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This paper presents a study of precision agriculture in the wine industry. While precision viticulture mostly aims 
to maximise yields by delivering the right inputs to appropriate places on a farm in the correct doses and at the 
right time, the objective of this study was rather to assess vine biomass differences. The solution proposed in this 
paper uses aerial imagery as the primary source of data for vine analysis. The first objective to be achieved by the 
solution is to automatically identify vineyards blocks, vine rows, and individual vines within rows. This is made 
possible through a series of enhancements and hierarchical segmentations of the aerial images. The second objective 
is to determine the correlation of image data with the biophysical data (yield and pruning mass) of each vine.  
A multispectral aerial image is used to compute vegetation indices, which serve as indicators of biophysical measures. 
The results of the automatic detection are compared against a test field, to verify both vine location and vegetation 
index correlation with relevant vine parameters. The advantage of this technique is that it functions in environments 
where active cover crop growth between vines is evident and where variable vine canopy conditions are present 
within a vineyard block.

INTRODUCTION
Remote sensing has been used in the agricultural sector for 
many years and recent advances in imaging sensors have led to 
a wide array of applications using remotely sensed imagery in 
precision agriculture. The wine industry is one example of high-
value crop production that has benefitted from remote sensing. 
Precision viticulture aims to maintain maximum control over 
vineyard management by taking cognisance of the fact that 
there is variability within the vineyard (Proffit et al., 2006). It 
is in particular the use of multispectral imagery from airborne 
sensors that has seen an application in this sphere to allow for the 
remote determination of vineyard variability caused by differing 
topography, soil characteristics, management practices, plant 
health and meso-climates (Bramley, 2003).

The use of vegetation indices, generated from the various 
spectral bands of aerial multispectral images, provides a “means 
of capitalizing on the contrast that exists between vine biomass 
when measured in different wavebands” (Proffit et al., 2006). 
Most commonly used are the Normalized Difference Vegetation 
Index (NDVI) and the Plant Cell Density (PCD) or Ratio 
Vegetation Index (RVI). Both of these indices make use of the 
fact that healthy, vigorous vines will exhibit strong near-infrared 
reflectance and very low red reflectance (Proffit et al., 2006). 
These index formulations are given below in 1 and 2:

 (1)
  (2)

Once the vegetation index has been calculated it is classified 
into a pseudo-colour index image, whereby distinct colour classes 
represent manageable differences in vine variability, as can be 
seen in Fig. 1.

The image analysis of vineyards requires, firstly, the 
discrimination of vineyards from neighbouring forests, homesteads 
and farm land; secondly, the discrimination of individual rows in 
the vineyard; and, lastly, the identification of individual vines in 
the rows. All of these operations are typically done manually. It 
can be seen from Fig. 1 that the pseudo-colour classification has 
included NDVI values for the vine rows, inter-row cover crop, 
shadows and bare soil. An attempt to minimise this problem can 
be made by modifying the classification scheme, thus effectively 
moving all of the pseudo-colour classes to higher NDVI values 
to try to isolate the NDVI values only on the vines. This 
thresholding process is described by Proffitt et al. (2006) and can 
be seen in Fig. 2, where an attempt is made to minimise the effect 
of inter-row cover crop, soil and shadows. It is evident in most 
of the vineyard blocks that obtaining a suitable threshold level 
is a compromise between retaining non-vine NDVI values and 
losing vine NDVI values. Rarely is an optimal balance achieved 
and hence thresholding on its own is not suitable for vine row 
classification.

This paper proposes a method of image segmentation to extract 
the vine rows from the multispectral image scene before the 
pseudo-colour vegetation index classification, thus reducing the 
classification scheme to the vine canopy only and ensuring a 
more reliable correlation with vine biophysical parameters such 
as biomass. The objective of segmentation is to automatically 
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Fig. 1. 4 

 

FIGURE 1 5 

Pseudo-colour NDVI image of a portion of the vineyard test block on a Stellenbosch wine 6 

farm, where red represents low NDVI values, green represents medium NDVI values and blue 7 

represents high NDVI values. 8 
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discriminate the vineyards from neighbouring forests and farm 
land, and to discriminate the rows in the vineyards, as highlighted 
in Fig. 3.

