Complete Genome Sequencing of Lactobacillus plantarum UNQLp 11 Isolated from a Patagonian Pinot Noir Wine

  • N.G. Iglesias Laboratorio de Virus Emergentes, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal
  • N.S. Brizuela Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal
  • E.E. Tymczyszyn Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal
  • A. Hollmann Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), Universidad Nacional de Santiago del Estero – CONICET, 4206 Santiago del Estero
  • D. Valdés La Hens Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal
  • L. Semorile Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal
  • B.M. Bravo-Ferrada Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada (IMBA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal

Abstract

Lactobacillus plantarum UNQLp 11 strain was isolated from a Patagonian Pinot noir wine at the oldest commercial winery (110 years old) in General Roca, North Patagonia, Argentina, and has demonstrated its ability to survive during winemaking processes and successfully carry out malolactic fermentation. This work aimed to obtain the whole assembled genome of the UNQLp 11 strain, analysing its architecture and the possible functions of the predicted genes from the oenological properties of this strain. The genome size is 3 534 932 bp, with a mean GC content of 44.2%, 3 412 CDS, 80 transposons and 148 tandem repeats. A comparison between the genome size and gene content of 14 Lb. plantarum strains from different origins was performed, and UNQLp 11 exhibited the largest size. The in silico genome-wide analysis allowed us to confirm the existence of genes encoding enzymes involved in the synthesis of several metabolites of
oenological interest, in addition to bacteriocins and exopolysaccharides. Furthermore, it is possible to speculate on this strain’s adaptation to different environments, as it is able to use diverse substrates for
its growth. All these features suggest the potential of UNQLp 11 to be a good starter culture for malolactic fermentation.

Downloads

Download data is not yet available.

References

-Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther N., Dobson A., Duong T., Callanan M.,& Lick, S. (2005). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci, 102(11), 3906-3912.

- Araque, I., Reguant, C., Rozès, N., & Bordons, A. (2011). Influence of wine-like conditions on arginine utilization by lactic acid bacteria. Int. Microbiol, 14, 225-33.

- Axelsson, L., Rud, I., Naterstad, K., Blom, H., Renckens, B., Boekhorst, J., ... & Siezen, R. J. (2012). Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730).

-Azcarate-Peril, M. A., Altermann, E., Hoover-Fitzula, R. L., Cano, R. J., & Klaenhammer, T. R. (2004). Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl. Environ. Microbiol., 70(9), 5315-5322.

- Barbieri, F., Montanari, C., Gardini, F., & Tabanelli, G. (2019). Biogenic amine production by lactic acid bacteria: a review. Foods, 8(1), 17.

- Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero D.A. & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.DOI: 10.1126/science.1138140

-Bartowsky, E. J., & Henschke, P. A. (2004). The ‘buttery’attribute of winediacetyldesirability, spoilage and beyond. Int. J.Food Microbiol, 96(3), 235-252.doi.org/10.1016/j.ijfoodmicro.2004.05.013

- Beltramo, C., Grandvalet, C., Pierre, F., & Guzzo, J. (2004). Evidence for multiple levels of regulation of Oenococcus oeni clpP-clpL locus expression in response to stress. J. Bacteriol., 186(7), 2200-2205.DOI: 10.1128/JB.186.7.2200–2205.2003

- Berbegal, C., Peña, N., Russo, P., Grieco, F., Pardo, I., Ferrer, S., Spano G.& Capozzi, V. (2016). Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiol., 57, 187-194.doi.org/10.1016/j.fm.2016.03.002

-Biggin, P. C., & Sansom, M. S. (2003). Mechanosensitive channels: Stress Relief. Curr.Biol., 13(5), R183-R185. doi.org/10.1016/S0960-9822(03)00119-2

- Bravo-Ferrada, B. M., Hollmann, A., Delfederico, L., La Hens, D. V., Caballero, A., & Semorile, L. (2013). Patagonian red wines: selection of Lactobacillus plantarum isolates as potential starter cultures for malolactic fermentation. World J. Microbiol. Biotechnol., 29(9), 1537-1549.DOI 10.1007/s11274-013-1337-x

-Bravo‐Ferrada, B. M., Tymczyszyn, E. E., Gómez‐Zavaglia, A., & Semorile, L. (2014). Effect of acclimation medium on cell viability, membrane integrity and ability to consume malic acid in synthetic wine by oenological Lactobacillus plantarum strains. Journal of applied microbiology, 116(2), 360-367.

