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The genetics of congenital heart 
disease: The role of advanced 
genomic approaches

GENETICS OF 

CONGENITAL 

HEART DISEASE

question of the genetic risks to the offspring of CHD patients. 

As a result, there is an increasing need for the incorporation of 

medical genetics in CHD management, with possible impli-

cations on diagnosis, recurrence risk, and family screening.(7)

Despite many advances in diagnosis and treatment of CHD, 

our understanding of its causes remains relatively poor, though 

the role of genetic mutations and chromosomal rearrangement 

has been demonstrated.(8) Sporadic, non-syndromic CHD is a 

complex genetic disorder with evidence for polygenic sus-

ceptibility constituted by an observed elevated recurrence risk 

amongst first-degree relatives, albeit without Mendelian segre-

gation.(5,9) In families with an index case with CHD, the risk of 

the same CHD phenotype amongst siblings increases between 

3-fold and 80-fold depending on the type of CHD, while the 

risk of another CHD phenotype increases 2- to 3-fold.(5) 

Advanced genetic approaches including whole-exome se-

quencing (WES) and chromosomal microarrays (CMAs) have 
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INTRODUCTION

Congenital heart disease (CHD; Table I) is the most prevalent 

birth defect and the leading non-infectious cause of paediatric 

morbidity and mortality worldwide.(1,2) Approximately 9 per 

1 000 children are born with CHD annually,(3) with an esti-

mated 11 000 South African children born with this condition 

each year.(4) CHD is defined as a structural malformation of 

the heart and/or great blood vessels that occurs before 

birth.(3) The disease develops as a result of perturbations in 

normal cardiac development,(5) and can range from asympto-

matic to life-threatening depending on the severity and com-

plexity of the cardiac lesion(s). Tremendous strides in treat-

ment, management, and cardiothoracic surgery have led to an 

increased survival rate of children born with CHD, and con-

sequently a growing adult CHD population.(6) This poses the 
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sification systems based on anatomical, functional, and clinical 

features.(14-17) The wide range of cardiac lesions and underlying 

developmental mechanisms has made aetiological and epidemi-

ological studies of CHD a great challenge. However, CHDs 

may be divided into two simple categories: isolated CHD, in 

which the congenital defect is limited to the heart, and CHD 

with extracardiac anomalies (ECAs), in which additional fea-

tures of other body systems, such as neurodevelopmental 

delay, craniofacial and limb malformations, are observed, some-

times forming part of a syndrome. 

BURDEN OF DISEASE

Cardiovascular disease (CVD) is the leading cause of death 

worldwide,(18) an increasingly important healthcare concern due 

to the widespread effect of urbanisation seen in low- and 

lower-middle-income countries (LMICs) over the past cen-

tury.(19,20) CHD is a major cause of cardiovascular morbidity and 

mortality in children and a significant health burden world-

wide.(21) A systematic literature review by Liu, et al.(3) reported 

a substantial increase in CHD birth prevalence from ~4 per 

1 000 live births in 1970 to the estimated 9 per 1 000 live 

births seen today, largely due to improved screening and diag-

nosis of minor defects.(3)

Despite the significant burden of CHD, the prognosis for 

children born with CHD in higher-income countries has dras-

tically improved over the last 50 years, with over 90% of 

affected individuals surviving to adulthood.(22) This improved 

outlook can be attributed to the increased availability of pre-

natal echocardiography and improved medical and surgical 

care.(3) With the increased prevalence of CHD, the issues of 

long-term prognosis, and the underlying causes of CHD are 

gaining more global attention.(6)

The socio-economic burden of CVD including CHD falls 

heavily on LMICs, many of which are situated in sub-Saharan 

Africa (SSA).(18,23,24) The majority of children with CHD are 

born in these countries and face a starkly different prognosis 

to children with CHD in higher-income countries.(22) These 

regional differences can be attributed to limited availability of 

antenatal screening leading to fewer diagnoses and increased 

mortality rates, inadequate access to life-saving surgeries, inter-

vention, and cardiac care, and an insufficient health infrastruc-

ture.(22,25) Paediatric cardiac services are an extremely expensive 

area of medicine and are not readily available to the majority of 

patients living in SSA. The estimated CHD prevalence of 9 

per 1 000 live births is generally accepted worldwide, with 

genetic, environmental, and epigenetic factors accounting for 

the variation seen between regions.(26) However, a recent sys-

tematic review reported a signif icantly lower prevalence rate 

led to the identification of numerous rare and newly occurring 

single nucleotide variants (SNVs) and copy number variants 

(CNVs) associated with CHD.(9,10,11) Because patients with con-

firmed genetic syndromes are at higher risk of operative mor-

tality and morbidity, advancing our understanding of the 

causes of CHD will help define disease risk, improve the way 

we assess and treat individuals with CHD, and facilitate pre-

vention.(12) This review will summarise the current knowledge 

of the genetics of CHD, with specific consideration to ongoing 

research and challenges in Africa.

CONGENITAL HEART DEFECTS

The heart is the f irst organ to develop in the human embryo 

through a complex series of events reviewed in more detail 

elsewhere.(13) Any disruption during cardiogenesis can result in 

a cardiac defect. 

CHD is an umbrella term for a spectrum of cardiac anomalies 

of differing incidence and severity. The diversity of cardiac 

phenotypes implicated in CHD has resulted in multiple clas-

TABLE I: Abbreviations and acronyms.