Once the individual rows have been discriminated, the individual 
vines can be identified by other means, such as analysis of the 
variations in the width of the rows. Once the individual vines have 
been identified, growth measures are estimated for them from 
neighbouring pixels.

 
FIGURE 1

Pseudo-colour NDVI image of a portion of the vineyard test block on a 
Stellenbosch wine farm, where red represents low NDVI values, green represents 

medium NDVI values and blue represents high NDVI values.

Image segmentation can be achieved by region growing 
techniques, thresholding techniques, texture analysis techniques, 
edge detection-based techniques, graph-based techniques, or 
a combination of these methods. Of these, thresholding is the 
most efficient. There are a number of examples of segmentation 
applied to precision farming. An application of a thresholding 
segmentation technique is provided by Tellaeche et al. (2008). 
In their study, prior knowledge of the spectral signature of weeds 
was used to distinguish between weeds and crops in a field. 
They began with an RGB image (colour image comprised of 
red, green and blue bands) and converted this into a greyscale 
image. By studying the histogram of the greyscale image, they 
chose a suitable threshold. Having chosen the threshold, a binary 
image was created from the greyscale image, in which the weeds 
were shown in white and the background was shown in black. 
Other methods that employ thresholding are those of Rosin and 
Ioannidis (2003) and Tian and Slaughter (2002). To segment 
vineyard blocks, Delenne et al. (2006) used a Fourier analysis 
technique. Their method takes advantage of the periodic patterns 
induced by vine rows to discriminate between the vineyards and 
neighbouring farms and homesteads. Their method recursively 
seeks vineyard plots. The method is sensitive to row spacing, prone 
to under-segmentation if the neighbouring vineyard plots have the 
same row alignment, and only works on linear rows. Some other 
examples of methods that employ texture analysis in agriculture 
are provided in Wassenaar et al. (2002), Ranchin et al. (2001) and 
Franklin et al. (2000). Examples of an edge-based technique and 
region growing technique are provided by Bobillet et al. (2003) 
and Hall et al. (2003) respectively. A recent study to determine 
vineyard area Rodríguez-Pérez et al. (2008) highlights the use of 
supervised classification (with analyst specified "training" sites to 
identify vineyard components of the image) of Landsat imagery 
using vegetation indices, and proved to be useful at estimating 
vineyard areas at large scale.

FIGURE 2
A threshold pseudo-colour NDVI image, (a) with no vine loss and (b) with vine loss as the classification scheme is modified in an attempt to remove the effects of inter-row 

cover crop, soil effect and shadows.
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MATERIALS AND METHODS
Basic method
The segmentation method used in this project is a combination of 
a thresholding and a graph-based technique. These two techniques 
have been chosen because they are simple, they make minimal 
assumptions about vine row and individual vine structures in the 
images, and they are adaptive. The method does not require the 
identification of “seed” pixels, as in region growing algorithms; 
it does not have to be started from a good initial state, as in active 
contour-based techniques; and it does not make assumptions 
about what defines the edge of a vine, as in edge-based techniques. 
The thresholding is applied to increase the contrast between the 
vineyard (the vine canopy) and the background (roads, “between-
row” features, buildings, etc.). To extract the vine rows, a graph1 
G(V,E) is imposed on the thresholded image, in which V is the 
set of vertices in the graph and E is the set of edges connecting 
the vertices. Each vertex in the graph represents a pixel in the 
thresholded image, and each vertex carries the associated pixel 
value as an attribute. Adjacent vertices (pixels) are connected 
if the differences in the vertex values are below a user-defined 
threshold. Connecting vertices in the above fashion will yield 
sub-graphs in the graph G. By applying a connected components 
algorithm, the sub-graphs, and hence by association the segments 
in the thresholded image, are extracted.
Discrimination of vineyards
The vineyards are discriminated from the forest and homesteads by 
testing the linearity of the segments. The linearity of the segments 
is determined by fitting curves (low-order polynomials) to the 
segments and then computing the average deviation of the vertices 
in the segment from the computed curves. If the average deviation 