- Bringel, F., Quénée, P., & Tailliez, P. (2001). Polyphasic investigation of the diversity within Lactobacillus plantarum related strains revealed two L. plantarum subgroups. Systematic and applied microbiology, 24(4), 561-571.

-Brizuela, N. S., Bravo-Ferrada, B. M., La Hens, D. V., Hollmann, A., Delfederico, L., Caballero, A., ... & Semorile, L. (2017). Comparative vinification assays with selected Patagonian strains of Oenococcus oeni and Lactobacillus plantarum. LWT, 77, 348-355.

- Brizuela, N. S., Bravo-Ferrada, B. M., La Hens, D. V., Hollmann, A., Delfederico, L., Caballero, A., Tymczyszyn E. E.& Semorile, L. (2018a). Comparative vinification assays with selected Patagonian strains of Oenococcus oeni and Lactobacillus plantarum. LWT, 77, 348-355.doi.org/10.1016/j.lwt.2016.11.023.

- Brizuela, N. S., Bravo-Ferrada, B. M., Pozo-Bayón, M. Á., Semorile, L., & Tymczyszyn, E. E. (2018b). Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains. Food Res.Int., 106, 22-28. doi.org/10.1016/j.foodres.2017.12.032.

- Brizuela, N. S., Bravo Ferrada, B. M., Curilén, Y., Delfederico, L., Caballero, A., Semorile, L. C., Pozo Bayón M. A.& Tymczyszyn, E. E. (2018c). Advantages of Using Blend Cultures of Native L. plantarum and O. oeni Strains to Induce Malolactic Fermentation of Patagonian Malbec Wine. Frontiers in microbiology, 9, 2109.doi.org/10.3389/fmicb.2018.02109

-Brizuela, N., Tymczyszyn, E. E., Semorile, L. C., La Hens, D. V., Delfederico, L., Hollmann, A., & Bravo-Ferrada, B. (2019). Lactobacillus plantarum as a malolactic starter culture in winemaking: A new (old) player?. Elec. J. Biotechnol.,38, 10-18. doi.org/10.1016/j.ejbt.2018.12.002

-Cavin, J. F., Andioc, V., Etievant, P. X., & Divies, C. (1993). Ability of wine lactic acid bacteria to metabolize phenol carboxylic acids. Am. J. Enol. Viticulture, 44(1), 76-80.

- Cerdeira, V., Bravo‐Ferrada, B. M., Semorile, L., & Tymczyszyn, E. E. (2019). Design of a low‐cost culture medium based in Whey Permeate for biomass production of enological Lactobacillus plantarum strains. Biotech. Progress.,35, e2791.

-Chambellon, E., Rijnen, L., Lorquet, F., Gitton, C., van Hylckama Vlieg, J. E., Wouters, J. A., & Yvon, M. (2009). The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis. Journal of bacteriology, 191(3), 873-881.

- Davis, C. R., Wibowo, D., Eschenbruch, R., Lee, T. H., & Fleet, G. H. (1985). Practical implications of malolactic fermentation: a review. Am. J. Enol. Viticulture, 36(4), 290-301.

- Diep, D. B., Straume, D., Kjos, M., Torres, C., & Nes, I. F. (2009). An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides, 30(8), 1562-1574.

-Donot, F., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydrate Polymers, 87(2), 951-962.

- du Toit, M., Engelbrecht, L., Lerm, E., & Krieger-Weber, S. (2011). Lactobacillus: the next generation of malolactic fermentation starter cultures—an overview. Food Bioprocess Tech., 4(6), 876-906.DOI 10.1007/s11947-010-0448-8

-Evanovich, E., de Souza Mendonça Mattos, P. J., & Guerreiro, J. F. (2019). Comparative genomic analysis of Lactobacillus plantarum: An overview. International journal of genomics, 2019.

- Fiocco, D., Capozzi, V., Collins, M., Gallone, A., Hols, P., Guzzo, J., ... & Spano, G. (2010). Characterization of the CtsR stress response regulon in Lactobacillus plantarum. Journal of bacteriology, 192(3), 896-900.

