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Although Saccharomyces cerevisiae is the yeast species predominantly used for alcoholic fermentation, 
non-Saccharomyces yeast species are also important because they produce secondary metabolites that 
can contribute to the final flavour and taste of wines. In this study, 37 strains representing seven non-
Saccharomyces species were characterised and evaluated for potential use in wine production, as well 
as for their effects on malolactic fermentation (MLF). Contour-clamped homogeneous electric field 
(CHEF) gel electrophoresis and matrix-assisted laser desorption ionisation using a time-of-flight mass 
spectrometer (MALDI-TOF MS) were used to verify species identity and to determine intra-species 
variation. Extracellular enzyme production, malic acid degradation and the fermentation kinetics of the 
yeasts were also investigated. CHEF karyotyping and MALDI-TOF MS were useful for identifying and 
typing Hanseniaspora uvarum, Lachancea thermotolerans, Candida zemplinina (synonym: Starmerella 
bacillaris) and Torulaspora delbrueckii strains. Only H. uvarum and Metschnikowia pulcherrima strains 
were found to have β-glucosidase activity. M. pulcherrima strains also had protease activity. Most of the 
strains showed limited malic acid degradation, and only Schizosaccharomyces pombe and the C. zemplinina 
strains showed mentionable degradation. In synthetic wine fermentations, C. stellata, C. zemplinina, 
H. uvarum, M. pulcherrima and Sc. pombe strains were shown to be slow to medium fermenters, whereas 
L. thermotolerans and T. delbrueckii strains were found to be medium to strong fermenters. The effect of 
the yeasts on MLF varied, but inhibition was strain dependent. 

INTRODUCTION
Yeasts play a key role in wine production. They are present 
on the grapes and winery equipment, or are added as starter 
cultures, and are responsible for alcoholic fermentation by 
which the grape must is transformed into wine. These yeasts 
can arbitrarily be divided into two categories: Saccharomyces 
and non-Saccharomyces (wild yeasts). Saccharomyces 
cerevisiae may be present at very low numbers on the grape 
skins, but are normally found in greater numbers on the 
winery equipment (Fleet et al., 2002; Ribéreau-Gayon et al., 
2006). Non-Saccharomyces yeast genera frequently found 
on grapes and in must include Hanseniaspora (Kloeckera), 
Candida, Metschnikowia, Brettanomyces, Kluyveromyces, 

Schizosaccharomyces, Torulaspora, Rhodotorula, Zygosac-
charomyces, Cryptococcus and the black pigmented yeast-
like fungi, Aureobasidium pullulans (Fleet et al., 2002; Jolly 
et al., 2003a; Ribéreau-Gayon et al., 2006; Romano et al., 
2006; Jolly et al., 2014; Alessandria et al., 2015; Capozzi 
et al., 2015). In the initial phase of spontaneous fermentations, 
strains from the genera Kloeckera and Candida usually 
dominate (Ribéreau-Gayon et al., 2006; Romano et al., 
2006). As the ethanol levels increase, the more ethanol-
tolerant Saccharomyces yeast strains dominate. 

Malolactic fermentation (MLF) is a secondary but 
important fermentation process conducted by lactic acid 
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bacteria (LAB), usually Oenococcus oeni (Bauer & Dicks, 
2004; Lerm et al., 2010). Malolactic fermentation is not 
a true “fermentation”, but rather an enzymatic reaction in 
which malic acid is decarboxylated to lactic acid and CO2. 
This process is often desired in the production of red wines, 
and in certain white and sparkling wine styles (Wibowo 
et al., 1985; Bartowsky et al., 2015), because it increases 
wine microbiological stability and enhances aroma and 
flavour (Davis et al., 1985; Bartowsky et al., 2002, Lerm 
et al., 2010; Sumby et al., 2014). 

In the last decades, research has focused on the role that 
non-Saccharomyces yeasts play in wine production. The use 
of controlled mixed cultures of selected non-Saccharomyces 
and Saccharomyces strains can have advantages over 
fermentations inoculated with pure cultures of S. cerevisiae. 
These mixed fermentations lead to the production of wines 
with more desirable characteristics, and starter cultures 
containing non-Saccharomyces yeasts, namely Torulaspora 
delbrueckii, Lachancea thermotolerans, Pichia kluyveri and 
Metschnikowia pulcherrima, are available commercially 
(Jolly et al., 2014). Specific compounds produced by non-
Saccharomyces yeasts that can affect wine aroma and 
flavour include acetaldehyde, acetic acid, esters, glycerol, 
higher alcohols, terpenoids and other by-products (Romano 
et al., 1997; 2003; Jolly et al., 2006; Comitini et al., 2011; 
Jolly et al., 2014). Non-Saccharomyces yeasts also possess 
various degrees of β-glucosidase activity, which plays a 
role in releasing volatile compounds from non-volatile 
precursors (Rosi et al., 1994; Hernández-Orte et al., 
2008). Extracellular proteolytic and pectinolytic enzymes 
of non-Saccharomyces yeasts might also be beneficial 
by improving wine processing through the facilitation of 
juice extraction and clarification, wine filtration and colour 
extraction (Van Rensburg & Pretorius, 2000; Strauss, 2003; 
Reid, 2012). Strains of Candida stellata, C. zemplinina 
(synonym: Starmerella bacillaris), Hanseniaspora uvarum, 
M. pulcherrima and P. anomala have been found to produce 
a variety of extracellular enzymes (Charoenchai et al., 1997; 
Strauss, 2003; Mostert, 2013). 

Considering the great diversity and potential applications 
of different non-Saccharomyces yeast strains within the same 
species, it is important to devise simple and reliable molecular 
typing techniques to discriminate at the subspecies level. The 
application of karyotyping electrophoresis techniques, such 
as contour-clamped homogeneous electric field (CHEF) 
gel electrophoresis, has been useful to differentiate non-
Saccharomyces yeasts at species and strain level (Esteve-
Zarzoso et al., 2001; Sipiczki, 2004; Alcoba-Flórez et al., 
2007; Van Breda et al., 2013). Its high discriminatory power 
and repeatability also justify why this technique is often 
considered favourably in comparison with other typing 
methods. Matrix-assisted laser desorption ionisation, using 
a time-of-flight mass spectrometer (MALDI-TOF MS), is 
a ‘soft’ or non-destructive method that can be used for the 
identification of yeasts and bacteria at the genus and species 
level (Van Veen et al., 2010). Studies using MALDI-TOF 
MS to identify yeasts have focused more on clinical Candida 
strains (Marklein et al., 2009) than on wine-associated yeasts 
(Moothoo-Padayachie et al., 2013; Kántor & Kačániová, 
2015).

The interactions between different non-Saccharomyces 
yeasts (naturally present and inoculated) and LAB, as well 
as their impact on MLF, have received little attention. The 
resulting impact on wine aroma/flavour is also uncertain. 
With the increasing number of non-Saccharomyces yeasts 
available commercially, the need for a better understanding 
of the interactions between the wine yeast, S. cerevisiae, the 
non-Saccharomyces yeasts and LAB is critical. Therefore, 
the aims of this study were to characterise strains from 
seven non-Saccharomyces species by means of CHEF 
karyotyping, MALDI-TOF bio-typing, enzyme activity and 
malic acid degradation in order to investigate their use in 
wine production and to evaluate their compatibility with 
MLF. 

MATERIALS AND METHODS
Characterisation
Isolation and cultivation of micro-organisms
The yeast strains used in this study are listed in Table 1 and 
included one C. stellata, seven C. zemplinina (synonym: 
St. bacillaris), 11 H. uvarum (anamorph: Kloeckera 
apiculata), two L. thermotolerans (previously Kluyveromyces 
thermotolerans), seven M. pulcherrima (anamorph: Candida 
pulcherrima), one Schizosaccharomyces pombe, eight 
Torulaspora delbrueckii (anamorph: Candida colliculosa) 
and six S. cerevisiae strains. Strain L. thermotolerans 
Viniflora® Rhythm™ (Chr. Hansen, Denmark) and 
T. delbrueckii strains Viniflora® Harmony™ (Chr. Hansen), 
(Level2 TD™ (Lallemand Inc., France) and Zymaflore® 
Alpha TD n. Sacc. (Laffort Oenologie, France), were isolated 
from commercial active dried yeast blends (Van Breda et al., 
2013 and this study) and included as reference strains. All the 
yeasts were stored under cryo-preservation at -80°C. When 
required, the yeasts were grown on yeast peptone dextrose 
agar (YPDA, Merck, South Africa) at 28°C for 48 hours, or 
until sufficient growth was observed. Single colonies were 
then selected and transferred to 10 mL YPD broth and grown 
for 24 hours at 28°C before inoculation. Oenococcus oeni 
(Viniflora® oenos, Chr. Hansen) was used to induce MLF 
according to the supplier’s instructions.