1   A graph is an abstract mathematical data structure comprised of finite entities called vertices 
that are connected by edges. Graphs are used in network analysis problems (Trudeau, 1993).

is less than the maximum expected width of a vine row, then the 
segment is accepted as being a vine row. This method allows the first 
two objectives of the segmentation to be achieved in one step, i.e. the 
vineyard is distinguished from the background (forest, homesteads, 
etc.) and the individual vine rows are extracted. Furthermore, 
because of the curve-fitting step, it is possible to use the method to 
extract curved vine rows, thus overcoming this limitation, which 
exists in many other techniques. This method of discrimination is 
more effective than a PCA (principal components analysis). Testing 
the linearity of segments using a PCA will require a test of the 
size of the second principal component. If the size of the second 
component is less than the maximum expected width of a vine, then 
a segment can be accepted as being a vine row. However, testing in 
this fashion will fail where the vine rows are curved, as the second 
component no longer represents an eigenvector perpendicular to 
the direction of the vine row.

Source images

The study was conducted using images of a Merlot (Vitis 
vinifera L. cv Merlot) clone MO 9 vineyard grafted onto R110 
(Vitis Berlandieri x Vitis rupestris) rootstock in the Stellenbosch 
grape-growing region of South Africa. The vines are planted in 
a 2.7 m (vine row spacing) x 1.5 m (vine spacing within a row) 
grid in an east-west direction and are trellised on a seven-wire 
movable hedge trellis system. Canopy management included 
shoot positioning and mechanical shoot topping. The images 
used in this study were collected during the 2007/2008 growing 
season. The test area consisted of 48 plots within the vineyard that 
were also used in an irrigation trial, each harbouring experimental 
blocks of 48 vines (12 vines in four rows).

This section discusses the image acquisition and rectification 
process, as well as some of the difficulties associated with 
segmenting the images and pre-processing the images.
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FIGURE 2  

A threshold pseudo-colour NDVI image, (a) with no vine loss and (b) with vine loss as the 

classification scheme is modified in an attempt to remove the effects of inter-row cover crop, 

soil effect and shadows. 
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FIGURE 3
Segmentation of vineyards in an image: (a) the vineyard (the foreground) relative to forests, roads and homesteads (the background), and (b) vine rows in a vineyard.
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Image acquisition
Two digital SLR cameras were used for airborne image 
acquisition. These were a Canon 10D (Canon, 2009) with a CMOS 
(complementary metal oxide semiconductor) sensor, which was 
used to capture the colour images, and a Nikon D100 (Nikon, 
2009) with a CCD (charged coupled device) sensor, which was 
used for the near-infrared (NIR) image capture. The Nikon D100 
had been modified to capture near-infrared light (Maxmax, 2009) 
and used a Kodak Wratten #89B Opaque IR filter (B&H Photo 
Video, 2009) to block the visible light wavelengths. Both cameras 
were fitted with Sigma 14 mm f2/8 EX Aspherical (HSM) wide-
angle lenses (Photography Review, 2009) in order to optimise the 
camera field-of-view. The aerial photography was carried out at 
a height of approximately 350 m above the terrain, providing a 
nominal image ground pixel size of 20 cm. The stereo pair of 
photos was taken as close to midday as possible in an attempt to 
minimise the effect of shadows.
Image rectification
Before the flight, both image-sensor systems were calibrated in 
the laboratory to determine the interior orientation parameters of 
the cameras (including focal length, lens distortion and principal 
point offset). These parameters were then used in the correction of 
geometric distortions in the imagery.

To obtain reliable geo-referencing of the imagery, a GPS (global 
positioning system) survey of the vineyard block was conducted. 
This included a survey of the vine row ends (to be used for 
verification of the segmentation), as well as the positioning of 20 
photo control panels (such as can be seen in Fig. 4) in the vineyard 
to demarcate the test plots and serve as photo control for geo-
referencing.

