A Review of Trimen’s False Tiger Moth, Agoma trimenii (Lepidoptera: Agaristidae): Seasonal Biology, Potential Monitoring and Control Techniques

  • C.A. Morris Department of Conservation Ecology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch)
  • S.A. Johnson Department of Conservation Ecology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch)
  • J.Y. De Waal Corteva Agriscience
  • A.P. Malan Department of Conservation Ecology, Stellenbosch University, Private Bag X1, Matieland (Stellenbosch)

Abstract

Trimen’s false tiger moth, Agoma trimenii (Lepidoptera: Agaristidae), has recently been found to occur in vineyards in the Northern Cape and Limpopo (Groblersdal area) provinces of South Africa. As little is known about the biology and behaviour of the moth, no official monitoring methods or economic thresholds relating to it, exist. Consequently, management and registered control options still require development. The first aim in the current review, was to gather and critically discuss all the available information on A. trimenii in the context of the information gained from field observations conducted in the Northern Cape, South Africa, during the 2016/2017 and 2017/2018 seasons. The paper also includes reporting on field observations made with regard to various aspects of the seasonal life cycle and ecology of A. trimenii, with a view to investigate, in future research, the potential biological control options available. Potential monitoring strategies of A. trimenii in the field were investigated. Various life stages of A. trimenii were identified, peak flight times were established, overlapping generations were determined, and the behavioural traits of all life stages were documented. Ultraviolet blue light traps proved to be the most promising potential monitoring strategy, with the prospect for an A. trimenii pheromone lure holding potential as an alternative monitoring strategy in future. With summarising all current information on A. trimenii, recommendations for growers to monitor and control A. trimenii are presented, towards the development of an integrated pest management system for the moth.

Downloads

Download data is not yet available.

References

Abate, A.A., Slippers B., Wingfield, M.J., Malan, A.P. & Hurley, B.P., 2018. Diversity of entomopathogenic nematodes and their symbiotic bacteria in South African plantations and indigenous forests. Nematology. DOI:10.1163/15685411-00003144.

Ansarii, M.A. & Butt, T.M., 2012. Evaluation of entomopathogenic fungi and a nematode against the soil dwelling stages of the crane fly Tipula paludosa. Pest. Manag. Sci. 68, 1337-1344. DOI: 10.1002/ps.3338.

Aronson, A.I., Beckman, W. & Dunn, P., 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50, 1-24.

Australian Museum, 2010. Grapevine moth. Available online at: http://australianmuseum. net.au/Grapevine-Moth (accessed 20 June 2017).

Barzman, M., Bàrberi, P., Birch, A.N.E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B. & Lamichhane, J.R., 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199-1215. DOI: 10.1007/s13593-015-0327-9.

Binns, M.R. & Nyrop, J.P., 1992. Sampling insect populations for the purpose of IPM decision making. Annu. Rev. Entomol. 37, 427-453. DOI: 10.1146/annurev.en.37.010192.002235.

Birch, M.C., 1977. Response of both sexes of Trichoplusia ni (Lepidoptera: Noctuidae) to virgin females and to synthetic pheromone. Ecol. Entomol. 2, 99-104. DOI: 10.1111/j.1365-2311.1977.tb00870.x.

Broderick, N.A., Raffa, K.F. & Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. U.S.A. 103, 15196-15199. DOI: 10.1073/pnas.0604865103.

Chouvenc, T., Efstathion, C.A. & Elliott, M.L., 2012. Competition between two fungal parasites in subterranean termites. Naturwissenschaften 19, 949-958. DOI: 10.1007/s00114-012-0977-2.

Coombes, C.A., 2012. Entomopathogenic fungi for control of soil-borne life stages of false codling moth, Thaumatotibia leucotreta (Meyrick) (1912) (Lepidoptera: Tortricidae). Thesis, Rhodes University, Private Bag X1041, Grahamstown, South Africa.

Cory, J. & Ericsson, J.D., 2009. Fungal entomopathogens in a tritrophic context. Biocontrol 55, 75-88. DOI: 10.1007/978-90-481-3966-8_6.

De Prins, J. & De Prins, W. 2012. Afromoths, online database of Afrotropical moth species (Lepidoptera). http://www.afromoths.net.

Devetak, M., Vidrih, M. & Trdan, S., 2010. Cabbage moth (Mamestra brassicae [L.]) and bright-line brown-eyes moth (Mamestra oleracea [L.]) – presentation of the species, their monitoring and control measures. Acta Agric. Slov. 95, 149-156. DOI: 10.2478/v10014-010-0011-3.

De Villiers, M., Walton, V., Pringle, K.L. & Addison, P., 2006. Monitoring system for pests of vines. Stellenbosch University, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch.

De Villiers, M. & Pringle, K. L., 2008. Developing a generic sampling system for monitoring the key arthropod pests of table grapes, Vitis vinifera L. Int. J. Pest. Manage. 53, 207-217. DOI: 10.1080/09670870801968872.

Dinter, A. & Wiles, J.A., 2000. Safety of the new DuPont insecticide, Indoxacarb to beneficial arthropods: An overview. IOBC WPRS Bulletin 23, 149-156.

Edgar, J.A., Cockrum, P.A., & Carrodus, B.B., 1979. Male scent-organ chemicals of the vine moth, Phalaenoides glycinae Lew. (Agaristidae). Experientia. 35, 861-862.

Ehlers, R.-U., 2001. Mass production of entomopathogenic nematodes for plant protection. Appl. Microb. Biotechnol. 56, 623-633. DOI: 10.1007/s002530100711.