Electrophoretic karyotyping
Contour-clamped homogeneous electric field (CHEF) gel 
electrophoresis was used to investigate the strain diversity of 
the non-Saccharomyces yeasts, and the intact chromosomal 
DNA was prepared using the embedded agarose technique 
described by Hoff (2012). A CHEF DRIII electrophoretic 
apparatus (Bio-Rad Laboratories, Inc., Richmond, USA) 
and the method described by Hoff (2012) were used with 
the following changes to the running conditions: 34-hour 
programme, initial pulse was 30 s and final pulse was 
215 s at an angle of 120 degrees at a constant 6 volt; 72-hour 
programme, initial and final pulse of 1 800 s at an angle of 
106 degrees at a constant 2.5 volt. Saccharomyces cerevisiae 
reference strain CBS 432 was used as the standard reference 
strain for all CHEF gels and was loaded on the outer lanes 
of each gel. Agarose gels at a concentration of 1.2% and 
0.8% were used to separate yeasts run on the 34 and 72 hour 
programmes respectively. 
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TABLE 1
Yeasts used in this study 

Species name 
Strain 
code Strain, origin and source information References*

Saccharomyces 
cerevisiae

S1 N 96, commercial yeast from Anchor Wine Yeast, South 
Africa

Hoff, 2012

S2 VIN 13, commercial yeast from Anchor Wine Yeast, South 
Africa

Jolly et al., 2003b; 2003c; 
Hoff, 2012; Van Breda et al., 
2013; Minnaar et al., 2015

S3 NT 112, commercial yeast from Anchor Wine Yeast, South 
Africa

Hoff, 2012

S4 NT 202, commercial yeast from Anchor Wine Yeast, South 
Africa

Hoff, 2012; Scholtz, 2013

S5 VIN 7, commercial yeast from Anchor Wine Yeast, South 
Africa

Hoff, 2012

S6 CBS 432, from Centraalbureau voor Schimmelcultures 
(CBS), Netherlands

Candida stellata Cs CBS 157T, from CBS, Netherlands Sipiczki, 2004; Csoma & 
Sipiczki, 2008

Candida zemplinina
(synonym: 
Starmerella 
bacillaris)

C1 CBS 9494, type strain from CBS, Netherlands Sipiczki, 2004; Csoma & 
Sipiczki, 2008, Magyar et al., 
2014

C2 VEN 2097, from the University of California, Davis Bokulich et al., 2012
C3 770**, from the ARC Infruitec-Nietvoorbij, South Africa Jolly et al., 2003b**
C4 788, from the ARC Infruitec-Nietvoorbij, South Africa This study
C5 841, from the ARC Infruitec-Nietvoorbij, South Africa This study
C6 971, from the ARC Infruitec-Nietvoorbij, South Africa This study
C7 C2-19, from the ARC Infruitec-Nietvoorbij, South Africa This study

Hanseniaspora 
uvarum
(anamorph: 
Kloeckera apiculata)

H1 752, from the ARC Infruitec-Nietvoorbij, South Africa Jolly et al., 2003b
H2 791, from the ARC Infruitec-Nietvoorbij, South Africa This study
H3 802, from the ARC Infruitec-Nietvoorbij, South Africa This study
H4 897, from the ARC Infruitec-Nietvoorbij, South Africa This study
H5 899, from the ARC Infruitec-Nietvoorbij, South Africa This study
H6 913, from the ARC Infruitec-Nietvoorbij, South Africa This study
H7 918, from the ARC Infruitec-Nietvoorbij, South Africa This study
H8 932, from the ARC Infruitec-Nietvoorbij, South Africa This study
H9 934, from the ARC Infruitec-Nietvoorbij, South Africa This study
H10 961, from the ARC Infruitec-Nietvoorbij, South Africa This study
H11 980, from the ARC Infruitec-Nietvoorbij, South Africa This study

Lachancea 
thermotolerans
(previously 
Kluyveromyces 
thermotolerans)

L1 Viniflora® Rhythm™, commercial yeast from Chr. Hansen, 
Denmark

This study

L2 548, from the ARC Infruitec-Nietvoorbij, South Africa This study

Metschnikowia 
pulcherrima 
(anamorph: Candida 
pulcherrima)

M1 825, from the ARC Infruitec-Nietvoorbij, South Africa Jolly et al., 2003b; 2003c
M2 C1/15, from the ARC Infruitec-Nietvoorbij, South Africa Jolly et al., 2003c 
M3 780, from the ARC Infruitec-Nietvoorbij, South Africa This study
M4 870, from the ARC Infruitec-Nietvoorbij, South Africa This study
M5 950, from the ARC Infruitec-Nietvoorbij, South Africa This study
M6 O2/16, from the ARC Infruitec-Nietvoorbij, South Africa This study
M7 O2/17, from the ARC Infruitec-Nietvoorbij, South Africa This study

Schizosaccharomyces 
pombe

Sp CBS 5557, CBS, Netherlands This study
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Chromosomal banding patterns were visualised on a 
Bio-Rad image analyser following staining with 0.01% 
(v/v) ethidium bromide (Bio-Rad Laboratories, Inc.). 
Normalisation of gels and comparison of banding patterns 
were done using FPQuestTM software (Bio-Rad Laboratories, 
Inc.) and the normalised electrophoretic patterns were 
grouped. Similarities (s) were obtained using the Dice 
coefficient, before cluster analysis was performed by 
the unweighted pair group method with arithmetic mean 
(UPGMA). 

MALDI-TOF bio-typing
Single colonies of each yeast strain were selected for 
identification and bio-typing by MALDI-TOF MS. One 
micro-litre of wine yeast protein extract was spotted onto 
a MTP 384 polished steel target plate as described by 
Moothoo-Padayachie et al. (2013) and Deak et al. (2015). 
Thereafter, the spotted target plate was inserted into a 
Bruker UltrafleXtreme MALDI-TOF MS (Bruker Daltonics, 
Bremen, Germany) apparatus. Generation of yeast protein 
mass spectra using MALDI-TOF/TOF MS was conducted 
according to the standard National Agricultural Proteomics 
Research & Services Unit method (obtainable from the 
National Agricultural Proteomics Research & Services Unit 
(NAPRSU), University of the Western Cape, South Africa). 
Mass spectra for all strains were acquired in triplicate. 
The spectrum acquired for each sample was compared 
to the Bruker reference database, which contains 4 110 
microorganisms (NAPRSU, May 2015).

Enzyme screening and malic acid degradation
Polygalacturonase/pectinase activity was determined as 
described by McKay (1988), β-glucosidase activity was 
determined through the screening method of Strauss et al. 
(2001) and acid protease activity was determined following 
the method of Charoenchai et al. (1997). The ability of 
yeasts to degrade malic acid was determined using the plate 
assay method described by Mocke (2005). The medium used 
for malic acid degradation was also modified slightly by 
excluding the agar and bromocresol green to determine malic 

acid degradation in a liquid medium. Aliquots of 10 mL of 
medium were dispensed into 42 test tubes and autoclaved. 
After this, single colonies of the yeast strains were inoculated 
into the test tubes containing the MLF broth and kept at an 
ambient temperature of 22°C for up to 40 days. Malic acid 
concentration was measured by enzymatic analysis (Arena 
20XT enzyme robot, Institute for Wine Biotechnology, 
Stellenbosch University).

Evaluation of yeasts
Fermentation trial
Laboratory-scale alcoholic fermentation trials were 
conducted in a chemically defined grape juice as described 
by Costello et al. (2003). Yeasts were grown in 10 mL of 
YPD broth at 30°C prior to inoculation. Pure cultures of the 
different yeast strains were inoculated into sterilised 375 mL 
glass bottles containing 250 mL of filter-sterilised synthetic 
grape juice and fermented to dryness. Each yeast strain had 
three biological repeats. After the alcoholic fermentation 
(AF), the resultant synthetic wine of each yeast treatment 
was pooled, aseptically filtered (0.22 µm) and used for 
the MLF trial. Fifty millilitres of the synthetic wine were 
aliquoted into sterilised 250 mL bottles before inoculating 
with LAB. Two treatments were applied, viz. (1) addition 
of O. oeni only and (2) addition of nutrients as described 
by Costello et al. (2003) prior to the addition of O. oeni 
(Viniflora® oenos). Alcoholic and malolactic fermentations 
were conducted at ±22°C. 

