006) analysed different UASB granules and showed that different methanogenic bacteria were present in the different types. Each type of wastewater favours the growth of specific bacteria that may have an impact on the success of the granulation process and, subsequently, on the successful operation of the

^{*}Corresponding author: e-mail address: rcwit@sun.ac.za

Tel: +27-21-808 3654; *Fax:* +27-21-808 3510

Acknowledgements: The National Research Foundation (NRF), Water Research Commission (WRC) and The Skye Foundation and Stellenbosch University are acknowledged for financial support.

UASB bioreactor. Each type of bacteria present in the granules performs a specific metabolic role in the granules, and contributes to their performance and ultimately that of the UASB bioreactor. Thus, it is essential to identify the various microorganisms in a bioreactor, since they play a role in its successful operation.

The use of conventional culture-dependent methods to isolate microorganisms from the UASB environment is limited due to the inability of many microorganisms to grow on synthetic media. Over the past few years, culture-independent methods therefore have proven to be of value for the identification of bacteria in complex samples (Roest et al., 2005). The aim of this study was firstly to use sequence analysis to identify the mixed microbial community, comprising different culturable and unculturable bacteria, that are present in four different types of UASB granules that had been used to treat either winery, brewery, distillery or peach-lye canning wastewaters. Secondly, PCR-based DGGE was used to obtain the unique fingerprint for each of the granule types in order to construct a DGGE marker representing some of the identified bacteria present in the four different UASB granule types so as to facilitate future rapid identification of UASB microorganisms.

MATERIALS AND METHODS

The PCR-based DGGE analysis used in this study was based on the amplification of a 200 base pair (bp) PCR product using the primers F341 with GC-clamp and R534 (Muyzer *et al.*, 1993). DGGE profiles (200 bp) were obtained from the DNA isolated from the four different UASB granules. In addition, 1.5 kilobase (kb) fragments were amplified from the DNA of the different granules using the primers F8 and R1512 (Felske *et al.*, 1997), and these were cloned and sequenced to enable identification. In order to confirm that all the microorganisms in the 200 bp DGGE profile had been cloned, sequenced and identified (using the 1.5 kb fragment), a 200 bp PCR fragment was amplified from the 1.5 kb PCR products. The resulting DGGE profile was compared to that of the profile obtained directly from the DNA of the different granules.

Identification of the culturable microorganisms was achieved by obtaining pure isolates from the different UASB granules using microbial platings. DNA was isolated from these pure isolates and a 1.5 kb fragment was amplified and sequenced in order to identify the culturable microorganisms. The DNA from these isolates was also amplified (200 bp), separated using DGGE and compared to the DGGE profiles of the different UASB granules. A DGGE marker was constructed to represent the microorganisms identified from the different UASB granules.

UASB granules

Three of the different types of UASB granules were obtained in 20 kg batches from available and operational industrial-scale UASB bioreactors in South Africa. The granule batches that had been used in the treatment of winery and distillery wastewaters were obtained from Distell, Stellenbosch, Western Cape, RSA. The brewery granules were obtained from the SAB brewery plant in Amanzimtoti, Kwazulu-Natal, RSA. The fourth granule type was originally from the full-scale SAB brewery UASB bioreactor, but had then been used as inoculum for a 60 L laboratory-scale UASB bioreactor treating peach-lye canning wastewater at the Department of Food Science, Stellenbosch University. This

60 L UASB bioreactor was operated for 15 months on the peachlye canning effluent before granules were taken for analysis.

Microbial isolations

Randomly selected granules from each of the four different types of UASB granules were homogenised with a sterile pestle in 9 mL of sterile saline solution (0.85% (m/v) NaCl) and a dilution series (10⁻¹ to 10⁻⁸) was prepared. Each dilution was plated on nutrient agar (NA) (Biolab, supplied by Merck, Cape Town, South Africa) and on deMan, Rogosa and Sharpe agar (MRS) (Biolab, supplied by Merck, Cape Town, South Africa). The plates were incubated aerobically and anaerobically at 35°C for two days using the Anaerocult A system (Merck, Cape Town, South Africa). Although MRS is selective for lactic acid bacteria, it facilitates the growth of many bacteria (Van der Merwe and Britz, 1994). All the bacterial colonies obtained were streaked until pure isolates were obtained. The pure isolates were Gram-stained and microscopically examined to confirm isolate purification. These pure isolates were subjected to PCR amplification, purification and sequencing.

Genomic DNA extraction

DNA was extracted from the four different types of UASB bioreactor granules using the method of Van Elsas *et al.* (1997) as modified by Keyser *et al.* (2006). All the DNA extractions were done in duplicate.

PCR-based DGGE analysis

PCR amplifications

In order to obtain sufficient DNA sequences to identify the bacteria present, a 1.5 kb fragment of the 5' end of the 16S rRNA gene was amplified from the different granule DNA using the primers F8 (5' CAC GGA TCC AGA CTT TGA TYM TGG CTC AG 3') and R1512 (5' GTG AAG CTT ACG GYT AGC TTG TTA CGA CTT 3') (Felske et al., 1997). PCR reactions were performed in 50 µl reaction volumes, containing 1 µl Taq DNA polymerase (5 U/µl) (Promega), 5 µl 10 x PCR reaction buffer, 2 µl of each of the primers (10 µl), 2 µl dNTPs (10 mM) (Promega), 2 µl 99% (v/v) DMSO (Merck, Cape Town, South Africa) and 2 µl of the extracted DNA (~30 ng.µl-1). The PCR amplification conditions were as follows: initial denaturation was at 92°C for 3 min; followed by denaturation at 92°C for 30 sec; primer annealing at 54°C for 30 sec; and chain elongation at 68°C for 1 min. These three steps were repeated for 35 cycles. Final chain elongation was performed at 72°C for 7 min (Felske et al., 1997). All the amplified PCR products were separated on 1% (m/v) agarose gels containing ethidium bromide and visualised under UV light (Vilber Lourmat).

A PCR reaction amplifying a 200 bp part of the 5' end of the 16S rRNA gene was performed on the amplified 1.5 kb PCR frag-

ments, using the primers F341 and R534 (Muyzer *et al.*, 1993). This was done to confirm that each 200 bp band in the DGGE fingerprints was represented by a 1.5 kb PCR product that was sequenced.

DGGE

The 200 bp PCR fragments were separated using DGGE, performed with the BioRad DCodeTM Universal Mutation Detection System (BioRad Laboratories, USA). The PCR products were applied to 8% (m/v) polyacrylamide gels with a gradient of between 45 and 70% (containing 0 to 100% denaturant (7M urea and 40% (v/v) formamide)) as described by Keyser *et al.* (2006).

Cloning

The 1.5 kb PCR fragments obtained from the amplification of the DNA extracted from the different granules were cloned into the pGemT-Easy Vector System II (Promega), since the PCR product contained a mixture of fragments with different DNA sequences. All the transformed cells were screened for the correctly sized insert using the primers T7 and SP6. Amplification reactions were performed in a total reaction volume of 50 µl, containing 1 µl *Taq* DNA polymerase (5 U/µl) (Roche Diagnostics), 5 µl 10 x PCR buffer, 2 µl of each of the primers (10 µM) and 2 µl dNTPs (10 mM) (Promega). The PCR amplification conditions consisted of an initial denaturation at 92°C for 3 min, followed by 35 cycles of denaturation at 68°C for 1 min, and a final 7 min elongation at 72°C.

PCR purification

All the amplified 1.5 kb PCR fragments that were sequenced were purified using the High Pure PCR Product Purification Kit (Roche Diagnostics) according to the manufacturer's instructions.

DNA sequencing

All the obtained and purified 1.5 kb PCR fragments were sequenced using the ABI PRISM 377 DNA Sequencer (Perkin-Elmer) at the DNA Sequencing Facility at Stellenbosch University. The sequences obtained were compared to 16S rRNA gene sequences available in the National Centre for Biotechnology Information (NCBI) database using the BLASTn search option (Altschul *et al.*, 1990).

Phylogenetic analysis

The 16S rRNA gene sequences were manually aligned by inserting gaps and the phylogenetic analyses were conducted using MEGA 2.1 (Kumar *et al.*, 2001). The percentage similarities were calculated to identify the species.

DGGE marker

Eighteen DGGE bands were selected from the profiles obtained for the different granules. These bands represented cloned PCR fragments, as well as isolates from the different granules. The PCR products of the selected DGGE bands were separated using DGGE by loading 2 μ l of each reaction mixture in the same well.

RESULTS AND DISCUSSION

PCR-based DGGE fingerprinting of the different UASB granules

The initial 200 bp PCR amplification products that were obtained were successfully separated using DGGE to produce unique fingerprints for each of the granule types evaluated. PCR-based DGGE fingerprints of duplicate DNA extractions of each granule type were found, as shown in Figure 1A and B, to be reproducible. Distinct fingerprints, containing unique bands, were observed for the four different UASB granules.

Definite bands were in the same position on the gel and present in all the granules, suggesting that a section of the microbial composition, under the conditions employed in this study, was identical and constant, irrespective of the wastewater being treated (Figure 1A and B). This suggests that the organisms represented by those bands are constant, irrespective of the wastewater being treated.

Certain bands in the fingerprints from the peach-lye canning granules were similar to bands found in the fingerprints of the brewery granules. Other bands present in the fingerprints of the peach-lye canning granules were not observed in the fingerprints of the brewery granules. These similarities and differences between the peach-lye canning and brewery granules are clear indications of changes in the microbial consortium when granules are subjected to a change in wastewater composition. This confirms that the composition of the wastewater being treated has an impact on the microbial species present in the granules.

Species identification

Sixty-eight different bacteria (40 pure cultured isolates and 28 clones) were identified from the winery, brewery, distillery and peach-lye canning granules. Of the 68 bacteria, 24 were representative of uncultured bacteria, constituting 35% of the identified bacteria. The remaining 65% were culturable bacteria. In Table 1, a summary is provided of the number given to each unique DGGE band, whether it was identified from cloned PCR fragments or pure isolates (cultured bacteria), the number of bases of each fragment sequenced and its GenBank accession number, as well as the closest relative and the percentage sequence similarity.

Certain bacteria were specific to a certain granule type, while other bacteria were found to be present in more than one granule. *Clostridium* was only identified in the distillery granules, while *Enterococcus*, *Leuconostoc*, *Aeromonas*, *Vibrio* and species related to *Rhodocyclus*, *Nitrospira*, *Rhodococcus* and *Syntrophobacter* were present only in the brewery granules. *Microbacterium* species were found only in the winery granules. *Sulfurospirillum* and species related to *Acidaminococcus* were found only in the peach-lye canning effluent granules. The most identified species of bacteria present in all four granule types were species of *Bacillus* and *Pseudomonas*. A total of 20 *Bacillus* and 14 *Pseudomonas* were identified in the various granules used in this study.

Bacillus:

Nineteen members of the genus *Bacillus* were found to be present in four different UASB granule types. Seven of these were present in the winery granules, five in the distillery granules, four in the peach-lye canning granules and three in the brewery granules. A comparative analysis was done of the sequences retrieved from GenBank and the percentage similarity can be observed in Table 1. Band W10 showed a 99.2% sequence similarity to an unidentified bacterium (Accession number AY345491) (Table 1) previously isolated from a sediment sample and all the other bands were found to be closely related to *B. cereus*. Band PL4 was

TABLE 1

Identification of bacteria present in different UASB granules.