Image geo-referencing and ortho-rectification were done using 
the stereo pair of multispectral images with the ERDAS Leica 
Photogrammetry Suite software. During this process, the colour 
and near-infrared images are registered band to band through 
the use of multiple common photo control points. The resulting 
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Segmentation of vineyards in an image: (a) the vineyard (the foreground) relative to forests, 

roads and homesteads (the background), and (b) vine rows in a vineyard. 
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FIGURE 4  

Colour image showing the white photo control panels, used for geo-referencing and test plot 

demarcation in a Stellenbosch wine grape vineyard. 

 

 

 

 

FIGURE 4
Colour image showing the white photo control panels, used for geo-referencing 

and test plot demarcation in a Stellenbosch wine grape vineyard.

colour and near-infrared ortho-rectified imagery was sampled to a 
ground resolution of 25 cm.
Difficulties in segmenting vineyard images
The growth parameters for a vine are estimated from the highlighted 
(canopy) regions of a vine. Therefore, the assumption is made that 
the ideal segmentation should yield segments containing only the 
highlighted (vine canopy) regions of the vines.
Shadows
Sections of vines are also located in shadow areas in Fig. 5. 
Therefore, the segmentation also yields sections of shadowed 
regions. The shadow segments run parallel to the highlighted (vine 
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FIGURE 5  

Near-infrared image showing vine highlights (canopy) versus vine shadows (a), and the 

situation on the ground (b). 

 

e taken. 
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FIGURE 6  

Shadows cast by trees (a), and the situation on the ground (b). 
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FIGURE 5
Near-infrared image showing vine highlights (canopy) versus vine shadows (a), and the situation on the ground (b).
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canopy) segments, which necessitates a post-processing step to 
distinguish between the highlighted (vine canopy) and shadowed 
segments. This discrimination is achieved by calculating the 
average value of the vertices in a segment. Segments with a high 
average value are accepted as being highlighted vine rows, and 
the remainder are regarded as being shadowed “vine rows”.

Trees (windbreaks, etc.) also cast shadows over the vineyard, 
as seen in Fig. 6. The effect of this is that vineyards that should 
otherwise be in highlight are shadowed. This causes the vineyard 
area to be underestimated. The severity of this problem depends 
on the time and the season when the photographs were taken.

Inter-rows and missing vines

The vine rows are separated by a space measuring approximately 
2.7 m (here called the inter-row), as shown in Fig. 7. For good 
discrimination between inter-rows and the highlighted vines, 
the inter-rows should have a spectral signature different from 

that of the highlighted vines (vine canopy). Depending on the 
season and the maintenance of the vineyard, the inter-rows 
may be clear, or overgrown with weeds or cover crop (annual 
or perennial). Overgrown inter-rows cause under-segmentation 
and, in the linearity test of the segments, the rows are rejected 
because the combined segments are wider than the expected 
width of one vine row segment. Inter-rows can also complicate 
discrimination between highlighted regions and shadowed areas. 
If the resolution of the image used in the segmentation is high, 
then segmentation should yield three parallel segments, i.e. the 
highlighted vine regions (vine canopy), the shaded “vine regions”, 
and the inter-rows. Averaging the values of the vertices in these 
segments should result in high values, mid-values and lows for 
the highlights, the inter-rows and the shadows respectively. While 
the discrimination between segments with high and low values 
is fairly straightforward, the discrimination between regions with 
high and mid-values is problematic because of the variation in 
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FIGURE 6  

Shadows cast by trees (a), and the situation on the ground (b). 
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FIGURE 6
Shadows cast by trees (a), and the situation on the ground (b).
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FIGURE 7  

Inter-rows (the space between vine rows): A clear inter-row (a) and an overgrown inter-row 

(b). 
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FIGURE 8  

Missing vines: missing vines in the segmentation image (a), and the situation on the ground 

(b). 
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FIGURE 7 
Inter-rows (the space between vine rows): A clear inter-row (a) and an overgrown inter-row (b).
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the cover crop (this can range from clear to overgrown) of the 
inter-rows.