- González-Arenzana, L., López, R., Santamaría, P., Tenorio, C., & López-Alfaro, I. (2012). Dynamics of indigenous lactic acid bacteria populations in wine fermentations from La Rioja (Spain) during three vintages. Microbial Ecology, 63(1), 12-19.

-Grimaldi, A., McLean, H., & Jiranek, V. (2000). Identification and partial characterization of glycosidic activities of commercial strains of the lactic acid bacterium, Oenococcus oeni. Am. J. Enol.Viticulture, 51(4), 362-369.

- Grimaldi, A., Bartowsky, E., & Jiranek, V. (2005). Screening of Lactobacillus spp. and Pediococcus spp. for glycosidase activities that are important in oenology. J. Appl. Microbiol., 99(5), 1061-1069.doi:10.1111/j.1365-2672.2005.02707.x

- Guilloux-Benatier, M., Son, H. S., BoUIER, S., & Feuillat, M. (1993). Activités enzymatiques: glycosidases et peptidase chez. Vitis, 32, 51-57

- Guzzon, R., Poznanski, E. L. I. S. A., Conterno, L. O. R. E. N. Z. A., Vagnoli, P., Krieger-Weber, S., & Cavazza, A. (2009). Selection of a new highly resistant strain for malolactic fermentation under difficult conditions. South African Journal of Enology and Viticulture, 30(2), 133-141.

-Hedberg, M., Hasslöf, P., Sjöström, I., Twetman, S., & Stecksén-Blicks, C. (2008). Sugar fermentation in probiotic bacteria–an in vitro study. Oral Microbiol. Immunol., 23(6), 482-485.DOI: 10.1111/j.1399-302X.2008.00457.x

-Henkin, T. M., Grundy, F. J., Nicholson, W. L., & Chambliss, G. H. (1991). Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans‐acting gene product homologous to the Escherichia coli lacl and galR repressors. Molecular microbiology, 5(3), 575-584.

- Hubert, J. C., & Kammerer, B. (1994). Determination of chromosome size and number of rrn loci in Lactobacillus plantarum by pulsed-field gel electrophoresis. FEMS microbiology letters, 120(1-2), 51-56.

-Huang, W. C., Wei, C. C., Huang, C. C., Chen, W. L., & Huang, H. Y. (2019). The beneficial effects of Lactobacillus plantarum PS128 on high-intensity, exercise-induced oxidative stress, inflammation, and performance in triathletes. Nutrients, 11(2), 353

- Hueck, C. J., Kraus, A., Schmiedel, D., & Hillen, W. (1995). Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Molecular microbiology, 16(5), 855-864.

- Iorizzo, M., Testa, B., Lombardi, S. J., García-Ruiz, A., Muñoz-González, C., Bartolomé, B., & Moreno-Arribas, M. V. (2016). Selection and technological potential of Lactobacillus plantarum bacteria suitable for wine malolactic fermentation and grape aroma release. LWT, 73, 557-566.

-Jiang, Y., & Yang, Z. (2018). A functional and genetic overview of exopolysaccharides produced by Lactobacillus plantarum. Journal of Functional Foods, 47, 229-240.

-Jobin, M. P., Garmyn, D., Diviès, C., & Guzzo, J. (1999a). The Oenococcus oeni clpX homologue is a heat shock gene preferentially expressed in exponential growth phase. J. Bacteriol., 181(21), 6634-6641.

- Jobin, M. P., Garmyn, D., Divies, C., & Guzzo, J. (1999b). Expression of the Oenococcus oeni trxA gene is induced by hydrogen peroxide and heat shock. Microbiol., 145(5), 1245-1251.

- Kant, R., Blom, J., Palva, A., Siezen, R. J., & de Vos, W. M. (2011). Comparative genomics of Lactobacillus. Microbial biotechnology, 4(3), 323-332.

- Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., ... & Stiekema, W. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc. Natl. Acad. Sci., 100(4), 1990-1995.https://doi.org/10.1073/pnas.0337704100

- Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res., 27(5), 722-736.doi/10.1101/gr.215087.116.

- Krieger-Weber, S., Heras, J. M., & Suarez, C. (2020). Lactobacillus plantarum, a New Biological Tool to Control Malolactic Fermentation: A Review and an Outlook. Beverages, 6(2), 23.