Incllase second Incillar general sp. NKS-1605 FIG9355 W1-1 510 DQ238238 99.6 Incillar engeneral sp. NKS-1605 AF15355 W2-1 510 DQ238234 99.8 Incillar engeneral sp. NKS-1605 AF15327 W1-1 511 DQ238234 100 Bacillar coreal. GM67 AF15327 W10-1 511 DQ238234 100 Bacillar coreal. GM67 AF15327 W10-1 511 DQ238343 100 Bacillar coreal. GM67 AF15327 W10-1 511 DQ238377 100 Bacillar solution ATCC21331 AF3053857 B1-1 511 DQ23826 96.5 Bacillar solution ELC5 AF100444 D1-1 511 DQ23827 29.0 Bacillar solution ELC5 AF157381 D1-1 511 DQ238254 100 Bacillar solution ELC5 AF157381 D1-1 511 DQ238255 100 Bacillar solution ELC5 AF1595781 D1-1 511 DQ238252 98.6 Incillar sontNV BCO	DGGE band ^a I – Isolate C – Clone	Sequence length (bp)	GenBank accession number (clone/isolate)	% Sequence similarity	Closest relative	GenBank accession number (closest relative)
NI-1 510 DQ238239 99.6 Bacillar proma sp. NRS-105 AF10955 N2-1 506 DQ23824 99.6 Bacillar proma sp. NRS-105 AF10955 N2-1 506 DQ23824 99.8 Bacillar sp. NRS-121 AF11111 NU-1 510 DQ23824 100 Bacillar spreas (Marci AF12925 W10-1 511 DQ238241 100 Bacillar spreas (Marci AF139275 B10-1 511 DQ238247 100 Bacillar spreas (Marci AF13991 B12-1 510 DQ238247 100 Bacillar spreas B12 AF139083 B12-1 511 DQ238248 100 Bacillar spreas B12 AF101044 D2-1 511 DQ238248 100 Bacillar spreas B12 AF17733 D1-1 511 DQ238245 100 Bacillar spreas NCC555221 AF39739 P12-1 511 DQ238251 100 Bacillar spreas NCC555221 AF39739 P12-1 710 DQ238253 99.6 Breadm	Bacillus					
W2-1 510 DQ238238 99.8 Biodian segmetarians KL-197 AV30838 W1-1 511 DQ238240 100 Biodians centra GM67 AV118273 W1-1 511 DQ238242 100 Biodians centra GM67 AV18273 W20-1 511 DQ23821 100 Biodians centra GM677 AV30235 W20-1 511 DQ238217 100 Biodians centra GM677 AV30235 B0-1 511 DQ238247 100 Biodians centra L1 AV30235 B7-1 510 DQ238249 100 Biodians centra L1 AV30033 D1-1 511 DQ238249 100 Biodians centra M12 AV37281 D2-1 511 DQ23824 100 Biodians centra M148 C00006 AV37283 D1-1 511 DQ23824 100 Biodians centra M148 C00006 AV37283 D10-1 511 DQ23823 100 Biodians centra M148 M200068 AV37283 D10-1 511 DQ238231 100 Biodians cent	W1 – I	510	DQ238239	99.6	Bacillus pycnus sp. NRS-1695	AF169535
W3-1 506 DQ23824 98.2 Bretillers p.TKSP21 AT411341 W0-1 511 DQ238242 100 Bretillers creas J-1 AT30275 W10-1 510 DQ238243 190 Bretillers creas J-1 AT30275 W10-1 510 DQ238243 190 Bretillers creas J-1 AT30275 W10-1 510 DQ238247 100 Bretillers inclus in SM289T AT30275 B7-1 510 DQ238269 100 Bretillers inclus in SM289T AT310033 B12-1 511 DQ238269 100 Bretiller schellers schellers AT31003 B2-1 511 DQ238264 100 Bretiller schellers AT316065 D1-1 511 DQ238251 100 Bretiller schellers AT390571 B13-1 B12 DQ238253 100 Bretiller schellers AT390571 P14-1 518 DQ238253 100 Bretiller schellers AT390577 P14-1 508 DQ238234 90.6 Bretiller	W2 – I	510	DQ238238	99.8	Bacillus megaterium KL-197	AY030338
We-1 S11 DQ23840 100 Bocillis census 31 Av138273 W10-1 S10 DQ23841 99.2 Unidentified bacterium close W4B-B03 Av138273 W10-1 S10 DQ23841 99.2 Unidentified bacterium close W4B-B03 Av136275 W10-1 S10 DQ238476 100 Bocillus indigenesis AVC.21531 Av136873 B7 -1 S10 DQ238246 96.5 Recillus indigenesis AVC.21531 Av136933 B7 -1 S11 DQ23844 100 Bocillus indigenesis AVC.35 Av16043 D1 -1 S11 DQ23844 100 Bocillus indigenesis AVC.35 Av15055 D5 -1 S11 DQ238245 100 Bocillus indigenesis AVC.352 AP397390 D16 -1 S11 DQ238255 100 Bocillus indigenesis AVC.352 AP397390 D16 -1 S11 DQ238254 100 Bocillus indigenesis AVC.352 AP397390 D16 -1 S11 DQ238254 100 Bocillus indigenesis AVC.352 AP397390 D17	W3 – I	506	DQ238244	98.2	Bacillus sp. TKSP21	AF411341
Wol-1 S11 DQ238242 100 <i>Reallins cereas</i> 1-1 AV305275 W30-1 S11 DQ238241 100 <i>Becilius submits</i> ATC22131 AD014477 W30-1 S11 DQ23827 100 <i>Becilius cerus</i> 1-1 AD104477 B0-1 S11 DQ23827 100 <i>Becilius cerus</i> 1-1 AD104447 B12-1 S10 DQ238276 W6.5 <i>Becilius cerus</i> 1-12 AD10447 D1-1 S11 DQ238278 100 <i>Becilius cerus</i> 1-12 AD10455 D2-1 S11 DQ238274 100 <i>Becilius cerus</i> 1-12 AD1055 D5-1 S11 DQ238275 100 <i>Becilius cerus</i> 1-12 AD19505 D16-1 S11 DQ238255 100 <i>Becilius submits</i> C15 AP374281 P12-1 S11 DQ238254 100 <i>Becilius submits</i> AP393509 P14-1 S08 DQ238253 90.6 <i>Becilius submits</i> AP393509 P14-1 S11 DQ238251 90.9 <i>Beresudmennas</i>	W6 – I	511	DQ238240	100	Bacillus cereus G9667	AY138273
W10-1 510 DQ238243 99.2 Unidentified bacterium class W4B-B03 AT345491 B6 -1 511 DQ238237 100 <i>Bacillus certes</i> 1-1 AT30575 B7 -1 510 DQ238256 96.3 <i>Bacillus certes</i> 1-1 AT30575 B12 -1 510 DQ238256 96.3 <i>Bacillus certes</i> 1-1.2 AT37575 D1 -1 511 DQ238256 96.3 <i>Bacillus certes</i> 14.1 AT37575 D1 -1 511 DQ238256 100 <i>Bacillus certes</i> 14.1 AT37575 D1 -1 511 DQ238256 100 <i>Bacillus equilistitititititititititititititititititi</i>	W9 – I	511	DQ238242	100	Bacillus cereus J-1	AY305275
With 0 Boellar solution Solution Application Bis -1 511 DQ238237 100 Boellins solution APT 1 Bit -1 510 DQ238236 66.5 Boellins produce results 1-1 APT 305275 Bit -1 510 DQ238236 66.5 Boellins produce results 1-1 APT 305275 D1 -1 511 DQ238234 100 Boellins produce results 1-1 APT 305275 D2 -1 511 DQ238234 100 Boellins solution KL-077 APT 30531 D3 -1 491 DQ238254 100 Boellins solution KL-077 APT 30531 P12 -1 511 DQ238255 100 Boellins solution KL-07053521 APE 30739 P14 -1 518 DQ238255 100 Boellins solution APE 30657 P16 -1 739 DQ238233 98.6 Boellins solution APE 30657 P16 -1 739 DQ238233 98.1 Sulphide-oxidiring processin MS1 APE 336467 P16 -1 739 DQ238233 98.1	W10 – I	510	DQ238243	99.2	Unidentified bacterium clone W4B-B03	AY345491
B6 - I S11 DQ238237 100 <i>Boelliss ceress</i> 1-1 AT3005275 B7 - I S10 DQ238236 96.5 <i>Boelliss sphemercon</i> PLC 5 AT161083 B12 - I S11 DQ238236 96.5 <i>Boelliss sphemercon</i> PLC 5 AT161084 D1 - I S11 DQ238236 100 <i>Boelliss ceress</i> B112 AT37231 D2 - I S11 DQ238236 100 <i>Boelliss ceress</i> B12 AT37234 D1 - I S11 DQ2382351 100 <i>Boelliss ceress</i> B12 AT27438 D1 - I S11 DQ238255 100 <i>Boelliss ceress</i> ATC53521 AP39057 PLA - I S18 DQ238255 90.6 <i>Boelliss sp.</i> TKSP21 AD175791 PLA - I S18 DQ238255 90.7 <i>Boelliss sp.</i> TKSP21 AD175791 PLA - T S18 DQ238257 97.8 <i>Breudomonas sp.</i> AMSN AF393457 D1 - C T39 DQ238237 97.8 <i>Preudomonas sp.</i> AC112 AV191426 PL-I T31 DQ238237	W20 – I	511	DQ238241	100	Bacillus subtilis ATCC21331	AB018487
B7-1 510 DQ238736 100 <i>Bacillus paterians</i> PL-25 AJ10083 D1 -1 511 DQ238236 06.5 <i>Bacillus evens</i> Hu12 AJ57281 D2 -1 511 DQ238247 09.8 <i>Bacillus evens</i> Hu12 AJ57281 D3 -1 491 DQ238247 09.8 <i>Bacillus evens</i> Hu12 AJ51065 D1 -1 511 DQ23824 100 <i>Bacillus evens</i> HV12 AJ51065 D1 -1 511 DQ238254 100 <i>Bacillus evens</i> HV18 C00068 AJ577281 PL -1 518 DQ238254 100 <i>Bacillus evens</i> HV18 C00068 AJ577391 PL -1 518 DQ238255 100 <i>Bacillus evens</i> HV18 C00058 AJ5739399 PL -1 738 DQ238233 99.6 <i>Bacillus evens</i> HV18 AJ67714 PL -1 739 DQ238233 99.6 Bacillus evens HV18 AJ67714 D1 -1 739 DQ238233 98.1 Sulphide-oxidiang heterian N-1 AP59390 D1 -1 739 DQ238231 <t< td=""><td>B6 – I</td><td>511</td><td>DQ238237</td><td>100</td><td>Bacillus cereus J-1</td><td>AY305275</td></t<>	B6 – I	511	DQ238237	100	Bacillus cereus J-1	AY305275
B12-1 510 DQ238249 90.5 Bacillus spharics PLC-3 AV161044 D1 -1 511 DQ238249 100 Bacillus subtits subtits KL-077 AV150331 D2 -1 511 DQ238247 99.8 Bacillus subtits KL-077 AV15045 D5 -1 511 DQ238246 100 Bacillus subtits (S15 AP77248 D1 -1 511 DQ238251 100 Bacillus cerus AV14 BC00068 AP577283 P12 -1 511 DQ238254 100 Bacillus panilas AP59051 P14 -1 508 DQ238256 100 Bacillus panilas AP597399 P14 -1 511 DQ238256 100 Bacillus panilas AP597399 P14 -1 511 DQ238257 99.9 Burendian bacterium No.1 AP593590 D1 - C 730 DQ238232 91.8 Subplide oxiding bacterium No.1 AP593590 D1 - C 730 DQ238231 92.7 Preadomonas funcreaceus Nr.C AP233168 D1 - C 730 DQ238201	B7 – I	510	DQ239796	100	Bacillus fusiformis DSM2898T	AJ310083
D - I 51 DQ238249 100 Bocilius cereas B412 AIS7281 D3 - I 51 DQ238247 99.8 Bocilius spills (k-1077 AV30331 D5 - I 511 DQ238246 100 Bocilius spills is subility G1558 AP274243 D16 - I 511 DQ238255 100 Bocilius cereas RIVM EC0068 AP3724243 P13 - I 511 DQ238255 100 Bocilius cereas RIVM EC0068 AP3724243 P14 - I 682 DQ238235 90.6 Bocilius spit RSP21 AP30557 Recubinous Fil-4 739 DQ238235 99.9 Brevandinonas buildua AP32425 D4 - I 739 DQ238232 98.1 Suphaber Suphaber Int NP1 AP39509 D6 - I 731 DQ238232 97.8 Preudomous sp. AMSN AF438148 D10 - C 729 DQ238231 99.2 Preudomous sp. AMSN AF438148 D13 - C 730 DQ238231 99.2 Preudomous sp. AMSN AF438148 D13 - C 730 <td>B12 – I</td> <td>510</td> <td>DQ238236</td> <td>96.5</td> <td>Bacillus sphaericus PLC-5</td> <td>AY161044</td>	B12 – I	510	DQ238236	96.5	Bacillus sphaericus PLC-5	AY161044
D2 -1 511 DQ23847 900 Bacillus subility KL-077 AV03031 D3 -1 401 DQ23847 99.8 Bacillus sy 19497 AB15065 D5 -1 511 DQ23821 100 Bacillus sy 19497 AB15065 P12 -1 511 DQ23823 100 Bacillus cerus RIVM BC0068 AD57283 P12 -1 511 DQ23823 100 Bacillus partiniza AE301657 P14 -1 508 DQ23823 90.6 Bacillus partiniza AE301657 P14 -1 739 DQ238235 90.9 Breundimenas buliata AB023428 D4 -1 739 DQ238231 98.1 Subpido-solizing bacterium N9-1 AE393509 D3 -C 730 DQ238231 98.5 Pacadomonus p.V.0112 AP04726 Put-1 736 DQ238231 98.5 Pacadomonus p.V.12 AP04726 Put-1 736 DQ238231 99.2 Pacadomonus p.V.12 AP04726 Put-1 736 DQ238234 96.0 Pacadomonus	D1 – I	511	DQ238249	100	Bacillus cereus B412	AJ577281
Da -1 491 DQ238247 99.8 Bocillus spinits C15 AI315065 D5 -1 511 DQ238246 100 Bocillus subitis C15 AI377283 P12 -1 511 DQ238255 100 Bocillus spinitis C15 AI377283 P13 -1 511 DQ238255 100 Bocillus ponitius AF397399 P14 -1 508 DQ238255 99.6 Bocillus ponitius AF397399 P14 -1 682 DQ238235 99.7 Bocillus ponitius AF393507 D6 -1 731 DQ238232 97.8 Pseudomonus bulati AB03428 D10 -C 730 DQ238231 99.2 Pseudomonus sp. XA112 AV04826 P11 -1 736 DQ238231 99.2 Pseudomonus sp. XA112 AV04826 P14 -1 736 DQ238231 99.2 Pseudomonus sp. XO12 AV04826 P14 -1 736 DQ238234 96.0 Pseudomonus sp. XO24 AV04826 P13 -1 736 DQ238261 99.3 Uncultured d	D2 – I	511	DQ238248	100	Bacillus subtilis KL-077	AY030331
D5 -1 511 DQ238246 100 Bocillus subits (C15 AF274248 P12 -1 511 DQ238251 100 Bocillus cereus NIVM BC00068 AF37783 P12 -1 511 DQ238253 99.6 Bocillus sp. A24 AF393657 P14 -1 508 DQ238255 99.6 Bocillus sp. NSP21 AB017591 Peudomonas - - AF393657 Peudomonas AF393657 P4 -1 799 DQ238235 99.9 Brevandinous bultata AB023428 D4 -1 739 DQ238237 97.8 Peudomonus bultata AF393509 D5 -1 731 DQ238231 98.2 Pseudomonus publicata pyrnocinia strin R11688 A1440714 P11 -1 736 DQ238231 99.2 Pseudomonus filtorescens Vx C112 AV04826 P11 -1 736 DQ238234 96.0 Pseudomonus filtorescens Vx C AF228367 P14 -1 736 DQ238263 99.6 Uncultured bacterium clone T1484 AY044806 P14 -1 730 DQ	D3 – I	491	DQ238247	99.8	Bacillus sp. 19497	AJ315065
D16 1 DQ238251 100 Bocillus cereus RIVM BC00066 AJ577283 PI3 1 511 DQ238255 100 Bocillus partilus cereus RIVCS35221 AF2397399 PIA 1 508 DQ238255 100 Bocillus partilus cereus RIVCS35221 AF397399 PIA 1 508 DQ238255 99.6 Bocillus partilus cereus RIVCS35221 AF397399 PR-4 1 682 DQ238235 99.6 Bocillus sp. TKSP21 AF0073783 B4 730 DQ238235 99.8 Brevandimonas bultati AF039569 D6 731 DQ238232 97.8 Pseudonomas sp. ANSN AF33148 D10 C 730 DQ238271 98.5 Pseudonomas sp. N2112 AY014826 PL1-1 736 DQ238231 99.2 Pseudonomas sp. N2112 AY014826 PL1-1 736 DQ238230 99.6 Headonomas sp. N2112 AF22867 PL1-1 736 DQ238263 99.6 Headonomas sp. N2024 AY014826 PL1-2 736 DQ238264 97.8 Headonomas sveroni<	D5 – I	511	DQ238246	100	Bacillus subtilis C15	AF274248
PL2 - 1 511 DQ238253 100 Bocillus creak ATCC35221 AP39051 PL3 - 1 511 DQ238253 99.6 Bocillus sp. A24 AP393657 PL4 - 1 580 DQ238253 99.6 Bocillus sp. TKSP11 AB107501 Peudomanas AP393057 PL4 - 1 780 DQ238233 99.1 Breundinonas bullata AB023428 D4 - 1 739 DQ238231 98.1 Sulphide-oxidizing bacterium N9-1 AF393509 D6 - 1 739 DQ238231 98.5 Pseudomonas Sp. NSI12 AV440714 D10 - C 739 DQ238231 99.2 Pseudomonas Sp. NS112 AV440745 PL3 - 1 736 DQ238231 99.2 Pseudomonas filorescens Vc. C AF231651 PL1 - C 734 DQ238234 96.0 Pseudomonas filorescens Vc. C AF231651 PL1 - C 734 DQ238250 99.6 Uacultured bacterium NH4 AV216460 PL1 - C 734 DQ238264 97.8 Uacultured bacterium KM4 AV216460 PL1 - C 736 DQ23	D16 – I	511	DQ238251	100	Bacillus cereus RIVM BC00068	AJ577283
PIA - I S11 DQ23823 9.6 Bacillus ps, 7.43 AF397399 PL4 - I S08 DQ23823 9.6 Bacillus ps, TKSP21 AB07591 PL6 - I S11 DQ23823 9.6 Bacillus ps, TKSP21 AB07591 Peudonoms Feudonomas Bacillus ps, TKSP21 AB073935 Pattering bacterian AB024428 D4 - 1 739 DQ238237 9.4 Brevandinomas sp, AMSN AF438148 D10 - C 730 DQ238271 9.5 Pseudonomas sp, NZ112 AY044826 PL1 - 1 730 DQ23820 9.2 Pseudonomas fluorescens AF094726 PL5 - 1 736 DQ23820 9.6 Pseudonomas fluorescens NO AF228367 PL4 - C 729 DQ23820 9.6 Pseudonomas sp, N2024 AV014806 PL1 - C 736 DQ23826 9.6 Pseudonomas sp, N2024 AV014806 PL2 - C 736 DQ23826 9.9 Uncultured bacterium clone III-29 AL48008 PL2 - C 736	PL2 – I	511	DQ238255	100	Bacillus cereus ATCC535221	AF290551
PL -1 508 DQ23825 99.6 Bacillus ponílas AF393657 Preudomonas	PL3 – I	511	DQ238254	100	Bacillus sp. A24	AF397399