A further problem associated with inter-rows is that of missing 
vines, as indicated in Fig. 8. Missing vines could arise, for 
example, from planting material problems, Eutypa wood rot 
problems or uprooting after infection with the leafroll virus. As 
can be seen in Fig. 8, missing vines can cause adjacent rows 
to be “combined” in the segmentation process if the inter-row 
is overgrown. The segment will subsequently be rejected in a 
linearity test to determine the linearity of the segment, because it 
is wider than the expected width of a vine canopy. This problem 
requires an additional test of segments with a high average vertex 
value to determine if they need to be segmented further. This 
essentially requires a hierarchical segmentation of the vineyard. 
A hierarchical segmentation was not implemented in the project 
reported here, but it is planned for future work.

Overhanging trees

In certain cases, trees from nearby forests or windbreaks will 
hang over the vines. This can cause the trees and vines to be 
combined into the same segment. The severity of this problem 
depends on whether the overhang is in shadow. The shadowed 
overhangs “bleed” into the shadow regions of vines and are 
relatively harmless. However, highlighted overhangs “bleed” 
into highlighted vine rows and cause adjacent vine rows to be 
combined into the same segment. Such highlighted overhangs 
necessitate a hierarchical segmentation.

Pre-processing of the images

The images used in the segmentation are not of uniform contrast. 
To correct this problem, local histogram equalisation must be 
performed on the image. Depending on the neighbourhood size, 
artefacts may be introduced into the image, as can be seen in Fig. 
9. The likelihood of an optimal segmentation is increased when 
the segmentation, or discriminating parameters, are as general as 
possible. Increased variation, which has to be accounted for in 
the image scene, results in greater difficulty in the segmentation 

process. As indicated in Fig. 9, the vines appear most uniform in 
the local histogram equalisation with the 16 x 16 neighbourhood, 
as is to be expected. As the neighbourhood size increases, the 
influence of the growth variations begins to be seen. It should 
be noted that the source image is from the NIR (near-infrared) 
spectrum. Therefore, the segmentation was done on an image 
in which local histogram equalisation with a reasonably small 
neighbourhood size had been applied. The artefacts that result in 
the forests and in the neighbourhood of the vineyard actually aid 
the process of discriminating the vineyard from the neighbouring 
forests and homesteads. The artefacts yield many small or twisted 
segments that are later easily rejected with simple tests.

RESULTS AND DISCUSSION

In this section the results of the segmentation and the determination 
of growth measures are discussed.

Segmentation

After pre-processing the source image, the segmentation 
procedure as described above was applied. The threshold for the 
difference between adjacent vertices in the graph was set to a 
nominal value of five. This threshold gave good results for this 
particular data. More work has to be done in future permutations 
of the software for this threshold to be selected automatically. The 
vine rows segmented well, yielding long segments (Fig. 10) that 
can easily be discriminated from the short segments found in the 
forest areas. The exception to this is the roads, which also yielded 
long segments. However, a simple test of parallelism should be 
enough to distinguish roads from vine rows

The most critical step of the segmentation proved to be the pre-
processing and thresholding of the source images (for this project 
an NIR image). Good pre-processing of the images should yield 
images in which the global variation between vines is minimal. 
In this respect, the local histogram equalisation was successful. 
Future work will focus on using RGB images, which are potentially 
better for discriminating overgrown inter-rows.
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Vine biophysical parameters
The goal of this study was to determine measures from the 
radiometry of the images that can be used to estimate vine 
biophysical parameters. The role of the segmentation was to 
identify the rows of vines, and individual vines if possible. With 
the rows of vines identified, the next step was to identify the 
individual vines and obtain physical measurements for them. For 
the purpose of this study, a control set of vines was measured in 
a vineyard. The locations of these vines were determined using 
GPS. Furthermore, the pruning mass of the vines was determined 
in the winter as a measure of the seasonal above-ground biomass 
of the vines. Using their GPS locations, the vines were identified 

in the images and image-based indices were computed for the 
vines. Below is an explanation of how this was done.

Fitting curves to the row segments

Once the vine rows were extracted from the vineyard, the next 
step was to obtain the centreline of each row. The solution adopted 
here was to fit a low-order polynomial (second order) to each row 
segment. The Levenberg Marquette algorithm was used for the 
optimisation of the fit. Therefore, each vine row is represented by 
a polynomial function. The result is shown in Fig. 10(c), with the 
GPS vine locations superimposed.
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FIGURE 9  

Local histogram equalisation of the source image. The original image (a). Local histogram 

equalisation with a 16 x 16 neighbourhood; the vine rows appear to be of uniform texture (b). 