Chemical analyses
The Ripper method as described by Iland et al. (2000) was 
used to determine free and total SO2. The sugar concentration, 
pH, malic acid, total acidity (TA), alcohol and volatile 
acidity (VA) of the synthetic wines were determined using an 
OenoFoss™ Fourier transform infrared (FTIR) spectrometer 
(FOSS Analytical A/S, Denmark).

RESULTS AND DISCUSSION
The role of non-Saccharomyces yeasts in wine production 
is not as well researched as the role of S. cerevisiae (Jolly 

Species name 
Strain 
code Strain, origin and source information References*

Torulaspora 
delbrueckii 
(anamorph: Candida 
colliculosa)

T1 CBS 1146T, CBS, Netherlands Van Breda et al., 2013 
T2 CBS 4663, CBS, Netherlands Van Breda et al., 2013
T3 Level2 TD™, commercial strain from Lallemand Inc, France This study
T4 Zymaflore® Alpha TD n. Sacc., commercial strain from Laffort, 

France
This study

T5 Viniflora® Harmony™, commercial yeast from Chr. 
Hansen, Denmark

Van Breda et al., 2013

T6 M2/1, from the ARC Infruitec-Nietvoorbij, South Africa Jolly et al., 2003b; Van Breda 
et al., 2013

T7 654, from the ARC Infruitec-Nietvoorbij, South Africa Van Breda et al., 2013; 
Minnaar et al., 2015

T8 301, from the ARC Infruitec-Nietvoorbij, South Africa Van Breda et al., 2013
*Publications in which strains have been investigated.
**Strain 770 was classified as Candida stellata in this paper.

TABLE 1 (CONTINUED)
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et al., 2014). Although T. delbrueckii, L. thermotolerans and 
M. pulcherrima are receiving much more attention due to the 
availability of commercial products, a variety of other non-
Saccharomyces yeast species have been investigated (Jolly 
et al., 2003b; Comitini et al., 2011; Jolly et al., 2014; Padilla 
et al., 2016). In this investigation, 37 non-Saccharomyces 
strains representing seven different non-Saccharomyces 
species, viz. H. uvarum, L. thermotolerans, M. pulcherrima, 
Sc. pombe, C. zemplinina, C. stellata and T. delbrueckii, 
were characterised by CHEF karyotyping, MALDI-TOF 

bio-typing, enzyme assays and malic acid degradation. The 
aforementioned non-Saccharomyces yeasts were compared 
to five commercial S. cerevisiae strains (N 96, NT 112, NT 
202, VIN 7 and VIN 13), and their interactions with one O. 
oeni strain were investigated in synthetic grape juice. As the 
species-level identities of the yeasts used in this study were 
already known, CHEF karyotyping and MALDI-TOF bio-
typing were used to study strain diversity within the different 
species (Figs 1, 2 and 3). 

FIGURE 1 
Dendrogram showing the clustering of yeast strains obtained by numerical analysis of CHEF karyotypes using a 34-hour 
programme. Cluster analysis was performed using the unweighted pair group method with arithmetic mean (UPGMA). Cluster 
I and II: Hanseniaspora uvarum strains; III: Lachancea thermotolerans strains; IV and V: Torulaspora delbrueckii strains; VI: 
Saccharomyces cerevisiae strains; VII: Metschnikowia pulcherrima; VIII: Candida zemplinina (Starmerella bacillaris) and 

Candida stellata strains; and IX: Schizosaccharomyces pombe.
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Electrophoretic karyotyping
The results of the CHEF karyotyping of the 34- and 72-hour 
programmes are shown in Figs 1 and 2 respectively. The 
Dice coefficient was used to group the yeasts based on the 
similarities of the electrophoretic banding patterns obtained. 
The 34-hour programme enabled the various yeasts to be 
separated to species and, in some cases, also to strain level 
(Fig. 1). The species could be separated into nine distinct 
clusters at a similarity (s) limit of 70%.

Cluster I was delineated at s = 75% and comprised two 
H. uvarum strains, H4 and H11, which were different from 
the other nine H. uvarum strains. Cluster II was delineated 
at s = 76% and included the remaining H. uvarum strains, 
viz. H1, H2, H3, H5, H6, H7, H8, H9 and H10. Within this 
cluster, strains H1, H7, H9 and H10 had an almost identical 
karyotype and were delineated at s = 100%. Strains H9 and 
H10 were isolated from grapes from the same location and 
may well be the same strain, but strains H1 and H7 were 
isolated from different areas within the Western Cape. This 
indicates that H. uvarum strains might not be as heterogeneous 
as S. cerevisiae strains. Cluster III comprised the two 
L. thermotolerans strains, L1 (Vinflora® Rhythm™) and L2, 
delineated at s = 70%. There were clear differences between 
the karyotypes of these two strains. Seven T. delbrueckii 
strains, viz. T2 (CBS 4663), T3 (Level 2Td), T4 (Zymaflore® 
Alpha TD n. Sacc.), T5 (Viniflora® Harmony™), T6, T7 and T8, 

formed cluster IV at s = 70%. T. delbrueckii-type strain, T1 
(CBS 1146), clustered alone in cluster V at s = 58%. 

Cluster VI comprised the five S. cerevisiae strains at s = 
70% and these strains showed a high level of heterogeneity. 
These results confirmed reports by Hoff (2012) and Moothoo-
Padaychie et al. (2013) on the heterogeneity of S. cerevisiae 
wine yeast strains. The M. pulcherrima strains formed cluster 
VII at s = 92%. All the strains had a similarity of 100%, 
except strain M5. The only difference for the M. pulcherrima 
karyotypes was the spacing between bands within the 
banding patterns. Cluster VIII was delineated at s = 100%, 
comprised all the C. zemplinina strains, including the type 
strain (CBS 9494), and also contained the C. stellata-type 
strain, Cs (CBS 157). These two species are closely related 
and were only reclassified as two different species when 
Sipiczki (2003; 2004) revealed the differences between 
them. More recently, Duarte et al. (2012) recommended the 
reinstatement of Starmerella bacillaris comb. nov. with the 
name C. zemplinina as obligate synonym, which has not 
been widely accepted (Magyar et al., 2014). As in the case of 
the M. pulcherrima cluster, the patterns of the C. zemplinina 
strains are very similar, with small spacing differences. 
Sc. pombe grouped on its own to form cluster IX at s = 38%, 
but showed some similarity with the M. pulcherrima strains, 
which also had only two bands. 

The 34-hour CHEF programme was very useful for 

FIGURE 2
Dendrogram showing the clustering of yeast strains obtained by numerical analysis of CHEF karyotypes using the 72-hour 
programme. Cluster analysis was performed using the unweighted pair group method with arithmetic mean (UPGMA). 
Cluster I: Metschnikowia pulcherrima; Cluster II: Candida stellata; Clusters III, IV, V and VI: C. zemplinina; Clusters VII and 

VIII: M. pulcherrima; and Cluster IX: Schizosaccharomyces pombe.
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the typing of the S. cerevisiae strains and strains within 
the H. uvarum, L. thermotolerans and T. delbrueckii 
clusters. However, it was not nearly as effective for typing 
M. pulcherrima and C. zemplinina strains. This confirms 
reports by Van Breda (2012) about the usefulness of CHEF 
for the typing of T. delbrueckii strains. However, the 34-
hour programme could not be used to distinguish between 
M. pulcherrima and C. zemplinina at a strain level, therefore 
an extended 72-hour CHEF programme was investigated.

The clustering analysis of the 72-hour programme is 
shown in Fig. 2. Nine clusters could be discerned at s = 70%. 
Cluster I was delineated at s = 33% and comprised only 
M. pulcherrima strain M5. The banding pattern of this strain 
was different to the other M. pulcherrima strains, and this was 
also evident in the grouping of the strains using the 34-hour 
programme (Fig. 1). Cluster II comprised the C. stellata-
type strain (Fig. 2). Cluster III contained three C. zemplinina 
strains, C3, C5 and C7, at s = 100%. These C. zemplinina 
strains had identical karyotypes, indicating that these isolates 
are possibly the same strain. Strains C3 and C7 were isolated 
from grapes on the same farm and may well be the same 
strain. Despite being isolated from a different area, it is 
possible that strain C5 might be the same strain as C3 and 
C7. Cluster IV was delineated at s = 66% and comprised only 
strain C1 (CBS 9494). Cluster V was delineated at s = 80% 
and comprised strains C4 and C6. Cluster VI was delineated 
at s = 40% and comprised one strain, C2. More differences 
were observed among the C. zemplinina strains with the 
72-hour programme than with the 34-hour programme. The 
M. pulcherrima strains formed clusters VII (M3, M4, M6 

and M7) and VIII (M1 and M2) at s = 44%. Strains M4, 
M6 and M7 were isolated from the same location and could 
possibly be the same strain. This would explain the similarity 
between these strains. However, strain M3 was isolated from 
a different area within the Western Cape (South Africa). As 
was observed with the 34-hour programme, the karyotypes 
of the different strains were very similar. This indicates a 
high level of conserved genetic material within the small 
group of strains investigated. Cluster IX contained the one 
Sc. pombe strain, which had a completely different banding 
pattern from the other species, and this was also confirmed 
by a low similarity value. 