PL6 - 1 511 DQ38256 100 Bacillito sp. TKSP21 AB01791 B4 - 1 682 DQ38235 99.9 Breundimonas hullata AB023428 B4 - 1 739 DQ38233 98.1 Sulphide-oxitiging bacterium No-1 AF393509 D6 - 1 731 DQ38232 97.8 Pseudomonas sp. AMSN AF48148 D13 - C 730 DQ38271 98.5 Pseudomonas florescens van Stain R13058 AJ440714 D13 - C 730 DQ238231 99.2 Pseudomonas florescens van Stain R13058 AJ440714 PL1 - 1 736 DQ238230 99.2 Pseudomonas florescens van Stain R13058 AJ440714 PL1 - 1 736 DQ238230 99.2 Pseudomonas florescens van Stain R13058 AF094726 Pradumonas Traditionas florescens van Stain R13058 AF094726 AF094726 AF04460 PL1 - 1 736 DQ238202 99.6 Uncultured Gamma Protodocterium AB015570 PL14 - C 734 DQ238264 97.8 Uncultured Gamma Protodocterium AProtodocterium AProtodocterium AProtodocterium AProtodocterium AProtodocterium AProtodocterium AProtodocterium AProtodocterium AProtodocterium AProtod	PL4 – I	508	DQ238253	99.6	Bacillus pumilus	AF393657
PreudomonasAB0.34-28PA-16820238.23398.9Brevandimonas hullataAB0.234-28D4 -1739DQ238.23398.1Sulphide-oxidizing bacterium N0-1AP0.314.84D10 - C729DQ238.2794.7Burkholderia sp. AMSNAF4.314.84D10 - C730DQ238.27198.5Pseudomonas sp. X21.12NV 144.25PL -1736DQ238.23199.2Pseudomonas sp. X21.12NV 144.25PL -1736DQ238.23199.2Pseudomonas fluorescensNCAP2.316.51PL -1732DQ238.23099.2Pseudomonas fluorescensNCAP2.316.51PL -1732DQ238.2399.6Pseudomonas sp. 7.1AP5.316.51PL -1736DQ238.2399.6Pseudomonas sp. NZ024AY0144.04PL -1736DQ238.26499.8Pseudomonas sp. NZ024AY014906PL -1736DQ238.26499.6Pseudomonas sp. NZ024AY014906PL -2732DQ238.26499.6Pseudomonas sp. NZ024AY014906PL -2734DQ238.25599.6Pseudomonas sp. NZ024AY014906PL -2734DQ238.26599.9Uncultured bacterium clone IIB-29AP364097Hito C86DQ238.2796.8Uncultured bacterium clone IIB-29AP364097Buteroider SolaDQ238.2799.3Uncultured bacterium clone IIB-29AP364097D1 C86DQ238.	PL6 – I	511	DQ238256	100	Bacillus sp. TKSP21	AB017591
B4 -1 682 DQ238235 99.9 Breundmonas bullara AB023428 D6 -1 731 DQ238233 98.1 Sulphide-oxidizing bacterium NP-1 AF393509 D6 -1 731 DQ238272 97.8 Pseudomonas sp. ANSN AF438148 D13 - C 730 DQ238271 98.5 Pseudomonas sp. X2112 AV014826 PL1 -1 730 DQ238271 98.5 Pseudomonas sp. X2112 AV014826 Preudomonas Pseudomonas sp.71 AF521651 AF238367 Pseudomonas sp.71 AF521651 PL1 -1 734 DQ238234 96.0 Pseudomonas sp.71 AF521651 PL1 - C 734 DQ238264 97.8 Uncultured Gamma Froidenbacterium Ab015570 PL1 - C 734 DQ238269 99.6 Pseudomonas sp.714 AV014806 PL2 - C 734 DQ238264 97.8 Uncultured Macterium Chone IIB-28 AH88098 PL2 - C 732 DQ238265 99.9 Uncultured Macterium Chone IIB-28 AH88098 D1 - C	Pseudomonas					
D4 -1 739 DQ238233 98.1 Sulphide-oxidizing bacterium No-1 AF39509 D0 -1 731 DQ238232 97.8 Pseudomonas sp. AMSN AF438148 D10 -C 729 DQ238270 94.7 Burkholderia pyrrochina strian R13058 Al440714 D13 -C 730 DQ238271 98.5 Pseudomonas sp.X2112 AV014826 PL1 -1 736 DQ238231 99.2 Pseudomonas fluorescens bv.C AF238367 PL3 -1 736 DQ238204 99.6 Uncultured damma Proteobacterium AB015570 PL14 -C 739 DQ238262 99.6 Pseudomonas sep.N2024 AV014806 PL14 -C 736 DQ238264 97.8 Uncultured hacterium KM44 AY216460 PL0 -C 736 DQ238264 97.8 Uncultured bacterium clone IIB-28 Al48808 PL2 -C 732 DQ238265 99.9 Uncultured bacterium clone IIB-28 Al488088 D9 -C 886 DQ238265 99.9 Uncultured bacterium clone IIB-28 Al488088	B4 – I	682	DQ238235	99.9	Brevundimonas bullata	AB023428
D6 - 1 731 DQ238232 97.8 Pseudomonas sp. NNSN AF438148 D10 - C 730 DQ238271 98.5 Pseudomonas sp. NZ112 AV014826 P1.1 - 1 736 DQ238271 98.5 Pseudomonas fluorescens by. C AF20847 P1.5 - 1 732 DQ238231 99.2 Pseudomonas fluorescens by. C AF228367 P1.8 - 1 736 DQ238232 99.6 Uncultured Gamma Proteobacterium AB015570 P1.4 - C 734 DQ238262 99.6 Pseudomonas yeronii AF064460 P1.1 - C 734 DQ238264 97.8 Uncultured Gamma Proteobacterium AB015570 P1.1 - C 734 DQ238264 97.8 Uncultured Gamma Proteobacterium AP364007 Facteroide V Uncultured bacterium Clone IIB-29 AJ48808 PL0-2 732 DQ238265 99.9 Uncultured bacterium clone IIB-29 AJ488088 D9 - C 886 DQ238269 99.3 Uncultured bacterium clone IIB-29 AJ488088 D1 - C 886 DQ23	D4 – I	739	DQ238233	98.1	Sulphide-oxidizing bacterium N9-1	AF393509
DIO - C 729 DQ 238270 94.7 Burkholderia perronisa strain R13058 AJ440714 DI3 - C 730 DQ 238231 99.2 Pseudomonas sp. N2112 AY014326 PL1 - I 736 DQ 238231 99.2 Pseudomonas fluorescens AF094726 Peradomonas P 736 DQ 238234 96.0 Pseudomonas fluorescens by. C AF228367 PL3 - I 736 DQ 238234 96.0 Pseudomonas sp. 7.1 AF521651 PL1 - C 734 DQ 238260 99.6 Pseudomonas sp. NZ024 AY014806 PL2 - C 736 DQ 238260 99.3 Pseudomonas yenrinit MS04 AY216460 PL2 - C 734 DQ 238259 99.6 Pseudomonas yenrinit MS04 AP364097 Bacteroide PC 732 DQ 238259 99.6 Pseudomonas yenrinit MS04 AP364097 Bacteroide PC 732 DQ 238255 99.9 Uncultured bacterium clone IIB-29 AJ488088 D9 - C 886 DQ 238268 99.9 Uncultured bacterium cl	D6 – I	731	DQ238232	97.8	Pseudomonas sp. AMSN	AF438148
D13 - C 730 DQ238271 98.5 Pseudomonas pluores.cms AY014826 Peudomonas P Pseudomonas fluores.cms AP04726 Peudomonas P Pseudomonas fluores.cms bv. C AP228367 PL5 - 1 736 DQ238234 96.0 Pseudomonas fluores.cems bv. C AP521651 PL1 - C 734 DQ238262 99.6 Uncultured Camma Proteobacterium AB015570 PL14 - C 733 DQ238264 97.8 Uncultured Camma Proteobacterium AP044806 PL17 - C 733 DQ238264 97.8 Uncultured Dacterium KM94 AY216460 PL20 - C 734 DQ238259 99.6 Pseudomonas wronfiliava AP364097 Bacteroides Uncultured bacterium clone IIB-29 AJ48808 D9 - C 886 DQ238269 99.9 Uncultured bacterium clone IIB-29 AJ48808 D15 - C 886 DQ238269 99.9 Uncultured bacterium clone IIB-29 AJ488088 D15 - C 886 DQ23827 96.8 Uncultured bacterium clone II	D10 – C	729	DQ238270	94.7	Burkholderia pyrrocinia strain R13058	AJ440714
PI.1-1 736 DQ2S8231 99.2 Pseudomonas fluorescens AF094726 Pseudomonas Feadomanas Feadomanas fluorescens by. C AF203367 PLS-1 736 DQ238234 96.0 Pseudomonas sp. 7-1 AF521651 PL1 - C 734 DQ238263 99.6 Uncultured Gamma Protoebacterium AF064400 PL1 - C 733 DQ238260 99.3 Pseudomonas sp. NZ024 AY014806 PL20 - C 736 DQ238250 99.6 Pseudomonas sp. NZ024 AY014806 PL20 - C 736 DQ238250 99.6 Pseudomonas sp. NZ024 AY164600 PL20 - C 734 DQ238259 99.6 Pseudomonas viridifava AF364097 Bateroids W10 - C 866 DQ238269 99.3 Uncultured bacterium clone IIB-29 AI488088 D15 - C 866 DQ238268 99.9 Uncultured bacterium clone IIB-29 AI488088 PL1-1 737 DQ238226 99.8 Uncultured bacterium clone P-1938-s962-3 AF371532 B1-1	D13 – C	730	DQ238271	98.5	Pseudomonas sp. NZ112	AY014826
Pseudomonas Pseudomonas fluorescens by. C AF228367 PLS - 1 736 DQ238234 96.0 Pseudomonas sp. 7-1 AF221651 PL1 - C 734 DQ238262 99.6 Uncultured Gamma Proteobacterium AB015570 PL1 - C 733 DQ238260 99.3 Pseudomonas sproni AF064460 PL1 - C 733 DQ238264 97.8 Uncultured bacterium KM94 AY216460 PL2 - C 734 DQ238259 99.6 Pseudomonas yiridiflava AF36497 Bacterioite D238267 99.9 Uncultured bacterium KM94 AY364808 D9 - C 886 DQ238267 99.9 Uncultured bacterium clone IIB-29 AJ488088 D9 - C 886 DQ238268 99.9 Uncultured bacterium clone IIB-29 AJ488088 PL1 - C 886 DQ23827 96.8 Uncultured bacterium clone IIB-29 AJ488088 PL1 - C 886 DQ238227 96.8 Uncultured bacterium clone P-1938-s962-3 AF371532 B1 - 1 738 DQ238227 </td <td>PL1 – I</td> <td>736</td> <td>DQ238231</td> <td>99.2</td> <td>Pseudomonas fluorescens</td> <td>AF094726</td>	PL1 – I	736	DQ238231	99.2	Pseudomonas fluorescens	AF094726
PL5-1 732 DQ238230 99.2 Pseudomonas sp. 7-1 AT228367 PL8-1 736 DQ238263 99.6 Pseudomonas sp. 7-1 AF521651 PL1-C 734 DQ238262 99.6 Pseudomonas sp. 7-1 AF064460 PL1-C 733 DQ238260 99.3 Pseudomonas sp. N2024 AY014806 PL9-C 736 DQ238259 99.6 Pseudomonas sp. N2024 AY014806 PL20-C 734 DQ238259 99.6 Pseudomonas sp. N2024 AY014806 Bacteroides No D D238259 99.6 Pseudomonas sp. N2024 AY104806 Bacteroides No D Q238259 99.6 Pseudomonas puida D8599 PL2-C 732 DQ238265 99.9 Uncultured bacterium clone IIB-29 AJ488088 D9-C 86 DQ238268 99.9 Uncultured bacterium clone IIB-29 AJ488098 D15 - C 885 DQ238258 81.9 Uncultured bacterium clone IIB-29 AJ488088 PL16 - C 885 DQ238227 96.8 Uncultured bacterium clone IIB-30 AF507859	Pseudomonas					
P1.8 - 1 736 DQ238234 96.0 Pseudomonas yr.1 AF521651 P1.11 - C 734 DQ238263 99.6 Uncultured Gamma Protoebacterium AB015570 P1.14 - C 729 DQ238260 99.3 Pseudomonas veronii AF064460 P1.17 - C 733 DQ238264 97.8 Uncultured bacterium KM94 A701460 P1.20 - C 734 DQ238264 98.4 Pseudomonas viridiflava D85999 P1.22 - C 732 DQ238265 99.6 Pseudomonas viridiflava AF364097 Bacteroides V V V V V V A488088 D9 - C 866 DQ238269 99.3 Uncultured bacterium clone IIB-29 AJ488088 D15 - C 886 DQ238269 99.3 Uncultured bacterium clone IIB-29 AJ488099 D15 - C 886 DQ238227 96.8 Uncultured bacterium clone IIB-29 AJ488088 D15 - C 885 DQ238229 98.1 Enterococcus sp. ALE-1 AY107051 B1 - 1 737 DQ238226 93.6 Uncultured bacterium clone P1938-s962-3 <td>PL5 – I</td> <td>732</td> <td>DQ238230</td> <td>99.2</td> <td>Pseudomonas fluorescens bv. C</td> <td>AF228367</td>	PL5 – I	732	DQ238230	99.2	Pseudomonas fluorescens bv. C	AF228367
PL11 - C 734 DQ238263 99.6 Uncultured Gamma Proteobacterium AB015570 PL14 - C 739 DQ238260 99.6 Pseudomonas vernii AF064460 PL17 - C 733 DQ238260 99.3 Pseudomonas sp. NZ024 AY014806 PL10 - C 736 DQ238259 99.6 Pseudomonas puida D85999 PL20 - C 734 DQ238259 99.6 Pseudomonas viridiflava AF364097 Bacteroides	PL8 – I	736	DQ238234	96.0	Pseudomonas sp. 7-1	AF521651
P1.14 C 729 DQ238262 99.6 Pseudomonas sp. N2024 AT064460 P1.17 C 736 DQ238260 99.3 Pseudomonas sp. N2024 AY014806 P1.20 736 DQ238264 97.8 Uncultured bacterium KM94 AY216460 P1.20 C 734 DQ238261 98.4 Pseudomonas spitida D85999 P1.20 C 732 DQ238261 98.4 Pseudomonas viridifiava AF364097 Bacteroides V Value of the set	PL11 – C	734	DQ238263	99.6	Uncultured Gamma Proteobacterium	AB015570
PL17-C 733 DQ238260 99.3 Pseudomonas p. NZ024 AY014806 PL19-C 736 DQ238259 99.6 Pseudomonas putida D85999 PL2-C 734 DQ238261 98.4 Pseudomonas putida D85999 PL2-C 732 DQ238261 99.9 Uncultured bacterium clone IIB-29 AJ48008 Bacteroides W19-C 886 DQ238265 99.9 Uncultured bacterium clone IIB-29 AJ488088 D9-C 886 DQ238268 99.9 Uncultured bacterium clone IIB-29 AJ488088 D15-C 886 DQ238258 81.9 Uncultured bacterium clone IIB-29 AJ488088 PL16-C 885 DQ238258 81.9 Uncultured bacterium clone P1938-s962-3 AF507859 Enterococcus F F AY017051 F F AY017051 B11-1 737 DQ238229 98.1 Enterococcus shurans AY170848 B2-1 R4 DQ238225 99.8 Achromobacter spanius AY170848 B2-1 848 DQ238225 99.8 Alcaligenes faecalis AF155147	PL14 – C	729	DQ238262	99.6	Pseudomonas veronii	AF064460
PL19 - C 736 DQ238264 97.8 Uncultured bacterium KM94 AY216460 PL20 - C 732 DQ238259 99.6 Pseudomonas putida D85999 PL22 - C 732 DQ238261 98.4 Pseudomonas putida D8799 Bacterioides W19 - C 886 DQ238269 99.9 Uncultured bacterium clone IIB-29 AJ488088 D15 - C 886 DQ238268 99.9 Uncultured bacterium clone IIB-29 AJ488088 PL16 - C 885 DQ238227 96.8 Uncultured bacterium clone P1938-s962-3 AF371532 B11 - 1 737 DQ238229 98.1 Enterococcus sutans Y107051 B13 - 1 740 DQ238228 98.1 Enterococcus sutans Y170848 B2 - 1 855 DQ238226 93.6 Uncultured bacterium clone Z214AC10 AY214498 B3 - 1 84 DQ238226 93.6 Uncultured bacterium clone Z214AC10 AY214498 B3 - 1 873 DQ191233 98.0 Clostridium bityricum strain VP13266 AJ458420	PL17 – C	733	DQ238260	99.3	Pseudomonas sp. NZ024	AY014806
PL20 - C 734 DQ238259 99.6 Pseudomonas puida D85999 PL22 - C 732 DQ238261 98.4 Pseudomonas viridiflava AF364097 Bacteroides	PL19 – C	736	DQ238264	97.8	Uncultured bacterium KM94	AY216460
PI.22 C 732 DQ238261 98.4 Pseudomonas viridiflava AF364097 Bacteroides Bacteroides W19 - C 886 DQ238265 99.9 Uncultured bacterium clone IIB-29 AJ488088 D9 - C 886 DQ238258 81.9 Uncultured bacterium clone IIB-29 AJ488088 P1.6 - C 885 DQ238258 81.9 Uncultured bacterium clone IIB-29 AJ488088 B1 - 1 738 DQ238227 96.8 Uncultured bacterium clone P-1938-s962-3 AF371532 B13 - 1 740 DQ238228 98.1 Enterocccus sp. ALE-1 AY017051 B13 - 1 740 DQ238224 99.8 Achromobacter spanius AY170848 B2 - 1 855 DQ238225 99.8 Alcaligenes faecalis AF155147 Clostridium Uncultured bacterium clone ZZ14AC10 AY214198 AF3504203 B3 - 1 848 DQ238225 99.8 Alcaligenes faecalis AF35026 AI458420 D8 - 1 626	PL20 – C	734	DQ238259	99.6	Pseudomonas putida	D85999
Bacteriales Bacteriales W19 - C 886 DQ238265 99.9 Uncultured bacterium clone IIB-28 AJ488088 D9 - C 886 DQ238268 99.9 Uncultured bacterium clone IIB-28 AJ488088 D15 - C 886 DQ238268 81.9 Uncultured bacterium clone IIB-29 AJ488088 PL 16 - C 886 DQ238268 81.9 Uncultured bacterium clone IIB-29 AJ488088 Enterococcus Enterococcus State AT48008 AF507859 B11 - 1 737 DQ238229 98.1 Enterococcus sp. ALE-1 AY017051 B13 - 1 740 DQ238224 99.8 Achromobacter spanius AY170848 B2 - 1 841 DQ238225 99.8 Alcaligenes faccalis AY170848 B3 - 1 848 DQ238225 99.8 Alcaligenes faccalis AY170848 B3 - 1 848 DQ191233 98.0 Clostridium buryricum strain VPI3266 AJ458420 B4 - 1 626 DQ191239 99.5 Shewanella putrefaciens <	PL22 – C	732	DQ238261	98.4	Pseudomonas viridiflava	AF364097