FIGURE 9
Local histogram equalisation of the source image. The original image (a). Local histogram equalisation with a 16 x 16 neighbourhood; the vine rows appear to be of uniform 
texture (b). Local histogram equalisation with a 32 x 32 neighbourhood; the vine rows appear to be fairly uniform, but a small influence of the global growth variation can 
be seen (c). Local histogram equalisation with a 64 x 64 neighbourhood; the vine rows no longer appear uniform and the influence of global growth variations can be seen 

clearly (d).
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Detecting and rejecting non-vine segments
Using GPS positions, each vine was located in the image used in 
the segmentation. If a vine fell within a vine row segment, then all 
pixels in the neighbourhood of the vine, in the NIR image, were 
sought. The neighbourhood is defined by the radius, r, where r 
is half the distance between adjacent vines in a row. Each pixel 
found was tested to determine if it was in the same row segment 
as the vine. Those pixels that were not in the same row segment 
were rejected. The same procedure was repeated with the RGB 
image.
Gathering growth values for the vines
From the pixels in the neighbourhood of a vine that cover the 
vine canopy (in this test case a 3 x 3 pixel neighbourhood was 
used), the following values were calculated: NDVI, PVI, mean 
red, mean green, mean blue, mean NIR, the mean distance to the 
vine and the mean distance to the vine row. The above process 
was repeated for every vine. This is shown in Fig. 10(c) with the 
GPS vine locations superimposed. The results were tabulated 
together with the pruning mass measurement for each vine. In 
Johnson et al. (2003), mention is made of the fact that vine leaf 
area is related to many parameters (fruit ripening rate, vine water 
status, fruit composition and wine quality), but also that it is not 
easy for grape producers to measure it, as direct measurement is 
time consuming and destructive. As in many other studies, these 
authors also indicated the good relationship between pruning mass 
(measured post-season in winter) and leaf area. For this reason, the 
measurement of pruning mass can be considered a more practical 
and relevant measure of vine biomass, which has been used in 
several remote sensing studies (Jonhnson et al., 1996; Lobitz et 
al., 1997; Strever, 2003).

As in Johnson et al. (2003), it was found that the sensitivity 
of the NDVI reaction to pruning mass on a plot level (a plot 
consisting of four rows of 12 vines grouped together within the 
vineyard) varied considerably, as is shown in Fig. 11(a), with 
significant improvement in the correspondence between pruning 
mass and NDVI per plot, shown in Fig. 11(b), when the plots were 
manually selected from three distinct vigour levels according to 
pruning mass values, seen in Fig. 12(a). In general, plot NDVI 
and pruning mass correlations (data not shown) were weak 
(R2 = 0.25), but improved significantly (R2 = 0.76) when plots of 
three distinct varying vigour levels were sub-selected from the 
48 plots, as shown in Fig. 11(b) and Fig. 12(a). This may be due 
solely to the grouping of the selected vigour levels, as in Fig. 12(b) 
(this is comparable to many studies where correlations are made 
from sub-grouped vigour levels investigated within vineyards).

The results of the yield to NDVI correlations were similar. 
Correlations between row NDVI levels and the pruning mass per 
row were highly variable, however, with most plots not showing 
any correlations with NDVI values. In addition, single-vine 
correlations were not significant in all the cases evaluated using 
this segmentation method. The poor correlations found with this 
method are probably the result of the inability of the method to 
incorporate the spatial and spectral features of a vine; i.e. when a 
vine is smaller, the segmentation and subsequent pixel evaluation 
accounted for the NDVI index values of the pixels surrounding 
the vine, but, with the pixels limited to the segmented area, did not 
include a parameter to account for the number of pixels segmented. 
This “vine size” parameter is deemed to be just as important as the 
spectral value of the pixels included in the segmentation, and will 
be included in further studies.