Ferreira, T., M.F. Addison & Malan, A.P., 2014. In vitro liquid culture of a South African isolate of Heterorhabditis zealandica for the control of insect pests. Afr. Entomol. 22: 80-92. https://doi.org/10.4001/003.022.0114

Ferreira, T., Addison, M.F. & Malan, A.P., 2016. Development and population dynamics of Steinernema yirgalemense and growth characteristics of its associated Xenorhabdus symbiont in liquid culture. J. Helminth. 90, 108-112. DOI:10.1017/S0022149X15000450.

Goble, T.A., Dames, J.F., Hill, M.P. & Moore, S.D., 2011. Investigation of native isolates of Entomopathogenic fungi for the biological control of three citrus pests. Biocontrol Sci. Techn. 21, 1193 – 1211. DOI: 10.1080/09583157.2011.608907.

Gullan, P.J. & Cranston, P.S., 2014. The insects: An outline of entomology. Wiley, Oxford.

Hatting, J.L., Moore, S.D. & Malan, A.P., 2018. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future. J. Inverteb. Pathology. Available online at: https://doi.org/10.1016/j.jip.2018.02.004

Hominick, W.M., Briscoe, B.R., Del Pino, F.G., Heng, J., Hunt, D.J., Kozodoy, E. & Stock, P., 1997. Biosystematics of entomopathogenic nematodes: Current status, protocols and definitions. J. Helminthol. 71, 271-298. DOI: 10.1017/S0022149X00016096.

Inglis, G.D., Goettel, M., Butt, T. & Strasser, H., 2001. Use of hyphomycetous fungi for managing insect pests. In: Butt, T.M., Jackson, C.W. & Magan, N. (eds). Fungi as biocontrol agents: Progress, problems and potential. CAB International, Wallingford. pp. 23 – 70. DOI: 10.1079/9780851993560.0023.

Jonason, D., Franzen, M. & Ranius, T., 2014. Surveying moths using light traps: effects of weather and time of year. PLoS One 9, e92453. DOI: 10.1371/jpurnal.pone.0092453.

Joshi, S.R., 2006. Biopesticides: A biotechnological approach. New Age International, New Delhi.

Lacey, L.A. & Georgis, R., 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 44, 218-225.

Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M. & Goettel, M.S., 2015. Insect pathogens as biological control agents: Back to the future. J. Invertebr Path. 132, 1-41. 10.1016/j.jip.2015.07.009.

Malan, A.P. & Hatting, J., 2015. Entomopathogenic nematode exploitation: Case studies in laboratory and field applications from South Africa. In: Campos-Herrera, R. (ed). Nematode pathogenesis of insects and other pests. Sustainability in plant and crop protection: Ecology and applied technologies for sustainable plant and crop protection. Springer International, Cham. pp. 475 – 506.

Malan, A.P. & Ferreira, T. 2017. Entomopathogenic nematodes. In: Fourie, H., Spaull, V.W., Jones, R.K., Daneel, M.S. & De Wale, D. (eds). Nematology in South Africa: A view from the 21st century. Springer International, Cham. pp. 459 – 480.

Miller, C.A. & McDougall, G.A., 1973. Spruce budworm moth trapping using virgin females. Can. J. Zool. 51, 853-858. DOI: 10.1139/z73-127.

Morris, C.A, 2018. Trimen’s false tiger moth, Agoma trimenii (Lepidoptera: Agaristidae): biology and potential control options. MSc Thesis, Stellenbosch University, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch, 108 pp.

Picker, M., 2012. Field guide to insects of South Africa. Penguin Random House South Africa.

Prasad, Y. & Prabhakar, M., 2012. Pest monitoring and forecasting. In: Abrol, D. & Shankar, U. (eds). Integrated pest management: Principles and practice. CABI, Wallingford. pp. 41 – 57.

Pretorius, J.D., Zaayman, J.L. & Van den Berg, J., 2012. Confirming the pest status of Trimen's False Tiger, Agoma trimenii (Felder) (Lepidoptera: Agaristidae), on grapevines in South Africa. Afr. Entomol. 20, 198-200. DOI: 10.4001/003.020.0127

Ranga Rao, G.V. & Reddy, P.M., 1997. Metarhizium anisopliae (Metschn.): A potential biocontrol agent for groundnut leafminer. IAN 17, 48-49.

Roh, J.Y., Choi, J.Y., Li, M.S., Jin, B.R. & Je, Y.H., 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17, 547.

Sanchez-Bayo, F.P., 2012. Insecticides mode of action in relation to their toxicity to non-target organisms. J. Environ. Anal. Toxicol. S4:002. DOI:10.4172/2161-0525.S4-002.

SATI, 2019. Statistics of table grapes in South Africa. South African Table Grape Industry. Paarl, South Africa.

Steinbauer, M.J., 2003. Using ultra-violet light traps to monitor autumn gum moth, Mnesampela privata (Lepidoptera: Geometridae), in south-eastern Australia. Aust. Forestry 66, 279-286. DOI: 10.1080/00049158.2003.10674922.

Steyn, W.P., Knoetze, R., Tiedt, T.R. & Malan, A.P. 2017. Steinernema litchii n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from South Africa. Nematology 19: 1157-1177.

Tabashnik, B.E., Cushing, N.L., Finson, N. & Johnson, M.W., 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 83, 1671-1676.

Tunaz, H. & Uygun, N., 2004. Insect growth regulators for insect pest control. Turk. J. Agric. For. 28, 377-387.

Wing, K.D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Mulderig, L., Connair, M. & Schnee, M., 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protect. 19, 537-545. DOI: 10.1016/S0261-2194(00)00070-3.

Witzgall, P., Kirsch, P. & Cork, A., 2010. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36, 80-100. DOI: 10.1007/s10886-009-9737-y.

Published
2020-11-04
Section
Articles