W19 - C 886 DQ238265 99.9 Uncultured bacterium clone IIB-29 AJ488088 D9 - C 886 DQ238269 99.3 Uncultured bacterium clone IIB-29 AJ488088 D15 - C 885 DQ238258 81.9 Uncultured bacterium clone IIB-29 AJ488088 PL16 - C 885 DQ238258 81.9 Uncultured bacterium clone PL938-s962-3 AF371532 B1 - 1 738 DQ238228 98.1 Enterococcus sp. ALE-1 AY017051 B13 - 1 737 DQ238228 98.1 Enterococcus durans Y18359 Atalatigenes W7 - 1 841 DQ238226 93.6 Uncultured bacterium clone ZI4AC10 AY170848 B2 - 1 855 DQ238225 99.8 Alcatigenes faecalis AF15117 Clostridium Uncultured bacterium clone ZI4AC10 AY170848 AF25187 Clostridium Uncultured bacterium clone ZI4AC10 AY1458420 AF30283 B3 - 1 849 DQ191233 98.0 Clostridium butyricum strain VP13266 AJ458420 D8 - 1	Bacteroides					
D9 - C 886 DQ238269 99.3 Uncultured bacterium clone IIB-28 AJ48809 D15 - C 886 DQ238268 99.9 Uncultured bacterium clone IIB-29 AJ488088 P1.6 - C 885 DQ238228 81.9 Uncultured bacterium clone FIIB-29 AJ488088 Enterococcus Kenterotation Constraints AF371532 B1 - 1 737 DQ238228 98.1 Enterococcus sp. ALE-1 AY017051 B13 - 1 740 DQ238228 98.1 Enterococcus sp. ALE-1 AY017054 B2 - 1 841 DQ238226 98.6 Uncultured bacterium clone ZZ14AC10 AY214198 B3 - 1 848 DQ238225 99.8 Alcaligenes faecalis AF155147 Clostridium AY170848 AF320283 B3 - 1 848 DQ238225 99.8 Alcaligenes faecalis AJ458420 D7 - 1 894 DQ191233 98.0 Clostridium butyricum strain VP13266 AJ458420 D8 - 1 626 DQ191236	W19 – C	886	DQ238265	99.9	Uncultured bacterium clone IIB-29	AJ488088
D15 - C 886 DQ238268 99.9 Uncultured bacterium clone IIB-29 AJ488088 PL16 - C 885 DQ238258 81.9 Uncultured Bacteroidetes clone ML635J-40 AF507859 Enterococcus B1 738 DQ238227 96.8 Uncultured bacterium clone P-1938-s962-3 AF371532 B11 - I 737 DQ238229 98.1 Enterococcus sp. ALE-1 AY017051 B13 - I 740 DQ238228 98.1 Enterococcus durans Y18359 Atcaligenes W7 - I 841 DQ238226 93.6 Uncultured bacterium clone ZZ14AC10 AY170848 B2 - 1 855 DQ238225 99.8 Alcaligenes faecalis AF155147 Clostridium Clostridium butyricum strain VPI3266 AI458420 AF30283 B3 - 1 894 DQ191234 97.2 Clostridium butyricum strain VPI3266 AI458420 B4 - 1 626 DQ191238 91.2 Shewanella putrefaciens U91551 B8 - 1 628 DQ191236 99.5 Microbacterium sp. PRLIST4 Y1532	D9 – C	886	DQ238269	99.3	Uncultured bacterium clone IIIB-28	AJ488099
PL16 C 885 DQ238258 81.9 Uncultured Bacteroidetes clone ML635I-40 AFS07859 Enterococcus	D15 – C	886	DQ238268	99.9	Uncultured bacterium clone IIB-29	AJ488088
Entercooccus Entercooccus Second P-1938-s962-3 AF371532 B1 – 1 737 DQ238229 98.1 Entercocccus sp. ALE-1 AY017051 B13 – I 740 DQ238228 98.1 Entercoccus durans Y18359 Aclaligenes Y18359 Y18359 W7 – 1 841 DQ238226 93.6 Uncultured bacterium clone ZZ14AC10 AY214198 B3 – I 855 DQ238225 99.8 Alcaligenes faecalis AF155147 Clostridium Y170848 PQ191233 98.0 Clostridium butyricum strain VP13266 AF320283 B8 – 1 894 DQ191234 97.2 Clostridium butyricum strain VP13266 AF320283 Shewanella Y17028 Y17028 Y17028 W8 – 1 626 DQ191239 99.5 Shewanella putrefaciens U91551 B8 – 1 628 DQ191237 100 Microbacterium oxydans Y17227 W4 – 1 746 DQ191237 100 Microbacterium oxydans <t< td=""><td>PL16 – C</td><td>885</td><td>DQ238258</td><td>81.9</td><td>Uncultured Bacteroidetes clone ML635J-40</td><td>AF507859</td></t<>	PL16 – C	885	DQ238258	81.9	Uncultured Bacteroidetes clone ML635J-40	AF507859
B1 - I 738 DQ238227 96.8 Uncultured bacterium clone P-1938-s962-3 AF371532 B11 - I 737 DQ238229 98.1 Enterococcus sp. ALE-1 AY017051 B13 - I 740 DQ238228 98.1 Enterococcus sp. ALE-1 AY170848 Alcaligenes W7 - I 841 DQ238226 93.6 Uncultured bacterium clone ZZ14AC10 AY214198 B2 - I 855 DQ238225 99.8 Alcaligenes faecalis AY170848 B3 - I 848 DQ238225 99.8 Alcaligenes faecalis AY170848 D7 - 1 894 DQ191233 98.0 Clostridium butyricum strain VPI3266 AJ458420 D8 - I 873 DQ191234 97.2 Clostridium bifermentans AF320283 Shewanella W V V V V V V W8 - 1 626 DQ191238 91.2 Shewanella putrefaciens U91551 Microbacterium V V V V V V V M4 - 1 746 DQ191236 99.5 Microbacterium oxydans	Enterococcus					
B11 - I 737 DQ238229 98.1 Enterococcus sp. ALE-1 AY017051 B13 - I 740 DQ238228 98.1 Enterococcus durans Y18359 Alcaligenes V W7 - I 841 DQ238224 99.8 Achromobacter spanius AY170848 B2 - I 855 DQ238226 93.6 Uncultured bacterium clone ZZ14AC10 AY214198 B3 - I 848 DQ238225 99.8 Alcaligenes faecalis AF155147 Clostridium D7 - I 894 DQ191233 98.0 Clostridium butyricum strain VP13266 AJ458420 D8 - I 873 DQ191234 97.2 Clostridium butyricum strain VP13266 AJ458420 B8 - I 628 DQ191238 91.2 Shewanella putrefaciens U91551 B8 - I 628 DQ191238 91.2 Shewanella putrefaciens U91553 Microbacterium VI VI YI YI YI W4 - I 746 DQ191237 100 Microbacterium oxydans YI YI B14 - I 659 DQ191235 85.1	B1 – I	738	DQ238227	96.8	Uncultured bacterium clone P-1938-s962-3	AF371532
B13 - I 740 DQ238228 98.1 Enterococcus durans Y18359 Alcaligenes W7 - I 841 DQ238224 99.8 Achromobacter spanius AY170848 B2 - I 855 DQ238226 93.6 Uncultured bacterium clone ZZ14AC10 AY214198 B3 - I 848 DQ238225 99.8 Alcaligenes faecalis AF155147 Clostridium DQ191233 98.0 Clostridium butyricum strain VPI3266 AJ458420 D8 - I 873 DQ191234 97.2 Clostridium bifermentans AF320283 Shewanella W8 - I 626 DQ191238 91.2 Shewanella putrefaciens U91551 B8 - I 628 DQ191236 99.5 Microbacterium sp. PRLIST4 Y15325 Microbacterium W4 - I 746 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc E E 1 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum H - 659 DQ191240 98.9 Sulfurospirillum arsenophilum <td>B11 – I</td> <td>737</td> <td>DQ238229</td> <td>98.1</td> <td>Enterococcus sp. ALE-1</td> <td>AY017051</td>	B11 – I	737	DQ238229	98.1	Enterococcus sp. ALE-1	AY017051
AlcaligenesW7 - I841DQ23822499.8Achromobacter spaniusAY170848B2 - I850DQ23822693.6Uncultured bacterium clone ZZ14AC10AY214198B3 - I848DQ23822599.8Alcaligenes faecalisAF155147ClostridiumD7 - I894DQ19123398.0Clostridium butyricum strain VPI3266AJ458420D8 - I873DQ19123497.2Clostridium bifermentansAF320283ShewanellaW8 - I626DQ19123999.5Shewanella putrefaciensU91551B8 - I628DQ19123691.2Shewanella putrefaciensU91553W8 - I746DQ19123699.5Microbacterium sp. PRLIST4Y15325W4 - I746DQ191237100Microbacterium oxydansY17227LuconostocB14 - 1659DQ19123585.1Uncultured Leuconostoc sp. clone LabS38AF335916Sulfurospirillum arsenophilumU85964AF318076	B13 – I	740	DQ238228	98.1	Enterococcus durans	Y18359
W7 - I841DQ23822499.8Achromobacter spaniusAY170848B2 - I855DQ23822693.6Uncultured bacterium clone ZZ14AC10AY214198B3 - I848DQ23822599.8Alcaligenes faecalisAF155147ClostridiumD7 - I894DQ19123398.0Clostridium butyricum strain VP13266AJ458420D8 - I873DQ19123497.2Clostridium bifermentansAF320283ShewanellaW8 - I626DQ19123999.5Shewanella putrefaciensU91551B8 - I628DQ19123891.2Shewanella putrefaciensU91553W4 - I746DQ19123699.5Microbacterium sp. PRLIST4Y15325W5 - I742DQ191237100Microbacterium oxydansY17227LeuconostocB14 - I659DQ19123585.1Uncultured Leuconostoc sp. clone LabS38AF335916SulfurospirillumPL12 - C577DQ19124098.9Sulfurospirillum arsenophilumU85964AF218076	Alcaligenes					
B2 - I 855 DQ238226 93.6 Uncultured bacterium clone ZZ14AC10 AY214198 B3 - I 848 DQ238225 99.8 Alcaligenes faecalis AF155147 Clostridium D D D17 - I 894 DQ191233 98.0 Clostridium butyricum strain VP13266 AJ458420 D8 - I 873 DQ191234 97.2 Clostridium bifermentans AF320283 Shewanella W V Shewanella putrefaciens U91551 B8 - I 626 DQ191238 91.2 Shewanella putrefaciens U91553 Microbacterium V V V V V V V W4 - I 746 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc V </td <td>W7 – I</td> <td>841</td> <td>DQ238224</td> <td>99.8</td> <td>Achromobacter spanius</td> <td>AY170848</td>	W7 – I	841	DQ238224	99.8	Achromobacter spanius	AY170848
B3 - I848DQ23822599.8Alcaligenes faecalisAF155147ClostridiumD7 - I894DQ19123398.0Clostridium butyricum strain VPI3266AJ458420D8 - I873DQ19123497.2Clostridium bifermentansAF320283ShewanellaW8 - I626DQ19123999.5Shewanella putrefaciensU91551B8 - I628DQ19123891.2Shewanella putrefaciensU91553MicrobacteriumW4 - I746DQ19123699.5Microbacterium sp. PRLIST4Y15325W5 - I742DQ191237100Microbacterium oxydansY17227LeuconostocB14 - I659DQ19123585.1Uncultured Leuconostoc sp. clone LabS38AF335916SulfurospirillumPL12 - C577DQ19124098.9Sulfurospirillum arsenophilum and arsenophilumU85964PL13 - C569DQ19124198.1Sulfurospirillum halorespiransAF218076	B2 – I	855	DQ238226	93.6	Uncultured bacterium clone ZZ14AC10	AY214198
Clostridium V <t< td=""><td>B3 – I</td><td>848</td><td>DQ238225</td><td>99.8</td><td>Alcaligenes faecalis</td><td>AF155147</td></t<>	B3 – I	848	DQ238225	99.8	Alcaligenes faecalis	AF155147
D7 - I 894 DQ191233 98.0 Clostridium butyricum strain VPI3266 AJ458420 D8 - I 873 DQ191234 97.2 Clostridium bifermentans AF320283 Shewanella W8 - I 626 DQ191238 91.2 Shewanella putrefaciens U91551 B8 - I 628 DQ191238 91.2 Shewanella putrefaciens U91553 Microbacterium W4 - I 746 DQ191236 99.5 Microbacterium sp. PRLIST4 Y15325 W5 - I 742 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc B14 - I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 - C 577 DQ191240 98.9 Sulfurospirillum arsenophilum halorespirans AF218076 PL13 - C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	Clostridium					
D8 - I 873 DQ191234 97.2 Clostridium bifermentans AF320283 Shewanella W8 - I 626 DQ191239 99.5 Shewanella putrefaciens U91551 B8 - I 628 DQ191238 91.2 Shewanella putrefaciens U91553 Microbacterium W4 - 1 746 DQ191236 99.5 Microbacterium sp. PRLIST4 Y15325 W5 - I 742 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc B14 - I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 - C 577 DQ191240 98.9 Sulfurospirillum arsenophilum halorespirans U85964 PL13 - C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	D7 – I	894	DQ191233	98.0	Clostridium butyricum strain VPI3266	AJ458420
ShewanellaW8 – I626DQ19123999.5Shewanella putrefaciensU91551B8 – I628DQ19123891.2Shewanella putrefaciensU91553MicrobacteriumW4 – I746DQ19123699.5Microbacterium sp. PRLIST4Y15325W5 – I742DQ191237100Microbacterium oxydansY17227LeuconostocB14 – I659DQ19123585.1Uncultured Leuconostoc sp. clone LabS38AF335916SulfurospirillumHistophi PressonHistophi PressonPL12 – C577DQ19124098.9Sulfurospirillum arsenophilum halorespiransU85964PL13 – C569DQ19124198.1Sulfurospirillum halorespiransAF218076	D8 – I	873	DQ191234	97.2	Clostridium bifermentans	AF320283
W8 - I 626 DQ191239 99.5 Shewanella putrefaciens U91551 B8 - I 628 DQ191238 91.2 Shewanella putrefaciens U91553 Microbacterium W4 - I 746 DQ191236 99.5 Microbacterium sp. PRLIST4 Y15325 W5 - I 742 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc B14 - I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 - C 577 DQ191240 98.9 Sulfurospirillum arsenophilum halorespirans AF218076	Shewanella					
B8 - I 628 DQ191238 91.2 Shewanella putrefaciens U91553 Microbacterium W4 - I 746 DQ191236 99.5 Microbacterium sp. PRLIST4 Y15325 W5 - I 742 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc B14 - I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 - C 577 DQ191240 98.9 Sulfurospirillum arsenophilum and arsenophilum halorespirans U85964 PL13 - C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	W8 – I	626	DQ191239	99.5	Shewanella putrefaciens	U91551
Microbacterium W4 – I 746 DQ191236 99.5 Microbacterium sp. PRLIST4 Y15325 W5 – I 742 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc Name Name Name Y1727 B14 – I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 – C 577 DQ191240 98.9 Sulfurospirillum arsenophilum and the locespirans U85964 PL13 – C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	B8 – I	628	DQ191238	91.2	Shewanella putrefaciens	U91553
W4 – I 746 DQ191236 99.5 Microbacterium sp. PRLIST4 Y15325 W5 – I 742 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc B14 – I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 – C 577 DQ191240 98.9 Sulfurospirillum arsenophilum and and the comparison of th	Microbacterium					
W5 - I 742 DQ191237 100 Microbacterium oxydans Y17227 Leuconostoc B14 - I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 - C 577 DQ191240 98.9 Sulfurospirillum arsenophilum and the low spirillum halorespirans U85964 PL13 - C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	W4 - I	746	DQ191236	99.5	Microbacterium sp. PRLIST4	Y15325
Leuconostoc B14 – I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 – C 577 DQ191240 98.9 Sulfurospirillum arsenophilum arsenophilum U85964 PL13 – C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	W5 – I	742	DQ191237	100	Microbacterium oxydans	Y17227
B14 – I 659 DQ191235 85.1 Uncultured Leuconostoc sp. clone LabS38 AF335916 Sulfurospirillum PL12 – C 577 DQ191240 98.9 Sulfurospirillum arsenophilum arsenophilum U85964 PL13 – C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	Leuconostoc					
SulfurospirillumPL12 - C577DQ19124098.9Sulfurospirillum arsenophilumU85964PL13 - C569DQ19124198.1Sulfurospirillum halorespiransAF218076	B14 – I	659	DQ191235	85.1	Uncultured Leuconostoc sp. clone LabS38	AF335916
PL12 - C 577 DQ191240 98.9 Sulfurospirillum arsenophilum U85964 PL13 - C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	Sulfurospirillum		-		×	
PL13 - C 569 DQ191241 98.1 Sulfurospirillum halorespirans AF218076	PL12 – C	577	DQ191240	98.9	Sulfurospirillum arsenophilum	U85964
	PL13 – C	569	DQ191241	98.1	Sulfurospirillum halorespirans	AF218076