- Lamontanara, A., Caggianiello, G., Orrù, L., Capozzi, V., Michelotti, V., Bayjanov, J. R., ... & Spano, G. (2015). Draft genome sequence of Lactobacillus plantarum Lp90 isolated from wine. Genome Announc., 3(2), e00097-15

- Lasek, R., Dziewit, L., Ciok, A., Decewicz, P., Romaniuk, K., Jedrys, Z., ... & Bartosik, D. (2017). Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter-specific vectors. Journal of biotechnology, 263, 64-74.

- Lekha, P. K., & Lonsane, B. K. (1997). Production and application of tannin acyl hydrolase: state of the art. Adv. Appl.Microbiol., 44, 216-260.DOI:10.1016/S0065-2164(08)70463-5

- Li, X., Gu, Q., Lou, X., Zhang, X., Song, D., Shen, L., & Zhao, Y. (2013). Complete genome sequence of the probiotic Lactobacillus plantarum strain ZJ316. Genome Announc., 1(2), e00094-13.

- Li, P., Gu, Q., & Zhou, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms. Journal of biotechnology, 238, 52-55.

- Liang, Y., Liang, S., Zhang, Y., Deng, Y., He, Y., Chen, Y., ... & Yang, Q. (2019). Oral administration of compound probiotics ameliorates HFD-Induced gut microbe dysbiosis and chronic metabolic inflammation via the G protein-coupled receptor 43 in non-alcoholic fatty liver disease rats. Probiotics and antimicrobial proteins, 11(1), 175-185.

-Liu, M., Nauta, A., Francke, C., & Siezen, R. J. (2008). Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl. Environ. Microbiol., 74(15), 4590-4600.DOI: 10.1128/AEM.00150-08

- Lonvaud-Funel, A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. In Lactic acid bacteria: Genetics, metabolism and applications (pp. 317-331). Springer, Dordrecht.

- Luxananil, P., Promchai, R., Wanasen, S., Kamdee, S., Thepkasikul, P., Plengvidhya, V., ... & Valyasevi, R. (2009). Monitoring Lactobacillus plantarum BCC 9546 starter culture during fermentation of Nham, a traditional Thai pork sausage. International journal of food microbiology, 129(3), 312-315.

-Matthews, A., Grimaldi, A., Walker, M., Bartowsky, E., Grbin, P., & Jiranek, V. (2004). Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl. Environ. Microbiol., 70(10), 5715-5731.DOI: 10.1128/AEM.70.10.5715–5731.2004.

- McLeod, A., Fagerlund, A., Rud, I., & Axelsson, L. (2019). Large Plasmid Complement Resolved: Complete Genome Sequencing of Lactobacillus plantarum MF1298, a Candidate Probiotic Strain Associated with Unfavorable Effect. Microorganisms, 7(8), 262.

- Mills, D. A., Rawsthorne, H., Parker, C., Tamir, D., & Makarova, K. (2005). Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol. Rev., 29(3), 465-475.https://doi.org/10.1016/j.fmrre.2005.04.011

- Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M., & Fujita, Y. (2000). Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic acids research, 28(5), 1206-1210.

- Molin, G. (2001). Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. The American journal of clinical nutrition, 73(2), 380s-385s.

- Moreno-Arribas, M. V., Polo, M. C., Jorganes, F., & Muñoz, R. (2003). Screening of biogenic amine production by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol., 84(1), 117-123.

-Mtshali, P. S., Divol, B., Van Rensburg, P., & Du Toit, M. (2010). Genetic screening of winerelated enzymes in Lactobacillus species isolated from South African wines. J.Appl.Microbiol., 108(4), 1389-1397. https://doi.org/10.1111/j.1365-2672.2009.04535.x

-Olguín, N., Champomier-Verges, M., Anglade, P., Baraige, F., Cordero-Otero, R., Bordons, A., ... & Reguant, C. (2015). Transcriptomic and proteomic analysis of Oenococcus oeni PSU-1 response to ethanol shock. Food Microbiol., 51, 87-95.https://doi.org/10.1016/j.fm.2015.05.005

- Rodríguez, H., de las Rivas, B., Gómez-Cordovés, C., & Muñoz, R. (2008). Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. International journal of food microbiology, 121(1), 92-98

- Russo, P., De La Luz Mohedano, M., Capozzi, V., De Palencia, P. F., López, P., Spano, G., & Fiocco, D. (2012). Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions. International journal of molecular sciences, 13(9), 10680-10696.