More differences were observed between strains from 
the C. zemplinina and M. pulcherrima clusters with the 72-
hour programme than the 34-hour programme. Candida 
zemplinina strains showed a higher level of heterogeneity 
than the M. pulcherrima strains with the 72-hour programme. 
This indicates that the CHEF programmes used in this study 
were not adequate for the typing of M. ulcherrima strains and 
that more optimisation is required. Differences were observed 
between the karyotypes of C. emplinina and C. stellata 
strains using the 72-hour programme, which is in agreement 
with the findings of Sipiczki (2004) and Csoma and Sipiczki 
(2008), who performed electrophoretic karyotyping over 
99 and 96 hrs respectively. Similar results were obtained 
in this study, but using a shorter running time (72 h). This 
study confirmed that CHEF is a reliable technique for the 
identification of non-Saccharomyces yeast to the species and 
strain level. However, more optimisation and refinement are 
required for the typing of M. pulcherrima strains.
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FIGURE 3
Dendrogram created from the mass spectral profiles of yeast strains using MALDI Biotyper software. Cluster I and II: Candida 
zemplinina (Starmerella bacillaris) strains; III: Lachancea thermotolerans strains; IV: Metschnikowia pulcherrima; V: 

Saccharomyces cerevisiae strains; VI: Torulaspora delbrueckii strains; and VII: Hanseniaspora uvarum strains.
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MALDI-TOF bio-typing
The results of the MALDI-TOF MS analyses (Fig. 3) show 
that the non-Saccharomyces and S. cerevisiae yeasts formed 
distinct groups. The identity of H. uvarum, M. pulcherrima, 
S. cerevisiae, Sc. pombe and T. delbrueckii could all 
be verified to species level using the MALDI Biotyper 
database. As L. hermotolerans, C. zemplinina and C. stellata 
were not in the MALDI Biotyper database, it could not be 
used to identify these strains. However, the MALDI-TOF 
MS profiles could be used to differentiate between strains 
within a species. The six non-Saccharomyces species could 
be grouped into seven clusters following cluster analysis of 
the mass spectra obtained at a phylogenetic distance level 
of 0.3, indicated by the dotted line in Fig. 3. Cluster I and II 
comprised the C. zemplinina strains, with strain C2 positioning 
on its own. The strains in cluster I showed a high level of 
similarity and grouped closely together. The composition 
of the C. zemplinina groupings differed from the groupings 
obtained using the 72-hour CHEF programme. Cluster III 
consisted of the two L. thermotolerans strains, which clearly 
differed from each other. Cluster IV consisted of all the 
M. pulcherrima strains, which also showed a high level of 
similarity and grouped closely together. Cluster V comprised 
the S. cerevisiae strains and appear to be a heterogeneous 
cluster. The T. delbrueckii strains grouped together in 
cluster VI and three sub-groups can be differentiated within 
this cluster. These strains show a high degree of variation. 
Cluster VII comprised the H. uvarum strains, which showed 
a high level of similarity, although four sub-groups could be 
differentiated. The H. uvarum strains H10 and H11 differed 
from the other strains and formed separate sub-groups. 
Strains H2, H6 and H9 also formed a separate sub-group. 
Strains H1, H3, H4, H5, H7 and H8 all grouped together 
and had a level of similarity. The sub-groups differed from 
the groupings obtained using CHEF karyotyping, indicating 
that isolates that were considered to be identical might be 
different strains.

The MALDI-TOF MS results were easier and faster to 
obtain than the CHEF karyotyping results. In both cases, 
software was needed for normalisation and clustering 
analyses. Both CHEF and MALDI-TOF MS were useful 
for species identification and could clearly type strains 
from S. cerevisiae, L. thermotolerans, T. delbrueckii and 
H. uvarum, with the MALDI-TOF MS profiles showing 
slightly more variation. Neither technique was effective 
for the typing of C. zemplinina and M. pulcherrima strains, 
with MALDI-TOF MS revealing slightly more differences 
among the M. pulcherrima strains, and the 72-hour 
CHEF programme being more effective for the typing of 
C. zemplinina strains. For the typing of species with high 
genetic similarity, i.e. M. pulcherrima strains, alternative 
methods, such as amplified fragment length polymorphism 
(Spadaro et al., 2008) or tandem repeat-tRNA PCR (Barquet 
et al., 2012), could be considered. This study showed that 
MALDI-TOF MS can be used for the identification and 
typing of non-Saccharomyces yeasts and confirms the 
findings of Kántor and Kačániová (2015) about the usefulness 
of MALDI-TOF MS to differentiate between wine yeast 
species. However, MALDI-TOF MS was not as effective for 
typing C. zemplinina and M. pulcherrima strains.

Enzyme production 
The ability of the eight non-Saccharomyces yeast species 
to produce acid protease, polygalacturonase/pectinase 
and β-glucosidase enzymes and to degrade malic acid is 
shown in Table 2. The S. erevisiae strains used in this study 
did not produce any extracellular enzymes. Charoenchai 
et al. (1997) reported some β-glucosidase activity in some 
S. cerevisiae strains, but Mostert (2013) found that the 
S. cerevisiae strain they tested did not have β-glucosidase or 
acid protease activity, but produced pectinase enzymes. The 
C. stellata strain was only positive for protease production 
and this is in agreement with the findings of Strauss (2003), 
who also showed that some C. stellata strains showed 
pectinolytic activity. Protease activity could be beneficial 
during fermentation by liberating assimilable nutrient 
sources, such as amino acids and peptides (Englezos et al., 
2015). All the C. zemplinina strains tested negative for all 
three enzyme activities. Di Maio et al. (2012) and Englezos 
et al. (2015) reported medium to low β-glucosidase activity 
for C. zemplinina strains. Englezos et al. (2015) reported 
protease activity in 48 of 63 C. zemplinina strains studied, 
but none of the strains had pectinase activity.

The H. uvarum strains tested positive for β-glucosidase 
and negative for the other two enzyme activities. This 
confirmed the findings of Rodríguez et al. (2004) and 
Hernández-Orte et al. (2008), namely that H. uvarum strains 
have β-glucosidase activity. Strauss (2003) and Mostert 
(2013) also reported on H. uvarum strains that had protease 
and pectinase activity. 

The two L. thermotolerans strains tested negative for 
all three enzyme activities. This is in contrast to Comitini 
et al. (2011) and Mostert (2013), who reported β-glucosidase 
activity in two L. thermotolerans strains. As in the case 
with the other species, enzyme activity appears to be strain 
dependent. All the M. pulcherrima strains were positive for 
protease and β-glucosidase activity, which is in agreement 
with the literature (Strauss, 2003; Mostert, 2013). The one 
Sc. pombe strain showed protease activity. Visintin et al. 
(2016) also reported on a Sc. pombe strain that had protease 
activity and a different Sc. pombe strain that produced 
pectinase. The results of this study confirmed the conclusion 
of Ganga and Martínez (2004) that enzyme production is not 
characteristic of a particular genus or species, but depends 
on the yeast strain analysed. 

Malic acid degradation
The S. cerevisiae strains showed no malic acid degradation 
on the plate assay, but showed low activity in the broth, 
with S5 (VIN 7) utilising about 24% of the malic acid 
(Table 2). The low malic acid utilisation by S. cerevisiae 
is well documented (Gao & Fleet, 1995; Volschenk et al., 
2003; Ribéreau-Gayon et al., 2006). The ability of the non-
Saccharomyces strains to degrade malic acid varied greatly 
and there also were clear differences between the results 
of the plate and broth assays. The results indicate that the 
plate assay for malic acid utilisation is not very reliable, as it 
gave a lot of negative results as well as false positives. The 
C. stellata strain produced a positive reaction for malic acid 
utilisation on the plate assay, but could only utilise 9% of the 
malic acid in the broth assay. All the C. zemplinina strains 
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TABLE 2
Screening of Saccharomyces and non-Saccharomyces yeasts for production of extracellular enzymes and the ability to degrade 
malic acid.