TABLE 1 (continued)

Identification of bacteria present in different UASB granules.

DGGE band I – Isolate C – Clone	Sequence length (bp)	GenBank accession number (clone/isolate)	% Sequence similarity	Closest relative	GenBank accession number (closest relative)
Acidaminococcus					
PL9 – C	640	DQ191232	91.8	Unidentified eubacterium clone vadinHB04	U81750
PL21 – C	639	DQ191231	94.8	Uncultured bacterium clone ER1_17	AY231317
Vibrio					
B9 – I	852	DQ191248	99.9	Vibrio parahaemolyticus	AY245192
Aeromonas					
B10 – I	848	DQ191247	96.2	Aeromonas salmonicida	X74681
Syntrophobacter					
B21 – C	794	DQ191246	99.0	Uncultured bacterium clone R1p32	AF482435
Rhodocyclus					
B18 – C	647	DQ191242	95.5	Uncultured bacterium clone HP1B54	AF502232
Rhodococcus					
B16 – C	722	DQ191245	86.1	Uncultured bacterium clone BA149	AF323777
Nitrospira					
B15 – C	661	DQ191243	88.2	Uncultured bacterium DCE29	AF349765
B19 – C	661	DQ191244	99.8	Uncultured bacterium clone SR_FBR_L1	AY340834
Synergistes					
W11 – C	663	DQ238267	98.2	Uncultured bacterium TA19	AF229792
W17 – C	658	DQ238266	85.6	Uncultured bacterium clone SHA-104	AJ306760
D11 – C	675	DQ238272	89.5	Uncultured bacterium clone TTA_B6	AY297966
D12 – C	668	DQ238273	99.7	Uncultured bacterium mle1-42	AF280863
Uncultured					
W18 – C	1069	DQ238245	92.3	Uncultured bacterium clone BSA2B-20	AB175392
B20 – C	972	DQ238252	63.1	Uncultured bacterium clone W31	AY770971
PL15 – C	857	DQ238257	66.8	Uncultured bacterium	AB195900