7 

Local histogram equalisation with a 32 x 32 neighbourhood; the vine rows appear to be fairly 

uniform, but a small influence of the global growth variation can be seen (c). Local histogram 

equalisation with a 64 x 64 neighbourhood; the vine rows no longer appear uniform and the 

influence of global growth variations can be seen clearly (d). 

 

vine rows.  

 

 

(a) 

 

(b) 

 

(c) 

FIGURE 90  

Segmentation example. The thresholded, pre-processed image (a). The segmented vine rows 

extracted from the pre-processed image (b). The vine row centre lines with GPS vine 

locations superimposed (c). 

 

segmentation and the correlation between the vegetation index calculation and vine 

biophysical measures. 

 

FIGURE 10
Segmentation example. The thresholded, pre-processed image (a). The segmented vine rows extracted from the pre-processed image (b). The vine row centre lines with 

GPS vine locations superimposed (c).
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FIGURE 101  

Means with error plot of pruning mass (g) per vine and NDVI values measured for the plots 

studied in the vineyard. Each plot consists of 48 vines (a). Means with error plot of pruning 

mass (g) per vine and NDVI values measured for a sub-selection of plots in three distinct 

vigour levels. Each plot consists of 48 vines (b).
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FIGURE 112  

Means with error plot of pruning mass (g) per vine and NDVI values measured for plots 

manually subdivided into three distinct vigour levels (a). Scatter plot of NDVI values against 

pruning mass (g) for sub-selected plots based on three vigour levels (b). 
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FIGURE 101  

Means with error plot of pruning mass (g) per vine and NDVI values measured for the plots 

studied in the vineyard. Each plot consists of 48 vines (a). Means with error plot of pruning 

mass (g) per vine and NDVI values measured for a sub-selection of plots in three distinct 

vigour levels. Each plot consists of 48 vines (b).
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FIGURE 112  

Means with error plot of pruning mass (g) per vine and NDVI values measured for plots 

manually subdivided into three distinct vigour levels (a). Scatter plot of NDVI values against 

pruning mass (g) for sub-selected plots based on three vigour levels (b). 

 

CONCLUSIONS
The objective of this research has been to develop a method of 
detecting vine rows in aerial imagery. This will enable more 
accurate determination of vine variability by focussing on the vine 
signal in the imagery, without including the influence of inter-row 
cover crop, shadows, soils, etc.

The analysis of the segmentation technique applied in this study, 
through rigorous ground-based verification, has shown results 
that appear to be reliable, although further testing is required. 
Both the vine row segmentation itself, as well as the vegetation 
index calculation, has improved previous classification methods, 
leading to improved estimators of vine biophysical measures.

The approach presented here differs from other techniques in 
that it can detect curved vine rows and is not limited to linear vine 

rows. This robust method of detecting vineyard rows makes use of 
both RGB and NIR images, whereas other methods typically only 
use the RGB image. The advantage of not using texture analysis is 
that it avoids the problem that neighbouring vineyard blocks with 
similar image texture are merged into a single vineyard block. 
As no region growing approach is used, there is no need for the 
identification of seed points, which potentially lends greater 
automation to the method presented here.

No hierarchal segmentation approach has been implemented 
in this study, but it is planned for future work. This will allow 
for the splitting of vine rows where the vine canopy has merged 
segments. Future work will investigate the correlation between 
vegetation indices and vine biophysical measures in more detail. 
The techniques developed in this study will also be applied to 

FIGURE 11
Means with error plot of pruning mass (g) per vine and NDVI values measured for the plots studied in the vineyard. Each plot consists of 48 vines (a). Means with error plot 

of pruning mass (g) per vine and NDVI values measured for a sub-selection of plots in three distinct vigour levels. Each plot consists of 48 vines (b).

FIGURE 12
Means with error plot of pruning mass (g) per vine and NDVI values measured for plots manually subdivided into three distinct vigour levels (a). Scatter plot of NDVI 

values against pruning mass (g) for sub-selected plots based on three vigour levels (b).
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different vineyards in which growing conditions may vary, with 
the objective of quantifying the accuracies achieved for both 
image segmentation and the correlation between the vegetation 
index calculation and vine biophysical measures.
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