Species name 
Strain 
code

Enzyme activities Malic acid degradation
Protease Pectinase β-Glucosidase Plate assay Broth % Utilised

Saccharomyces cerevisiae

S1 - - - - - 13
S2 - - - - - 11
S3 - - - - - 11
S4 - - - - - 12
S5 - - - - - 24

Candida stellata Cs + - - + - 9

Candida zemplinina 

C1 - - - + + 54
C2 - - - + + 34
C3 - - - + + 37
C4 - - - + + 33
C5 - - - + + 34
C6 - - - + + 51
C7 - - - + + 47

Hanseniaspora uvarum

H1 - - + + + 10
H2 - - + + + 30
H3 - - + + + 9
H4 - - + + + 11
H5 - - + + + 12
H6 - - + + + 14
H7 - - + + - 8
H8 - - + + - 7
H9 - - + + - 9
H10 - - + + - 10
H11 - - + + - 7

Lachancea thermotolerans
L1 - - - + + 20
L2 - - - + - 10

Metschnikowia pulcherrima

M1 + - + - - 15
M2 + - + - + 23
M3 + - + + + 22
M4 + - + - + 24
M5 + - + - + 28
M6 + - + - + 26
M7 + - + - + 20

Schizosaccharomyces pombe Sp + - - + + 78

Torulaspora delbrueckii

T1 - - - - - 14
T2 - - - - - 11
T3 - - - - + 19
T4 - - - - + 31
T5 - - - - + 18
T6 - - - - - 8
T7 - - - - + 18
T8 - - - - - 11

S. Afr. J. Enol. Vitic., Vol. 38, No. 1, 2017 DOI: http://dx.doi.org/10.21548/38-1-819



55Characterisation and Evaluation of Non-Saccharomyces Yeasts

gave positive results for malic acid utilisation on the plate 
assay and in the broth, with malic acid utilisation ranging 
from 33 to 54%. 

All the H. uvarum strains also gave positive reactions 
for malic acid utilisation on the plate assay, but only strain 
H2 showed real malic acid utilisation (30%) in the broth. 
The other H. uvarum strains utilised only between 7% and 
14% of the malic acid in the broth. T. delbrueckii strains 
gave negative results for malic acid utilisation on the plate 
assay, but showed variable malic acid utilisation (11% to 
31%) in the broth, with strain T4 (Zymaflore® Alpha TD n.

Sacc.) showing the most activity (31%). The above results are 
in agreement with reports of low malic acid utilisation for 
C. stellata, T. delbrueckii and H. uvarum (Gao & Fleet, 1995; 
Saayman & Viljoen-Bloom, 2006). The L. thermotolerans 
strains were also able to degrade malic acid on the plate 
assay, but were not as efficient in the broth, with strain L1 
(Vinflora® Rhythm™) managing to utilise 20% of the malic 
acid. Only strain M3 gave a positive reaction on the plate 
assay, but all the M. pulcherrima strains showed some malic 
acid utilisation (15% to 28%). 

As expected, the Sc. pombe strain gave a positive reaction 
on the plate assay and utilised 78% of the malic acid in the 
broth. Strains of Sc. pombe can degrade high concentrations 
of L-malate, but only if glucose or another assimilable carbon 
source is present (Baranowski & Radler, 1984; Rodriquez & 
Thornton, 1989, Benito et al., 2013; 2014).

Evaluation of yeasts
Fermentation trial
The ability of the non-Saccharomyces yeast to ferment 
synthetic juice and the progress of alcoholic fermentation 
are shown in Figs 4 to 8. The fermentations were monitored 

regularly for 40 days, but the final wine chemical analyses 
were carried out after 180 days, when the wines produced 
with the slow-fermenting yeasts were found to be dry 
(glucose/fructose < 4 g/L). Candida zemplinina strains 
showed variable fermentation abilities, with strains C1 (CBS 
9494) and C2 (VEN 2097) standing out as the strongest 
fermenters, although still not comparable to the S. cerevisiae 
strains (Fig. 4). According to Csoma and Sipiczki (2008), 
C. zemplinina strains can be found throughout white and red 
wine fermentations and usually have sustained presence until 
the end of alcoholic fermentation. This study showed that 
some of the C. zemplinina strains have enough fermentation 
potential to be used in mixed culture fermentations.  

The H. uvarum strains were slow to moderate fermenters, 
with strain H11 being the strongest fermenter (Fig. 5). The 
low fermentation activity of H. uvarum is in agreement with 
Ciani and Maccarelli (1998). The M. pulcherrima strains 
were also slow fermenters and most were still fermenting 
after 40 days, with the exception being strain M6 (Fig. 6). 
This concurs with reports from other studies (Jolly et al., 
2003c; Mostert & Divol, 2014). The T. delbrueckii strains 
were strong fermenters and had fermentation rates that were 
comparable to the S. cerevisiae reference strains (Fig. 7). 
This concurs with the reports of Van Breda et al. (2013) and 
Renault et al. (2015). The two L. thermotolerans strains were 
also strong fermenters and comparable to the S. cerevisiae 
strains (Fig. 8). These results confirmed the findings of 
Comitini et al. (2011) and Mostert and Divol (2014). The 
fact that both T. delbrueckii and L. thermotolerans are such 
strong fermenters is probably one of the reasons why strains 
from these species were selected for use as commercial 
starters in mixed culture fermentations with S. cerevisiae 
(Jolly et al., 2014). The Sc. pombe strain is a moderate 
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juice.

fermenter and fermentation activity may vary between 
strains (Benito et al., 2012; 2013). The C. stellata strain was 
a slow fermenter. 

Chemical analyses
The results of the chemical analyses of synthetic wines 
produced with the different yeast species are listed in Table 3. 
The fermentations conducted by the slow-fermenting yeasts 
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were considered to be dry (residual sugar < 4 g/L) after 
180 days. A great degree of variation was observed among 
the ethanol, malic acid and volatile acidity (VA) levels of 
the different non-Saccharomyces yeast species and strains. 
Candida zemplinina strains produced low VA and were 
similar to the S. cerevisiae strains, although C. zemplinina 
strains can be low or high VA producers (Magyar & Toth, 
2011; Magyar et al., 2014; Englezos et al., 2015). Synthetic 
wines produced with H. uvarum contained high VA levels, 
especially wines produced with strains H2, H3 and H10. 
In contrast, synthetic wines produced with strains H5, H6, 
H7, H8 and H9 had low VA levels, which indicate strain 
variation within this species. Wines produced by other 
non-Saccharomyces yeasts contained lower VA levels than 
H. uvarum, which is in agreement with findings by other 
researchers (Ciani & Picciotti, 1995; Rojas et al., 2003). 
Wines produced with the Sc. pombe strain and T. delbrueckii 
strains contained the lowest VA levels. This is in agreement 
with Moreno et al. (1991) and Renault et al. (2009), who 
showed that pure cultures of T. delbrueckii produced 
lower VA levels than S. cerevisiae. Benito et al. (2012; 
2013; 2014) showed that Sc. pombe can be moderate to 
high VA producers, depending on the strain. Most of the 
M. pulcherrima strains produced low VA levels, except 
for strain M5, which produced slightly higher VA levels 
(0.52 g/L). M. pulcherrima is not normally associated with 
VA production, but rather with relatively high concentrations 
of esters (Bisson & Kunkee, 1991). 

The malic acid levels were lower in all synthetic 
wines, indicating loss due to precipitation, but also some 
degradation (Table 3). In most cases, synthetic wines 
fermented with non-Saccharomyces yeasts had lower malic 
acid levels than synthetic wines fermented with S. cerevisiae 
strains. Wines fermented with Sc. pombe had a malic acid 
reduction of > 77%, while the reduction by the other non-
Saccharomyces yeast varied. These results are in agreement 
with those obtained for the malic acid utilisation in the malic 
acid broth. 

Malolactic fermentation
The effect of various yeast strains on O. oeni growth and 
its ability to complete MLF prior to inoculation, with or 
without nutrient supplementation, is presented in Table 4. 
There were clear differences between the MLF treatments 
that were applied. In most cases, MLF proceeded quickly 
and without delays. However, in some cases where delays 
occurred, nutrient supplementation improved the progress of 
MLF or completely eliminated the delays. None of the yeasts 
produced high enough levels of SO2 to inhibit LAB, but there 
were some variations between the species and among strains 
from the same species. Despite producing low levels of 
SO2, there were differences among the S. cerevisiae strains. 
Strains S1 and S5 had the least inhibitory effect on MLF, 
which was completed after seven days (Table 4). Strain S3 
had an inhibitory effect on MLF, and this was evident in both 
treatments. In this case inhibition could be due to SO2, but 
the production of other inhibitory compounds is more likely. 
Yeasts can inhibit LAB, and therefore MLF, by depleting 
nutrients or by producing toxic metabolites such as ethanol, 
SO2, medium-chain fatty acids and proteins or peptides Sp
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FIGURE 8
Fermentation kinetics of pure cultures of Saccharomyces cerevisiae, Lachancea thermotolerans and Schizosaccharomyces 

pombe strains in synthetic grape juice.
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TABLE 4
Free and total SO2 levels and duration of malolactic fermentation (MLF) in synthetic wines fermented with different yeasts.