 ^{a}W = UASB granules used to treat winery wastewater; B = UASB granules used to treat brewery wastewater; D = UASB granules used to treat distillery wastewater; PL = UASB granules used to treat peach-lye canning wastewater.

FIGURE 1A

PCR-based DGGE fingerprints of granules from UASB bioreactors used to treat winery wastewater (1 and 2), distillery wastewater (3 and 4) and brewery wastewater (5 and 6). The identical profiles correspond to two independent DNA extractions.

FIGURE 1B 1 DGGE fingerprints of granules from a UASB biore

2

1

PCR-based DGGE fingerprints of granules from a UASB bioreactor treating peach-lye canning wastewater (1 and 2). The identical profiles correspond to two independent DNA extractions.

FIGURE 2

Single PCR-based DGGE bands from the cloned inserts (C) and isolates (I) obtained for the winery granules. Lanes 1 & 8: fingerprints of the winery granules that can be used to correlate against the single bands; Lane 2: bands W11, 17, 18 & 19; Lane 3: W2, 4 & 6; Lane 4: W9; Lane 5: W1, 3 & 20; Lane 6: W5, 7 & 10; and Lane 7: W8.

FIGURE 3

Single PCR-based DGGE bands from the cloned inserts (C) and isolates (I) obtained for the brewery granules. Lanes 1 & 13: fingerprints of the brewery granules that can be used to correlate against the single bands; Lane 2: bands B1, 5, 9 & 11; Lane 3: B18, 19, 20 & 21; Lane 4: B10 & 13; Lane 5: B4, 6 & 14; Lane 6: B15; Lane 7: B16; Lane 8: B12; Lane 9: B8; Lane 10: B3; Lane 11: B2; and Lane 12: B7.

found to be closely related to *B. pumilus*, supported by a 99.6% sequence similarity. Bands D3 and W2 showed a 99.8% sequence similarity to a *Bacillus* sp. (Accession number AJ315065) and *B. megaterium*, respectively. Band W1 was found to be closely related to *B. pycnus* and band B7 was identified as *B. fusiformis*, supported by a 100% sequence similarity, while B12 was found to be closely related to *B. sphaericus*. The bands W20, D2, D5 and PL6 were all closely related to *B. subtilis*.

It is generally accepted that most of the bacteria that can survive and be metabolically active in bioreactors are anaerobes, but the aerobic and facultative anaerobic bacteria, such as Bacillus species, still form a significant and constant part of the total bioreactor population. Species of Bacillus are metabolically active during the anaerobic digestion process and can degrade different types of organic compounds, such as proteins, cellulose, starch or lipids (Gerardi, 2003). The presence of Bacillus spp. in a bioreactor may also play a role in the formation of immobilised microbial populations or facilitate their clumping because of their adhesion ability (Petruccioli et al., 2000; Gerardi, 2003). Noeth et al. (1988) isolated B. pumilus, B. subtilis, B. megaterium and B. sphaericus from an anaerobic, fixed-bed bioreactor. They ascribed the growth of the bacilli to sufficient oxygen in the bioreactor that was probably introduced by the substrate. Bacillus coagulans and B. sphaericus were also identified from a laboratory-scale UASB bioreactor (Thierry et al., 2004).

Pseudomonas:

Fourteen members of the genus Pseudomonas were found as part of the population of the four different UASB granules (Table 1). Nine *Pseudomonas* species were present in the peach-lye canning granules, four in the distillery granules and one was isolated from the brewery granules. Band B4, from the brewery granules, showed a 99.9% sequence similarity to Brevundimonas bullata, while band PL11 was found to be closely related to an uncultured gamma Proteobacterium (Li et al., 1999). Band PL19 was found to be closely related to an uncultured bacterium previously isolated from wetland sediments (Accession number AY216460). Band PL5 was closely related to P. fluorescens, a potential phenol-degrading bacterium (Heinaru et al., 2000), and band PL17 showed a sequence similarity of 99.3% to a Pseudomonas sp. (Accession number AY014806). PL14 was closely related to P. veronii, PL22 to P. viridiflava and band PL20 was closely related to P. putida. The distillery band D13 was closely related to a Pseudomonas sp. (Accession number AY014826), while D4 was found to be closely related to a sulphide-oxidising bacterium, previously isolated from an environmental sample (Accession number AF393509). Bands D6 and PL8 were found to be closely related to these Pseudomonas spp. (Accession numbers AF438148 and AF521651, respectively), and PL1 was closely related to P. fluorescens. Band D10 was found to be closely related to Burkholderia pyrrocina.

FIGURE 4

Single PCR-based DGGE bands from the cloned inserts (C) and isolates (I) obtained for the distillery granules. Lanes 1 & 8: fingerprints of the distillery granules that can be used to correlate against the single bands; Lane 2: bands D1, 5, 8, 16; Lane 3: D6 & 7; Lane 4: D9, 12, 13 & 15; Lane 5: D2, 10 & 11; Lane 6: D3; and Lane 7: D4.

Several members of the Pseudomonas are known for their ability to degrade aromatic compounds and to produce exo-polysaccharides. This ability might explain why Pseudomonas may play an important role in granulation (Petruccioli et al., 2000). Pseudomonas stutzeri, P. aeruginosa and P. putida have been isolated from UASB bioreactors in the past (De Haast and Britz, 1986; Muthumbi et al., 2001; Pereira et al., 2002; Thierry et al., 2004). Pseudomonas was identified from the brewery, distillery and peach-lye canning granules, but since most of these bacteria were identified from the peach-lye canning granules, it is apparent that the Pseudomonas found the environmental conditions in these granules favourable for growth. A possible explanation for their presence might be that these identified Pseudomonas are halotolerant (Mioni et al., 2003; Lo Nostro et al., 2005) and also could withstand the alkaline environment (pH 8.5) caused by the lye in the wastewater (Sigge et al., 2001). Although Pseudomonas is not classified as alkalophiles, it seems that these identified Pseudomonas was able to metabolise and grow in more alkaline environments.

Bacteroides:

Four *Bacteroides* species were identified from the UASB granules that were analysed (Table 1) and two were present in the distillery granules, one in the winery granules and one in the peachlye canning granules. Comparative analysis of the sequences retrieved from GenBank show that band D9 showed the highest

FIGURE 5

Single PCR-based DGGE bands from the cloned inserts (C) and isolates (I) obtained for the peach-lye canning granules that can be used to correlate against the single bands. Lanes 1 & 12: fingerprints of the peach-lye canning granules; Lane 2: bands PL1, 4 & 5; Lane 3: PL3, 6 & 8; Lane 4: PL2, 15, 17 & 19; Lane 5: PL13, 21 & 22; Lane 6: PL11; Lane 7: PL14; Lane 8: PL16; Lane 9: PL20; Lane 10: PL9; and Lane 11: PL12

sequence similarity (99.8%) to an uncultured bacterium (Accession number AJ488099). The DGGE band PL16 was shown to be closely related to an uncultured *Bacteroidetes* bacterium (Accession number AF507859), while the bands W19 and D15 were found to be closely related to an uncultured bacterium previously isolated from environmental samples (Accession number AJ488088).

Gram-negative *Bacteroides* spp. are acidogenic, anaerobic bacteria (Krieg and Holt, 1984). They can metabolise carbohydrates and peptone to form acetate, lactate, formate or propionate. Members of this genus have been isolated from sewage (Krieg and Holt, 1984), anaerobic bioreactors (Joubert and Britz, 1987; McHugh and O'Flaherty, 2004) and activated sludge (Liu *et al.*, 2005), and include the species *B. fragilis*, *B. distasonis*, *B. uniformis*, *B. splanchnicus* and *B. forsythus*.

Enterococcus:

Three *Enterococcus* species were isolated from the brewery granules (see Table 1). Band B1 showed a 96.8% sequence similarity to an uncultured bacterium closely related to the genus *Enterococcus* (Leser *et al.*, 2002), while bands B11 and B13 represent species that are closely related to *Enterococcus* sp. (98.1% sequence similarity) (Chee-Sanford *et al.*, 2001) and *E. durans* (98.1% sequence similarity) (Collins *et al.*, 1984) respectively.

Enterococcus is Gram-positive, facultatively anaerobic and ferments carbohydrates to mainly form lactic acid. *Enterococcus*

FIGURE 6

DGGE marker constructed from the different bacteria present in the UASB granules that were used to treat winery, brewery, distillery and peach-lye canning wastewaters.

durans, E. avium and *E. faecium* were isolated from raw baker's yeast effluent (Van der Merwe and Britz, 1994). Chan *et al.* (2001) studied the microbial community of granular sludge for treating brewery wastewater, but did not identify any *Enterococcus* species.