- Sáenz, Y., Rojo-Bezares, B., Navarro, L., Díez, L., Somalo, S., Zarazaga, M., ... & Torres, C. (2009). Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. International journal of food microbiology, 134(3), 176-183.

- Siezen, R. J., Tzeneva, V. A., Castioni, A., Wels, M., Phan, H. T., Rademaker, J. L., ... & van Hylckama Vlieg, J. E. (2010). Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environmental Microbiology, 12(3), 758-773.

- Siezen, R. J., & van Hylckama Vlieg, J. E. (2011). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. In Microbial Cell Factories (Vol. 10, No. 1, p. S3). BioMed Central.

- Sorek, R., Kunin, V., & Hugenholtz, P. (2008). CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Rev. Microbiol., 6(3), 181.

-Spano, G., Rinaldi, A., Ugliano, M., Moio, L., Beneduce, L., & Massa, S. (2005). A β-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J. Appl. Microbiol., 98(4), 855-861.

- Spano, G., & Massa, S. (2006). Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Critical reviews in microbiology, 32(2), 77-86.

- Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. Journal of industrial microbiology & biotechnology, 38(9), 1145.

-Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., & Pretorius, I. (2005). Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res., 11(2), 139-173.https://doi.org/10.1111/j.1755-0238.2005.tb00285.x

- Titgemeyer, F., & Hillen, W. (2002). Global control of sugar metabolism: a gram-positive solution. In Lactic Acid Bacteria: Genetics, Metabolism and Applications (pp. 59-71). Springer, Dordrecht.

- Tkaczuk, K. L., A. Shumilin, I., Chruszcz, M., Evdokimova, E., Savchenko, A., & Minor, W. (2013). Structural and functional insight into the universal stress protein family. Evolutionary Applications, 6(3), 434-449. https://doi.org/10.1111/eva.12057

-van Bokhorst-van de Veen, H., Abee, T., Tempelaars, M., Bron, P. A., Kleerebezem, M., & Marco, M. L. (2011). Short-and long-term adaptation to ethanol stress and its cross-protective consequences in Lactobacillus plantarum. Appl.Environ. Microbiol., 77(15), 5247-5256. DOI: 10.1128/AEM.00515-11

- Valdes la Hens, D., Bravo-Ferrada, B. M., Delfederico, L., Caballero, A. C., & Semorile, L. C. (2015). Prevalence of Lactobacillus plantarum and Oenococcus oeni during spontaneous malolactic fermentation in Patagonian red wines revealed by polymerase chain reaction-denaturing gradient gel electrophoresis with two targeted genes. Aust.J. Grape Wine Res., 21(1), 49-56.

- Vaquero, I., Marcobal, Á., & Muñoz, R. (2004). Tannase activity by lactic acid bacteria isolated from grape must and wine. International journal of food microbiology, 96(2), 199-204.

- Weinberg, Z. G., Muck, R. E., Weimer, P. J., Chen, Y., & Gamburg, M. (2004). Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Applied biochemistry and biotechnology, 118(1-3), 1-9.

- Yao, W., Yang, L., Shao, Z., Xie, L., & Chen, L. (2020). Identification of salt tolerance-related genes of Lactobacillus plantarum D31 and T9 strains by genomic analysis. Annals of Microbiology, 70(1), 1-14.

- Zhang, L., Taal, M. A., Boom, R. M., Chen, X. D., & Schutyser, M. A. (2018). Effect of baking conditions and storage on the viability of Lactobacillus plantarum supplemented to bread. LWT, 87, 318-325.

-Zhao, M., Liu, S., He, L., & Tian, Y. (2016). Draft genome sequence of Lactobacillus plantarum XJ25 isolated from Chinese red wine. Genome Announc., 4(6), e01216-16.

- Zhou, Y., Cui, Y., & Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydr. Polym., 207, 317-332. https://doi.org/10.1016/j.carbpol.2018.11.093

Published
2020-11-04
Section
Articles