Species name
Strain 
code

Free SO2
(mg/L)

Total SO2
(mg/L)

Duration of MLF (days)
Treatment 1* Treatment 2**

Saccharomyces cerevisiae

S1 3 8 7 7
S2 4 9 13 7
S3 5 9 14 13
S4 5 9 13 7
S5 2 5 7 6

Candida stellata Cs 2 9 26 21

Candida zemplinina

C1 2 4 7 7
C2 2 5 7 7
C3 2 5 7 7
C4 2 6 7 7
C5 2 5 7 7
C6 2 5 7 7
C7 2 6 20 7

Hanseniaspora uvarum

H1 2 10 7 7
H2 1 8 7 7
H3 2 8 10 7
H4 2 9 7 7
H5 2 8 13 13
H6 1 8 7 7
H7 2 6 14 14
H8 2 6 13 7
H9 1 8 13 7
H10 2 9 7 7
H11 2 8 7 7

Lachancea thermotolerans
L1 2 5 7 7
L2 2 5 7 7

Metschnikowia pulcherrima

M1 3 9 7 7
M2 3 10 7 7
M3 3 9 7 7
M4 2 9 7 7
M5 2 10 7 7
M6 3 10 7 7
M7 3 10 7 7

Torulaspora delbrueckii

T1 2 10 7 7
T2 2 8 14 14
T3 2 4 13 7
T4 2 5 7 7
T5 2 5 7 7
T6 3 5 7 7
T7 3 5 7 10
T8 2 5 7 7

*Treatment 1: Sequential inoculation with commercial Oenococcus oeni strain.
**Treatment 2: Nutrient supplementation (Costello et al., 2003) prior to sequential inoculation with O. oeni strain.
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(Alexandre et al., 2004, Comitini et al., 2005; Nehme et al., 
2008). Strains S2 and S4 also had an inhibitory effect on 
MLF (treatment 1), but the inhibition could be overcome 
by nutrient supplementation (treatment 2). The antagonistic 
effect of some S. cerevisiae on MLF has been reported, 
and yeast and LAB compatibility is an important factor to 
consider for successful MLF (Henick-Kling & Park 1994; 
Costello et al., 2003).

The C. stellata strain (Cs) had an inhibitory effect 
on MLF (26 days) and resulted in MLF taking longer 
to complete (Table 4). However, delayed MLF could be 
partially alleviated by nutrient supplementation (treatment 
2), but MLF still took 21 days. Inhibition by C. stellata could 
be partially due to nutrient depletion, but other inhibitory 
compounds are a more likely explanation. In general, the 
C. zemplinina strains did not have an inhibitory effect on 
MLF, except for strain C7, which took 20 days to complete 
MLF. The inhibitory effect of C7 was completely eliminated 
by nutrient supplementation. 

Hanseniaspora uvarum strains H5 and H7 had a slight 
inhibitory effect on all MLF treatments. SO2 levels were 
not excessively high in these wines, indicating that some 
other inhibitory compound(s) was probably produced. 
Strains H3, H8 and H9 also had an inhibitory effect on MLF, 
but the inhibitory effect could be eliminated by nutrient 
supplementation. The L. thermotolerans and M. pulcherrima 
strains completed MLF quickly and were finished within 
seven days. No variations with regard to MLF were observed 
for strains within these species. The M. pulcherrima strains 
had the highest total SO2 levels of all the non-Saccharomyces 
yeast, but these did not affect the progression of MLF.

The results indicate that some of the yeast strains had a 
higher nutrient demand or uptake, which resulted in slower 
progression of MLF. The duration of MLF varied between 
the yeasts used, but none of the yeasts completely inhibited 
MLF. In the case of delayed MLF it appears to be strain 
dependent. SO2 was ruled out as a reason for the delays, 
but other toxic metabolites were not investigated. The 
metabolites produced by these inhibitory strains need further 
investigation. The results obtained in synthetic wine should 
be confirmed in real grape juice and wine fermentations 
because the interaction between the non-Saccharomyces 
yeast and LAB might be different in a real wine matrix.

CONCLUSIONS
Both CHEF karyotyping and MALDI-TOF MS were effective 
techniques for identifying wine non-Saccharomyces yeast 
species and could also be used for the typing of C. zemplinina, 
H. uvarum, L. thermotolerans and T. delbrueckii strains. Both 
techniques were unable to adequately type M. pulcherrima 
strains, but CHEF karyotyping showed more potential for 
the typing of these strains. Yeast enzyme activity appears to 
be strain dependent, and most of the species investigated did 
not have extracellular β-glucosidase, pectinase and protease 
activity. In the synthetic wine fermentations, the C. stellata, 
C. zemplinina, H. uvarum, M. pulcherrima and Sc. pombe 
strains were shown to be slow to medium fermenters. The 
L. thermotolerans and T. delbrueckii strains were found 
to be medium to strong fermenters and comparable to 
S. cerevisiae. Further investigations are needed to evaluate 

the L. thermotolerans and T. delbrueckii strains as potential 
single inoculations or co-inoculations with S. cerevisiae 
in grape must, while the H. uvarum and M. pulcherrima 
strains need to be evaluated in co- or sequential inoculations 
with S. cerevisiae. The effect of non-Saccharomyces yeast 
species on MLF varied and inhibition was found to be strain 
dependent. All M. pulcherrima and L. thermotolerans strains 
used in this study were compatible with the O. oeni strain 
and conducive to MLF. In most cases, delays in MLF could 
be alleviated by nutrient supplementation. Many of the non-
Saccharomyces yeast strains evaluated showed potential for 
use in wine production and warrant further investigation.

LITERATURE CITED

Alcoba-Flórez, J., Del Pilar Arévalo-Morales, M., Pérez-Roth, E., Laich, 
F., Rivero-Pérez, B. & Méndez-Álvarez, S., 2007. Yeast molecular 
identification and typing. Communicating current research and educational 
topics and trends in applied microbiology. Formatex Research Center, 
Extremadura. pp. 535 – 546.

Alessandria, V., Marengo, F., Englezos, V., Gerbi, V., Rantsiou, K. & 
Cocolin, L., 2015. Mycobiota of Barbera grapes from the piedmont region 
from a single vintage year. Am. J. Enol. Vitic. 66, 244-250.

Alexandre, H., Costello, P.J., Remize, F., Guzzo, J. & Guilloux-Benatier, 
M., 2004. Saccharomyces cerevisiae–Oenococcus oeni interactions in wine: 
Current knowledge and perspectives. Int. J. Food Microbiol. 93, 141-154.

Baranowski, K. & Radler, F., 1984. The glucose-dependent transport of 
L-malate in Zygosaccharomyces bailii. Antonie van Leeuwenhoek 50, 329-
340.

Barquet, M., Martín, V., Medina, K., Pérez, G., Carrau, F. & Gaggero, C., 
2012. Tandem repeat-tRNA (TRtRNA) PCR method for the molecular 
typing of non-Saccharomyces subspecies. Appl. Microbiol. Biotechnol. 93, 
807-814.

Bartowsky, E.J., Costello, P.J. & Chambers, P.J., 2015. Emerging trends in 
the application of malolactic fermentation. Aust. J. Grape Wine Res. 21(S1), 
663-669.

Bartowsky, E.J., Costello, P.J. & Henschke, P.A., 2002. Management 
of malolactic fermentation – Wine flavour manipulation. Aust. N.Z. 
Grapegrow. Winemak. 461, 7-8 and 10-12.

Bauer, R. & Dicks, L.M.T., 2004. Control of malolactic fermentation in 
wine. A review. S. Afr. J. Enol. Vitic. 25, 74-88.

Benito, S., Palomero, F., Gálvez, L., Morata, A., Calderón, F., Palmero, D. 
& Suárez-Lepe, J.A., 2014. Quality and composition of red wine fermented 
with Schizosaccharomyces pombe as sole fermentative yeast, and in mixed 
and sequential fermentations with Saccharomyces cerevisiae. Food Technol. 
Biotechnol. 52, 376-382.

Benito, S., Palomero, F., Morata, A., Calderón, F. & Suárez-Lepe, J.A., 
2012. New applications for Schizosaccharomyces pombe in the alcoholic 
fermentation of red wines. Int. J. Food Sci. Technol. 47, 2101-2108.

Benito, S., Palomero, F., Morata, A., Calderón, F., Palmero, D. & Suárez-
Lepe, J.A., 2013. Physiological features of Schizosaccharomyces pombe of 
interest in making of white wines. Eur. Food Res. Technol. 236, 29-36.