Alcaligenes:

Two species of this genus were identified from the brewery granules and one from the winery granules (Table 1). Band B2 showed a 93.6% sequence similarity to an uncultured bacterium (Accession number AY214198) related to the genus *Alcaligenes*. Band B3 showed a 99.8% sequence similarity to *A. faecalis*. *Alcaligenes* spp. can utilise a variety of organic acids and amino acids as carbon sources and certain strains are also capable of anaerobic respiration in the presence of nitrate or nitrite, although *A. faecalis* can only reduce nitrite (Krieg and Holt, 1984). *Alcaligenes faecalis* has also previously been isolated from bioreactors (De Haast and Britz, 1986) and the presence of this bacterium was ascribed to the sewage sludge used as inoculum at the start-up of the bioreactor.

Winery band W7 was found to be closely related to *Achromobacter spanius*, supported by a 99.8% sequence similarity. Coenye *et al.* (2003) found that *Achromobacter spanius* resembled *Alcaligenes faecalis* phenotypically, but protein and fatty acid analyses showed it to be distinct to *Achromobacter*. *Achromobacter* spp. can reduce nitrate and metabolise gluconate, acetate, propionate, butyrate, iso-butyrate and succinate during acetogenesis (Coenye *et al.*, 2003). It may be that the winery granules in this study favoured the growth of *Achromobacter*, and that the brewery granules favoured the growth of *Alcaligenes*.

Clostridium:

Two *Clostridium* species were isolated, only from the distillery granules (Table 1). Band D7 was found to be closely related to *C. butyricum* and band D8 to *C. bifermentans*. Clostridia produce organic acids and alcohols from carbohydrates or peptones (Sneath *et al.*, 1986) and are regarded as acidogenic or homoace-togenic bacteria in anaerobic bioreactors. *Clostridium bifermentans* was previously isolated from oil mill wastewater (Chamkha *et al.*, 2001) and *C. butyricum* was a prevalent hydrolytic bacterium in an anaerobic bioreactor treating cheese whey (Chartrain and Zeikus, 1986). Distillery granules favoured the growth of species belonging to the genus *Clostridium*. This can possibly be ascribed to a favourable redox potential for the development and growth of Clostridia.

Shewanella:

In this study, band W8 was isolated from the winery granules and band B8 from the brewery granules (Table 1), and they were found to be part of the genus *Shewanella*. Band W8 showed a 99.5% and band B8 a 91.2% sequence similarity to *Shewanella putrefaciens*. All *Shewanella* species are Gram-negative and can reduce nitrate to nitrite. *Shewanella putrefaciens* can reduce trimethylamine N-oxide and sulphur and can produce hydrogen sulphate from thiosulphate (Venkateswaran et al., 1999).

Microbacterium:

Two *Microbacterium* species were isolated, only from the winery granules (Table 1). Band W4 was found to be closely related to a *Microbacterium* sp. (Accession number Y15325), supported by a 99.5% sequence similarity, and band W5 was identified as *M. oxydans* (100% sequence similarity). *Microbacterium oxy-dans* can produce acid from glucose, fructose, galactose, mannose, sucrose, maltose, mannitol, glycerol, salicin and dextrin (Schumann *et al.*, 1999). Therefore, the bands W4 and W5 formed part of the acidogenic population in the winery granules.

Leuconostoc:

One *Leuconostoc* sp. was isolated from the brewery granules (Table 1). Band B14 was found to be related to an uncultured *Leuconostoc* sp. (Accession number AF335916), supported by a sequence similarity of 85.1%. This *Leuconostoc* sp. showed a 99.8% sequence similarity to *Leuc. mesenteroides* and it may be possible that B14 is related to *Leuc. mesenteroides*.

Leuconostoc species are Gram-positive, facultative anaerobes and growth is dependent on the presence of amino acids and fermentable carbohydrates, such as glucose (Sneath *et al.*, 1986). Chartrain and Zeikus (1986) found that *Leuc. mesenteroides* formed part of the hydrolytic bacteria in an anaerobic bioreactor, making band B14 a member of the acidogenic bacteria in the brewery granules.

Sulfurospirillum:

Two *Sulfurospirillum* species were cloned, only from the peachlye canning granules (Table 1). Band PL12 showed a 98.9% sequence similarity to *S. arsenophilum* (Stolz *et al.*, 1999) and band PL13 showed a 98.1% sequence similarity to *S. halorespirans*. Lactate, pyruvate and fumarate can be used by *S. arsenophilum* and *S. halorespirans* as electron donors, but when acetate is used as the carbon source, hydrogen and formate serve as the electron donors (Luijten *et al.*, 2003).

Acidaminococcus:

Two uncultured species, related to the genus *Acidaminococcus*, were identified from the peach-lye canning granules (Table 1). Band PL9 showed a 91.8% sequence similarity to an unidentified eubacterium (Accession number U81750), which was found to be related to *Acidaminococcus fermentans*, previously found in anaerobic bioreactors (Godon *et al.*, 1997) and paper mill wastewater (Roest *et al.*, 2005). Band PL21 showed a 94.8% sequence similarity to an uncultured bacterium (Accession number AY231317) previously detected in an anaerobic bioreactor, which showed a 92% sequence similarity to *A. fermentans*.

Vibrio:

Band B9 showed a 99.9% sequence similarity to *Vibrio para-haemolyticus* (Table 1). *Vibrio parahaemolyticus* has a fermentative metabolism (Krieg and Holt, 1984), thus it may be possible that band B9 was part of the acidogenic bacteria in the brewery granules.

Aeromonas:

Band B10 showed a 96.2% sequence similarity to *Aeromonas* salmonicida (Table 1). *Aeromonas* has been isolated from winery wastewater (Petruccioli *et al.*, 2000) and raw baker's yeast wastewater (Van der Merwe and Britz, 1994). Species of *Aeromonas* were found to be partly responsible for phosphorus uptake and release in bioreactors (You *et al.*, 2002; Li *et al.*, 2003).

Syntrophobacter, Rhodocyclus, Rhodococcus, Nitrospira:

Brewery bands B21, B18, B16, B15 and B19 were all identified as uncultured bacteria. Brewery band B21 showed a 99% sequence similarity to an uncultured bacterium (Accession number AF482435) (Table 1), previously found in granular sludge, and a sequence similarity of 89.8% to an uncultured bacterium SJA-172 (Accession number AJ009502). Roest et al. (2005) also identified uncultured bacterium SJA-172 in a UASB bioreactor and suggested that this bacterium might be involved in the oxidation of propionate. Propionate oxidation is an energetically unfavourable reaction and microorganisms involved in the degradation of propionate play a crucial role in the anaerobic degradation process in methanogenic bioreactors. Uncultured bacterium SJA-172 was found to be closely related to Syntrophobacter wolinii. It is, therefore, possible that band B21 and the uncultured bacterium R1p32 may be related to the genus Syntrophobacter.

Band B18 showed a 95.5% sequence similarity to an uncultured bacterium (Accession number AF502232) previously present in activated sludge with high phosphorus content. This uncultured bacterium was found to be closely related to a species belonging to the genus *Rhodocyclus*, which was associated with phosphorus removal in sludges (McMahon *et al.*, 2002). This supports the finding that band B18 may be related to the genus *Rhodocyclus*. The growth rate of *Rhodocyclus* species can be increased in the presence of complex organic nutrients or even yeast extract (Staley *et al.*, 1989). Since band B18 was found in UASB granules used to treat brewery wastewater, it is possible that these bacteria could have used the yeast cells for their metabolism.

Band B16 showed an 86.1% sequence similarity to uncultured bacterium clone BA149 previously found in environmental sam-

ples (Accession number AF323777). Bacterium clone BA149 was found to show a sequence similarity of 74.1% to *Rhodococcus rhodochrous*, which can produce acid from dextrine, ethanol, fructose, glucose and sucrose (Sneath *et al.*, 1986) and may have played an important role during acidogenesis in the brewery granules. Hawari *et al.* (2000) found that *Rhodococcus* produced formaldehyde or methanol as end-products during the anaerobic biodegradation of anaerobic sludge.

Band B15 showed an 88.2% sequence similarity to uncultured bacterium DCE29 (Gu *et al.*, 2004) and B19 showed a 99.8% sequence similarity to uncultured bacterium SR_FBR_L1 (Kakosen *et al.*, 2004) (Table 1). Gu *et al.* (2004) reported that the uncultured bacterium DCE29 used hydrogen as an electron donor and could be affiliated with the genus *Nitrospira*. Uncultured bacterium SR_FBR_L1 was identified as part of a lactate-utilising sulphate-reducing fluidised-bed bioreactor bacterial community (Kakosen *et al.*, 2004).

Synergistes:

Four uncultured bacteria were identified from the winery and distillery granules and found to be related to the genus Synergistes. These are acidogenic bacteria associated with anaerobic bioreactors and soil (Godon et al., 2005) (Table 1). Band W11 showed a 98.2% sequence similarity to the uncultured bacterium TA19, previously identified in a UASB bioreactor (Wu et al., 2001) and found to be closely related to Synergistes jonesii. Band D12 showed a 99.7% sequence similarity to the uncultured bacterium mle1-42, which was found to be present in bioreactors (Lapara et al., 2000; Pereira et al., 2002). Uncultured bacterium mle1-42 formed part of a cluster containing S. jonesii (Lapara et al., 2000). Band W17 showed a high sequence similarity of 94.4% to DGGE band D11, which also showed an 89.5% sequence similarity to the uncultured bacterium clone TTA_B6. This bacterium was found to be the second "most dominant" bacteria in an anaerobic reactor (Chen et al., 2004). This organism was closely related to an environmental clone MUG10 (Sekiguchi et al., 1998).

Other uncultured bacteria:

Band W18 showed a 92.3% sequence similarity to the uncultured bacterium clone BSA2B-20 (Accession number AB175392). Bands B20 and PL15 showed a sequence similarity of 63.1% and 66.8%, respectively to an uncultured bacterium clone W31 (Accession number AY770971) and an uncultured bacterium (Accession number AB195900). The sequence similarities of 63.1% and 66.8% are low and the identification of these two bacteria is uncertain.

A 200 bp PCR fragment was amplified from each 1.5 kb PCR fragment from the pure isolates and the cloned inserts, using the primers F341 and R534 (Muyzer *et al.*, 1993). This was done to confirm that each band in the DGGE fingerprints was sequenced and identified. It was observed that many of the DGGE single bands were accompanied at close distance by another band. Such shadow bands also occurred with the cloned sequences. However, similar observations of artifactual 'double bands' have been reported by other researchers (Janse *et al.*, 2004). These shadow bands could be formed during PCR cycling, when secondary products are formed due to prematurely halted elongation. Although Janse *et al.* (2004) decreased the intensity of the artifactual bands by extending the final elongation step, it did not

have the same effect in this study. In Figures 2 to 5, the single bands obtained for the winery, brewery, distillery and peach-lye canning granules can be observed. In Figure 2, more than one PCR product was loaded in lanes 1, 2, 5 and 6 specifically. The separate PCR products (2 μ l of each product) were loaded in one well in order to accommodate all the bands of the winery granules in one gel. The same was done for the brewery, distillery and peach-lye canning granules. The identified microorganisms where then visually correlated to the corresponding DGGE band in the profiles to enable the construction of a DGGE marker.

DGGE marker

The developed DGGE marker was constructed using selected DGGE bands from the profiles obtained for the winery, brewery, distillery and peach-lye canning effluent granules (Figure 6). This marker represents the bacteria that were most present in the four different granules used in this study, and can be of great value for the possible identification or indication of members of the microbial consortium in UASB bioreactors.

Since it is an extremely time-consuming process to identify microorganisms, especially those that are not readily cultured, the use of the DGGE marker can be of great assistance to provide a quick method to verify the presence of these microorganisms where each bacterium has a specific role to play during anaerobic digestion. Knowledge of the composition of the microbial consortium can be of great value during the start-up of a new bioreactor, and the marker can be used as a reference to monitor the various microorganisms during their adaptation period in a new bioreactor or a bioreactor treating a new type of wastewater.

CONCLUSIONS

During the past decade, advances in molecular biology have provided better insight into the structure of complex microbial communities. In this study, PCR-based DGGE proved useful to fingerprint the various UASB granules. It is evident from the results obtained that the use of culture-independent molecular techniques is essential, since a total of 35% of the identified bacteria were unculturable bacteria. This study therefore clearly shows the value of integrated culture-dependent and culture-independent research.

The different bacteria that were isolated and identified from the different granules emphasise the fact that the composition of each type of wastewater has a major impact on the microbial species present in the granules. Fingerprinting and identification of the complex microbial bacterial community in UASB granules may lead to a better understanding of the influence that the treatment of various wastewaters may have on the structure of the different populations present in the UASB granules. A better understanding of the diversity of bacteria in different UASB granules can improve the stability of the anaerobic process and the performance of the bioreactor. The metabolic activity of the different groups of bacteria plays a major role during anaerobic digestion and, if the bacteria are identified, it is possible that tailor-made granules could be used to enhance bioreactor process stability. Tailor-made granules may also be used to reduce the start-up period. The survival of these incorporated microorganisms used to enhance bioreactor efficiency may be monitored by using the DGGE marker that was constructed in this study.

A major advantage of this DGGE marker is that it could be complemented by additional DGGE bands found in UASB bioreactors. The DGGE marker can also be used to assist in the monitoring of selected species during bio-augmentation or enrichment of granules for the treatment of specific wastewaters. The DGGE marker has to be used in combination with sequence analysis when analysing new granule batches. It is possible that some overlapping of the microorganisms can take place in the DGGE profiles under certain conditions.

The data obtained in this study should be of value in the future identification of microbial communities present in anaerobic digestion studies, as well as for the process optimisation of UASB bioreactors.

LITERATURE CITED

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. & Vavilin, V.A., 2002. In: Hammett, J. & Buzzard, L. (eds). Anaerobic Digestion Model No. 1 (ADM1), IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes. IWA Publishing, London, pp. 3 – 32.

Casserly, C. & Erijman, L., 2003. Molecular monitoring of microbial diversity in an UASB reactor. Int. Biodeterior. Biodegrad. 52, 7-12.

Chamkha, M., Patel, B.K.C., Garcia, J-L. & Labat, M., 2001. Isolation of *Clostridium bifermentans* from oil mill wastewaters converting cinnamic acid to 3-phenylpropionic acid and emendation of the species. Anaerobe 7, 189-197.

Chan, O.-C., Liu, W.T. & Fang, H.H.P., 2001. Study of microbial community of brewery-treating granular sludge by denaturing gradient gel electrophoresis of 16S rRNA gene. Wat. Sci. Tech. 43, 77-82.

Chartrain, M. & Zeikus, J.G., 1986. Microbial ecophysiology of whey biomethanation: Characterisation of bacterial trophic populations and prevalent species in continuous culture. Appl. Environ. Microbiol. 51, 188-196.

Chee-Sanford, J.C., Aminov, R.I., Krapac, I.J., Garrigues-Jeanjean, N. & Mackie, R.I., 2001. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl. Environ. Microbiol. 67, 1494-1502.

Chen, C.-L., Macarie, H., Ramirez, I., Olmos, A., Ong, S.L., Monroy, O. & Liu, W.-T., 2004. Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. Microbiol. 150, 3429-3440.

Coenye, T., Vancanneyt, M., Falsen, E., Swings, J. & Vandamme, P., 2003. *Achromobacter insolitus* sp. nov. and *Achromobacter spanius* sp. nov., from human clinical samples. Int. J. Sys. Evol. Microbiol. 53, 1819-1824.

Collins, M.D., Jones, D., Farrow, J.A.E., Klipper-Bälz, R. & Schleifer, K.H., 1984. *Enterococcus avium* nom. rev., comb. nov.; *E. casseliflavus* nom. rev., comb. nov.; *E. durans* nom. rev., comb. nov.; *E. gallinarum* comb. nov.; and *E. malodoratus* sp. nov. Int. J. Sys. Bacteriol. 34, 220-223.

De Haast, J. & Britz, T.J., 1986. Characterization of aerobic and facultative anaerobic bacteria from the liquid phase of an anaerobic fixed-bed digester treating a cheese whey substrate. Microb. Ecol. 12, 173-179.

Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E. & Akkermans, A.D.L., 1997. Ribosome analysis reveals prominent activity of an uncultured member of the class *Acinetobacteria* in grassland soils. Microbiol. 143, 2983-2989.

Gerardi, M.H., 2003. The Microbiology of Anaerobic Bioreactors. John Wiley & Sons, New Jersey.

Godon, J.J., Morinière, J., Moletta, M., Gaillac, M., Bru, V. & Delgènes, J-P., 2005. Rarity associated with specific ecological niches in the bacterial world: The *'Synergistes'* example. Environ. Microbiol. 7, 213-224.

Godon, J.J., Zumstein, E., Dabert, P., Habouzit, F. & Moletta, R., 1997. Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63, 2802-2813.

Gu, A.Z., Hedlund, B.P., Staley, J.T., Strand, S.E. & Stensel, H.D., 2004. Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and *cis*-DCE. Environ. Microbiol. 6, 45-54.

Hawari, J., Halasz, A., Sheremata, T., Beaudet, S., Groom, C., Paquet, L., Rhofir, C., Ampleman, G. & Thiboutot, S., 2000. Characterisation of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl. Environ. Microbiol. 66, 2652-2657.

Heinaru, E., Truu, J., Stottmeister, U. & Heinaru, A., 2000. Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol. Ecol. 31, 195-205.

Janse, I., Bok, J. & Zwart, G., 2004. A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. J Microbiol Meth. 57, 279-281.

Joubert, W.A. & Britz, T.J., 1987. Characterisation of aerobic, facultative anaerobic, and anaerobic bacteria in an acidogenic phase reactor and their metabolic formation. Microb. Ecol. 13, 159-168.

Kakosen, A.H., Plumb, J.J., Franzmann, P.D. & Puhakka, J.A., 2004. Simple organic electron donors support diverse sulphate-reducing communities in fluidised-bed reactors treating acidic metal- and sulphate-containing wastewater. FEMS Microbiol. Ecol. 47, 279-289.

Keyser, M., Witthuhn, R.C., Coetzee, M.P.A. & Britz, T.J., 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Sys. Appl. Microbiol. 29, 77-84.

Krieg, N.R. & Holt, J.G., 1984. Gram-negative aerobic rods and cocci. In: Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore.

Kumar, S., Tamura, K., Jakobsen, I.B. & Nei, M., 2001. MEGA 2: Molecular evolutionary analysis software. Bioinfor. 17, 1244-1245.

Lapara, T.M., Nakatsu, C.H., Pantea, L. & Alleman, J.E., 2000. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66, 3951-3959.

Leser, T.D., Amenuvor, J.Z., Jensen, T.K., Lindecrona, R.H., Boye, M. & Moller, K., 2002. Culture-independent analysis of gut bacteria: The pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68, 673-690.

Li, J., Xing, X.-H. & Wang, B.-Z., 2003. Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR). Biochem. Eng. J. 16, 279-285.

Li, L., Kato, C. & Horikoshi, K., 1999. Bacterial diversity in deep-sea sediments from different depths. Biodiver. Conserv. 8, 659-677.

Liu, Y., Zhang, T. & Fang, H.H.P., 2005. Microbial community analysis and performance of a phosphate-removing activated sludge. Biores. Technol. 96, 1205-1214.

Lo Nostro, P., Ninham, B.W., Lo Nostro, A., Pesavento, G., Fratoni, L. & Baglioni, P., 2005. Specific ion effects on the growth rates of *Staphylococcus aureus* and *Pseudomonas aeruginosa*. Phys. Biol. 2, 1-7.

Luijten, M.L.G.C., De Weert, J., Smidt, H., Boschker, H.T.S., De Vos, W.M., Schraa, G. & Stams, A.J.M., 2003. Description of *Sulfurospirillum halorespirans* sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of *Dehalospirillum multivorans* to the genus *Sulfurospirillum as Sulfurospirillum multivorans* comb. nov. Int. J. Sys. Evol. Microbiol. 53, 787-793.

McHugh, S. & O'Flaherty, V., 2004. Microbial community structure and dynamics during long-term anaerobic biological treatment of whey-based wastewaters at psychrophilic temperature. In: Proc. 10th Anaerobic Digestion Conference, Montréal, Canada. pp. 1554 – 1557.

McMahon, K.D., Dojka, M.A., Pace, N.R., Jenkins, D. & Keasling, J.D., 2002. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl. Environ. Microbiol. 68, 4971-4978.

Mioni, C.E., Howard, A.M., DeBruyn, J.M., Bright, N.G., Twiss, M.R., Applegate, B.M. & Wilhelm, S.W., 2003. Characterisation and field trials of a bioluminescent bacterial reporter of iron bioavailability. Mar. Chem. 83, 31-46.

Muthumbi, W., Boon, N., Boterdaele, R., De Vreese, I., Top, E.M. & Verstraete, W., 2001. Microbial sulfate reduction with acetate: process performance and composition of the bacterial communities in the reactor at different salinity levels. Appl. Microbiol. Biotechnol. 55, 787-793.

Muyzer, G., De Waal, E.C. & Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of

polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.

Noeth, C., Britz, T.J. & Joubert, W.A., 1988. The isolation and characterization of the aerobic endospore-forming bacteria present in the liquid phase of an anaerobic fixed-bed digester, while treating a petrochemical effluent. Microb. Ecol. 16, 233-240.

Pereira, M.A., Roest, K., Stams, A.J.M., Mota, M., Alves, M. & Akkermans, A.D.L., 2002. Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid. FEMS Microbiol. Ecol. 41, 95-103.

Petruccioli, M., Duarte, J.C. & Federich, F., 2000. High-rate aerobic treatment of winery wastewater using bioreactors with free and immobilized activated sludge. J. Biosci. Bioeng. 90, 381-386.

Roest, K., Heilig, H.G.H.J., Smidt, H., De Vos, W.M., Stams, A.J.M. & Akkermans, A.D.L., 2005. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Sys. Appl. Microbiol. 28, 175-185.

Schumann, P., Rainey, F.A., Burghardt, J., Stackebrandt, E. & Weiss, N., 1999. Reclassification of *Brevibacterium oxydans* (Chatelain and Second 1966) as *Microbacterium oxydans* comb. nov. Int. J. Sys. Bacteriol. 49, 175-177.

Sekiguchi, Y., Kagamata, Y., Syutsubo, K., Ohashi, A., Harada, H. & Nakamura, K., 1998. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiol. 144, 2655-2665.

Sigge, G.O., Britz, T.J., Fourie, P.C., Barnardt, C.A. & Strydom, R., 2001. Use of ozone and hydrogen peroxide in the post-treatment of UASB treated alkaline fruit cannery effluent. Wat. Sci. Technol. 44, 69-74.

Sneath, P.H.A., Mair, N.S., Sharpe, M.E. & Holt, J.G., 1986. Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams & Wilkins, Baltimore.

Staley, J.T., Bryant, M.P., Pfennig, N. & Holt, J.G., 1989. Bergey's Manual of Systematic Bacteriology, Vol. 3. Williams & Wilkins, Baltimore.

Stolz, J.F., Ellis, D.J., Blum, J.S., Ahmann, D., Lovley, D.R. & Oremland, R.S., 1999. *Sulfurospirillum barsenii* sp. nov. and *Sulfurospirillum arsenophilum* sp. nov., new members of the *Sulfurospirillum clade* of the *Proteabacteria*. Int. J. Sys. Bacteriol. 49, 1177-1180.

Thierry, S., Mariaca, P., Raminez, F. & Macarie, H., 2004. Strict aerobes, autochthonous or passenger microorganisms in anaerobic reactors? In: Proc. 10th Anaerobic Digestion Conference, Montréal, Canada. pp. 167 – 173.

Trnovec, W. & Britz, T.J., 1998. Influence of organic loading rate and hydraulic retention time on the efficiency of a UASB bioreactor treating a canning factory effluent. Water SA 24, 147-152.

Van Andel, J.G. & Breure, A.M., 1984. Anaerobic wastewater treatment. Trends Biotechnol. 2, 16-20.

Van der Merwe, M. & Britz, T.J., 1994. Characterisation and numerical analysis of the microbial community in raw baker's yeast factory effluent. Water SA 20, 161-168.

Van Elsas, J.D., Mäntynen, V. & Wolters, A.C., 1997. Soil DNA extraction and assessment of the fate of *Mycobacterium chlorophenolicum* strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most probable number PCR and immunofluorescence. Biol. Fert. Soil. 24, 188-195.

Venkateswaran, K., Moser, D.P., Dollhopf, M.E., Lies, D.P., Saffarini, D.A., MacGregor, B.J., Ringelberg, D.B., White, D.C., Nishijima, M., Sano, H., Burghardt, J., Stackebrandt, E. & Nealson, K.H., 1999. Polyphasic taxonomy of the genus *Shewanella* and description of *Shewanella oneidensis* sp. nov. Int. J. Sys. Bacteriol. 49, 705-724.

Wangnai, C., Zeng, R.J. & Keller, J., 2004. Characterisation of high-rate acidogenesis processes using a titration and off-gas analysis (TOGA) sensor. In: Proc. 10th Anaerobic Digestion Conference, Montréal, Canada. pp. 27 – 32.

Wolmarans, B. & De Villiers, G.H., 2002. Start-up of a UASB effluent treatment plant on distillery wastewater. Water SA 28, 63-68.

Wu, J.-H., Liu, W.-T., Tseng, I.-C. & Cheng, S.-S., 2001. Characterisation of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiol. 147, 373-382.

You, S.J., Hsu, C.L. & Ouyang, C.F., 2002. Identification of the microbial diversity of wastewater nutrient removal processes using molecular biotechnology. Biotechnol. Lett. 24, 1361-1366.