Bisson, L.F. & Kunkee, R.E., 1991. Microbial interactions during wine 
production. In: Zeikus, J.G. & Johnson, E.A. (eds). Mixed cultures in 
biotechnology. McGraw-Hill, Inc., New York. pp. 39 – 68.

Bokulich, N., Hwang, C.F., Liu, S., Boundy-Mills, K. & Mills, D., 2012. 
Profiling the yeast communities of wine fermentation using terminal 
restriction fragment length polymorphism analysis. Am. J. Enol. Vitic. 63, 
185-194.

S. Afr. J. Enol. Vitic., Vol. 38, No. 1, 2017 DOI: http://dx.doi.org/10.21548/38-1-819



Characterisation and Evaluation of Non-Saccharomyces Yeasts62

Capozzi, V., Garofalo, C., Chiriatti, M.A., Grieco, F. & Spano, G., 2015. 
Microbial terroir and food innovation: The case of yeast biodiversity in 
wine. Microbiol. Res. 181, 75-83.

Charoenchai, C., Fleet, G.H., Henschke, P.A. & Todd, B.E.N.T., 1997. 
Screening of non-Saccharomyces wine yeasts for the presence of 
extracellular hydrolytic enzymes. Aust. J. Grape Wine Res. 3, 2-8.

Ciani, M. & Maccarelli, F., 1998. Oenological properties of non-
Saccharomyces yeasts associated with winemaking. World J. Microb. Biot. 
14, 199-203.

Ciani, M. & Picciotti, G., 1995. The growth kinetics and fermentation 
behaviour of some non-Saccharomyces yeasts associated with wine-
making. Biotechnol. Lett. 17, 1247-1250.

Comitini, F., Ferretti, R., Clementi, F., Mannazzu, I. & Ciani, M., 2005. 
Interactions between Saccharomyces cerevisiae and malolactic bacteria: 
Preliminary characterization of a yeast proteinaceous compound(s) active 
against Oenococcus oeni. J. Appl. Microbiol. 99, 105-111.

Comitini, F., Gobbi, M., Domizio, P., Romani, C., Lencioni, L., Mannazzu, 
I. & Ciani, M., 2011. Selected non-Saccharomyces wine yeasts in controlled 
multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 
28, 873-882.

Costello, P.J., Henschke, P.A. & Markides, A.J., 2003. Standardised 
methodology for testing malolactic bacteria and wine yeast compatibility. 
Aust. J. Grape Wine Res. 9, 127-137.

Csoma, H. & Sipiczki, M., 2008. Taxonomic reclassification of Candida 
stellata strains reveals frequent occurrence of Candida zemplinina in wine 
fermentation. FEMS Yeast Res. 8, 328-336.

Davis, C.R., Wibowo, D., Eschenbruch, R., Lee, T.H. & Fleet, G.H., 1985. 
Practical implications of malolactic fermentation: A review. Am. J. Enol. 
Vitic. 36, 290-301.

Deak, E., Charlton, C.L., Bobenchik, A.M., Miller, S.A., Pollett, S., 
McHardy, I.H., Wu, M.T. & Garner, O.B., 2015. Comparison of the Vitek 
MS and Bruker Microflex LT MALDI-TOF MS platforms for routine 
identification of commonly isolated bacteria and yeast in the clinical 
microbiology laboratory. Diagn. Microbiol. Infect. Dis. 81, 27-33.

Di Maio, S., Genna, G., Gandolfo, V., Amore, G., Ciaccio, M. & Oliva, D., 
2012. Presence of Candida zemplinina in Sicilian musts and selection of a 
strain for wine mixed fermentations. S. Afr. J. Enol. Vitic. 33, 80-87.

Duarte, F.L., Pimentel, N.H., Teixeira, A. & Fonseca, A., 2012. 
Saccharomyces bacillaris is not a synonym of Candida stellata: 
Reinstatement as Starmerella bacillaris comb. nov. Antonie Van 
Leeuwenhoek 102, 653-658.

Englezos, V., Rantsiou, K., Torchio, F., Rolle, L., Gerbi, V. & Cocolin, L., 
2015. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris 
(synonym Candida zemplinina) in wine fermentation: Physiological and 
molecular characterizations. Int. J. Food Microbiol. 199, 33-40.

Esteve-Zarzoso, B., Peris-Torán, M.J., Ramón, D. & Querol, A., 2001. 
Molecular characterisation of Hanseniaspora species. Antonie van 
Leeuwenhoek 80, 85-92.

Fleet, G.H., Prakitchaiwattana, C., Beh, A.L. & Heard, G., 2002. The yeast 
ecology of wine grapes. In: Ciani, M. (ed.). Biodiversity and biotechnology 
of wine yeast. Research Signpost, Kerala, India. pp. 1 – 17.

Ganga, M.A. & Martínez, C., 2004. Effect of wine yeast monoculture 
practice on the biodiversity of non-Saccharomyces yeasts. J. Appl. 
Microbiol. 96, 76-83.

Gao, C. & Fleet, G.H., 1995. Degradation of malic and tartaric acids by high 
density cell suspensions of wine yeasts. Food Microbiol. 12, 65-71.

Henick-Kling, T. & Park, Y.H., 1994. Considerations for use of yeast and 
bacterial starter cultures: SO2 and timing of inoculation. Am. J. Enol. Vitic. 
45, 464-469.

Hernández-Orte, P., Cersosimo, M., Loscos, N., Cacho, J., Garcia-Moruno, 
E. & Ferreira, V., 2008. The development of varietal aroma from non-floral 
grapes by yeasts of different genera. Food Chem. 107, 1064-1077.

Hoff, J.W., 2012. Molecular typing of wine yeasts: Evaluation of typing 
techniques and establishment of a database. Thesis, Stellenbosch University, 
Private Bag X1, 7602 Matieland (Stellenbosch), South Africa.

Iland, P., Ewart, A., Sitters, J., Markides, A. & Bruer, N., 2000. Techniques 
for chemical analysis and quality monitoring during winemaking. Patrick 
Iland Promotions, Campbelltown, Australia.

Jolly, N.P., Augustyn, O.P.H. & Pretorius, I.S., 2003a. The occurrence of 
non-Saccharomyces yeast species over three vintages in four vineyards 
and grape musts from four production regions of the Western Cape, South 
Africa. S. Afr. J. Enol. Vitic. 24, 35-42.

Jolly, N.P., Augustyn, O.P.H. & Pretorius, I.S., 2003b. The effect of non-
Saccharomyces yeasts on fermentation and wine quality. S. Afr. J. Enol. 
Vitic. 24, 55-62.

Jolly, N.P., Augustyn, O.P.H. & Pretorius, I.S., 2003c. The use of Candida 
pulcherrima in combination with Saccharomyces cerevisiae for the 
production of Chenin blanc wine. S. Afr. J. Enol. Vitic. 24, 63-69.

Jolly, N.P., Augustyn, O.P.H. & Pretorius, I.S., 2006. The role and use of 
non-Saccharomyces yeasts in wine production. S. Afr. J. Enol. Vitic. 27, 
15-39.

Jolly, N.P., Varela, C. & Pretorius, I.S., 2014. Not your ordinary yeast: Non-
Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 14, 
215-237.

Kántor, A. & Kačániová, M., 2015. Isolation and identification of spoilage 
yeasts in wine samples by MALDI-TOF MS Biotyper. Scientific Papers: 
Animal Science and Biotechnologies 48, 156-161.

Lerm, E., Engelbrecht, L. & Du Toit, M., 2010. Malolactic fermentation: 
The ABC’s of MLF. S. Afr. J. Enol. Vitic. 31, 186-212.

Magyar, I. & Toth, T., 2011. Comparative evaluation of some oenological 
properties in wine strains of Candida stellata, Candida zemplinina, 
Saccharomyces uvarum, and Saccharomyces cerevisiae. Food Microbiol. 
28, 94-100.

Magyar, I., Nyitrai-Sárdy, D., Leskó, A., Pomázi, A. & Kállay, M., 2014. 
Anaerobic organic acid metabolism of Candida zemplinina in comparison 
with Saccharomyces wine yeasts. Int. J. Food Microbiol. 178, 1-6.

Marklein, G., Josten, M., Klanke, U., Muller, E., Horre, R., Maier, T., 
Wenzel, T., Kostrzewa, M., Bierbaum, G., Hoerauf, A. & Sahl, H.G., 2009. 
Matrix-assisted laser desorption ionization time of flight mass spectrometry 
for fast and reliable identification of clinical yeast isolates. J. Clin. 
Microbiol. 47, 2912-2917.

McKay, A.M., 1988. A plate assay method for the detection of fungal 
polygalacturonase secretion. FEMS Lett. 56, 355-358.

Minnaar, P.P., Ntushelo, N., Ngqumba, Z., Van Breda, V. & Jolly, N.P., 2015. 
Effect of Torulaspora delbrueckii yeast on the anthocyanin and flavanol 
concentrations of Cabernet franc and Pinotage wines. S. Afr. J. Enol. Vitic. 
36, 50-58.

Mocke, B.A., 2005. The breeding of yeast strains for novel oenological 
outcomes. Thesis, Stellenbosch University, Private Bag X1, 7602 Matieland 
(Stellenbosch), South Africa.

Moothoo-Padayachie, A., Kandappa, H.R., Krishna, S.B.N., Maier, T. 
& Govender, P., 2013. Biotyping Saccharomyces cerevisiae strains using 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF MS). Eur. Food Res. Technol. 236, 351-364.

S. Afr. J. Enol. Vitic., Vol. 38, No. 1, 2017 DOI: http://dx.doi.org/10.21548/38-1-819



63Characterisation and Evaluation of Non-Saccharomyces Yeasts

Moreno, J.J., Millán, C., Ortega, J.M. & Medina, M., 1991. Analytical 
differentiation of wine fermentations using pure and mixed yeast cultures. J. 
Ind. Microbiol. 7, 181-190.

Mostert, T.T., 2013. Investigating the secretome of non-Saccharomyces 
yeast in model wine. Thesis, Stellenbosch University, Private Bag X1, 7602 
Matieland (Stellenbosch), South Africa.

Mostert, T.T. & Divol, B., 2014. Investigating the proteins released by yeasts 
in synthetic wine fermentations. Int. J. Food Microbiol. 171, 108-118.

Nehme, N., Mathieu, F. & Taillandier, P., 2008. Quantitative study of 
interactions between Saccharomyces cerevisiae and Oenococcus oeni 
strains. J. Ind. Microbiol. Biotechnol. 35, 685-693.

Padilla, B., Gil, J.V. & Manzanares, P., 2016. Past and future of non-
Saccharomyces yeasts: From spoilage microorganisms to biotechnological 
tools for improving wine aroma complexity. Front. Microbiol. 7, 411. http://
doi.org/10.3389/fmicb.2016.00411

Reid, V.J., 2012. Extracellular acid proteases of wine microorganisms: 
gene identification, activity characterization and impact on wine. Thesis, 
Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), 
South Africa.

Renault, P., Coulon, J., De Revel, G., Barbe, J.C. & Bely, M., 2015. Increase 
of fruity aroma during mixed T. delbrueckii/S. cerevisiae wine fermentation 
is linked to specific esters enhancement. Int. J. Food Microbiol. 207, 40-48.

Renault, P., Miot-Sertier, C., Marullo, P., Hernández-Orte Lagarrigue, 
L., Lonvaud-Funel, A. & Bely, M., 2009. Genetic characterisation and 
phenotypic variability in Torulaspora delbrueckii species: Potential 
applications in the wine industry. Int. J. Food Microbiol. 134, 201-210.

Ribéreau-Gayon, P., Dubourdieu, D., Donéche, B. & Lonvaud, A., 2006 (2nd 
ed.). Handbook of Enology. The Microbiology of Wine and Vinifications, 
vol. 1. John Wiley & Sons Ltd., England.

Rodríguez, M.E., Lopes, C.A., Van Broock, M., Vallés, S., Ramón, D. & 
Caballero, A.C., 2004. Screening and typing of Patagonian wine yeasts for 
glycosidase activities. J. Appl. Microbiol. 96, 84-95.

Rodriquez, S.B. & Thornton, R.J., 1989. A malic acid dependent mutant of 
Schizosaccharomyces malidevorans. Arch. Microbiol. 152, 564-566.

Rojas, V., Gil, J.V., Piñaga, F. & Manzanares, P., 2003. Acetate ester 
formation in wine by mixed cultures in laboratory fermentations. Int. J. 
Food Microbiol. 86, 181-188.

Romano, P., Capece, A. & Jespersen, L., 2006. Taxonomic and ecological 
diversity of food and beverage yeasts. In: Querol, A. & Fleet, G.H. (eds). 
The yeast handbook – Yeasts in food and beverages. Springer-Verlag, Berlin 
& Heidelberg. pp. 13 – 53.

Romano, P., Fiore, C., Paraggio, M., Caruso, M. & Capece, A., 2003. 
Function of yeast species and strains in wine flavour. Int. J. Food Microbiol. 
86(1), 169-180.

Romano, P., Suzzi, G., Domizio, P. & Fatichenti, F., 1997. Secondary 
products formation as a tool for discriminating non-Saccharomyces wine 
strains. Antonie van Leeuwenhoek 71, 239-242.

Rosi, I., Vinella, M. & Domizio, P., 1994. Characterization of β-glucosidase 
activity in yeasts of oenological origin. J. Appl. Bacteriol. 77, 519-527.

Saayman, M. & Viljoen-Bloom, M., 2006. The biochemistry of malic acid 
metabolism by wine yeasts – A review. S. Afr. J. Enol. Vitic. 27, 113-122.

Scholtz, M., 2013. Assessing the compatibility and aroma production 
of NT 202 co-inoculant with different wine yeasts and additives. Thesis, 
Stellenbosch University, Private Bag X1, 7602 Matieland (Stellenbosch), 
South Africa.

Sipiczki, M., 2003. Candida zemplinina sp. nov., an osmotolerant and 
psychrotolerant yeast that ferments sweet botrytized wines. Int. J. Syst. 
Evol. Microbiol. 53, 2079-2083.

Sipiczki, M., 2004. Species identification and comparative molecular and 
physiological analysis of Candida zemplinina and Candida stellata. J. Basic 
Microbiol. 44, 471-479.

Spadaro, D., Sabetta, W., Acquadro, A., Portis, E., Garibaldi, A. & Gullino, 
M.L., 2008. Use of AFLP for differentiation of Metschnikowia pulcherrima 
strains for postharvest disease biological control. Microbiol. Res. 163, 523-
530.

Strauss, M.L.A., 2003. The transformation of wine yeasts with glucanase, 
xylanase and pectinase genes for improved clarification and filterability of 
wine. Thesis, Stellenbosch University, Private Bag X1, 7602 Matieland 
(Stellenbosch), South Africa.

Strauss, M.L., Jolly, N.P., Lambrechts, M.G. & Van Rensburg, P., 2001. 
Screening for the production of extracellular hydrolytic enzymes by non-
Saccharomyces wine yeasts. J. Appl. Microbiol. 91, 182-190.

Sumby, K.M., Grbin, P.R. & Jiranek, V., 2014. Implications of new research 
and technologies for malolactic fermentation in wine. Appl. Microbiol 
Biotechnol. 98, 8111-8132.

Van Breda, V., 2012. The use of Torulaspora delbrueckii for wine 
production. Thesis. Cape Peninsula University of Technology, Cape Town 
8000, South Africa.

Van Breda, V., Jolly, N. & Van Wyk, J., 2013. Characterisation of 
commercial and natural Torulaspora delbrueckii wine yeast strains. Int. J. 
Food Microbiol. 163, 80-88.

Van Rensburg, P. & Pretorius, I.S., 2000. Enzymes in winemaking: 
Harnessing natural catalysts for efficient biotransformations – A review. S. 
Afr. J. Enol. Vitic. 21(Special issue), 52-73.

Van Veen, S.Q., Claas, E.C. & Kuijper, E.J., 2010. High-throughput 
identification of bacteria and yeast by matrix-assisted laser desorption 
ionization-time of flight mass spectrometry in conventional medical 
microbiology laboratories. J. Clin. Microbiol. 48, 900-907.

Visintin, S., Alessandria, V., Valente, A., Dolci, P. & Cocolin, L., 2016. 
Molecular identification and physiological characterization of yeasts, lactic 
acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean 
fermentations in West Africa. Int. J. Food Microbiol. 216, 69-78.

Volschenk, H., Van Vuuren, H.J.J. & Viljoen-Bloom, M., 2003. Malo-
ethanolic fermentation in Saccharomyces and Schizosaccharomyces. Curr. 
Genet. 43, 379-391.

Wibowo, D., Eschenbruch, R., Davis, C.R., Fleet, G.H. & Lee, T.H., 1985. 
Occurrence and growth of lactic acid bacteria in wine: A review. Am. J. 
Enol. Vitic. 36, 302-313. 

S. Afr. J. Enol. Vitic., Vol. 38, No. 1, 2017 DOI: http://dx.doi.org/10.21548/38-1-819