Abbreviation Meaning

ASD Atrial septal defect

CGH Comparative genomic hybridisation

CHD Congenital heart disease

CMA Chromosomal microarray analysis

CNV Copy number variant

CVD Cardiovascular disease

ECA Extracardiac anomaly

FISH Fluorescence in situ hybridisation

LMIC Low and lower-middle-income country

MLPA Multiplex ligation-dependent probe amplifi cation

NAHR Nonallelic homologous recombination

PDA Patent ductus arteriosus

SNP Single nucleotide polymorphism

SNV Single nucleotide variant

SSA Sub-Saharan Africa

T21 Trisomy 21

TOF Tetralogy of Fallot

TS Turner syndrome

WES Whole-exome sequencing

VSD Ventricular septal defect
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in Africa (2.315 per 1 000 live births), reflecting severe re-

source constraints and limited access to healthcare, leading to 

a low detection rate and a paucity of available estimates 

from Africa.(3)

Although epidemiological data in SSA are limited, single-centre 

reports and prevalence studies amongst neonates and school 

children describe similar patterns in CHD in the region, with 

septal defects comprising the most common CHDs, followed 

by patent ductus arteriosus (PDA), and cyanotic defects such as 

Tetralogy of Fallot (TOF) and truncus arteriosus occurring less 

frequently.(27-31) In all cases, TOF appears the most common 

cyanotic form of CHD (6% - 13%). These patterns have held in 

diverse countries across SSA, such as Botswana, Uganda, 

Nigeria and Tanzania, although a 10-year cross-sectional study 

in Cameroon reported pulmonary stenosis as the second most 

common CHD in their population.(32) A recent meta-analysis 

of studies from East Africa concluded that the prevalence of 

septal defects in the region remains lower than in global meta-

analyses, but still worryingly high.(33) The estimated birth pre-

valence of CHD in Botswana was 2.8 - 4.95 per 1 000,(27) while 

prevalence amongst Nigerian school children was 6.6 per 

1 000.(34) However, a recent study of 3 857 Nigerian neo-

nates reported a high CHD prevalence of 28.8 per 1 000,(35) 

with severe CHD occurring in 3.4 per 1 000 births. These vastly 

differing results support the suggestion that the low preva-

lence of CHD in Africa (2.315 per 1 000) is likely due to a 

paucity of data from the region. 

THE AETIOLOGY OF CONGENITAL 

HEART DISEASE

The aetiology of CHD has been the focus of numerous studies 

over the past decades.(1,36-38) Although our understanding of 

the molecular pathways involved in heart development has 

improved greatly, the underlying causes of most CHD cases 

remain unclear.(39-41) Approximately 40% of CHDs are due to 

known genetic causes (aneuploidy: ~23%; de novo CNVs: 

~15%; de novo mutations: ~10%; inherited mutations: ~1%), 

but the relative contributions of epigenetic and environmental 

factors have not been quantified. It has long been appreciated 

that environmental, heritable genetic, and epigenetic factors can 

cause CHD, often in the context of a multifactorial disease.(1) 

The interaction between these risk factors is thought to increase 

susceptibility to the development of a heart defect.(12) With 

more children born with CHD surviving to adulthood and 

starting families of their own, improving our understanding of 

disease aetiology and recurrence risks has become critical. 

Importantly, understanding the causes of CHD will help clini-

cians determine the prognostic outcome for surgery or treat-

ments, and identify patients at higher risk of operative morbi-

dity and mortality.(40)

ENVIRONMENTAL RISK FACTORS FOR 

CONGENITAL HEART DISEASE

Environmental risk factors for CHD include any non-genetic 

factors that have been associated with the risk of developing a 

cardiac defect, many of which occur in utero.(40) Environmental 

factors that have been associated with CHD include maternal 

exposure to cigarette smoke, alcohol, thalidomide, isotretinoin 

and antiseizure medication,(38) infectious agents such as 

rubella,(42) and teratogens such as dioxins and pesticides.(43) 

However, the contribution of specific environmental factors to 

CHD is unknown as most associations have been derived from 

small observational studies which have not been replicated and 

may have been influenced by recall bias. Novel non-genetic 

causes and risk factors for CHD are continuously arising des-

pite efforts to minimise these modifiable influences.(44)

Certain potentially modif iable risk factors for CHD such as 

folate deficiencies and air pollution are likely to significantly af-

fect patients in LMICs, including South Africa, where exposure 

to these risk factors is at higher levels when compared to high-

income countries. Although data regarding these factors could 

improve public health priorities worldwide, the impact of 

these risk factors on the incidence of CHD in SSA has been 

minimally explored.(45,46)

HERITABLE RISK FACTORS FOR CONGENITAL 

HEART DISEASE

There is a multitude of evidence that supports the role of 

genetics in CHD, including population-based studies, twin 

studies, and the recurrence risk between 2- and 80-fold for 

f irst-degree relatives of CHD patients.(5) Population-based 

studies have revealed an elevated incidence of certain CHD 

subtypes such as septal defects in consanguineous popula-

tions, suggesting a recessive genetic contribution to the devel-

opment of CHD.(39,47,28) Previous studies by Wang, et al.(12) and 

Øyen, et al.(49,50) found an increased risk of recurrence of 

both similar and discordant forms of CHD amongst relatives 

when compared to the general population. The elevated recur-

rent risk in consanguineous populations and relatives, who 

share a genetic background, emphasises the genetic contribu-

tion to CHD pathogenesis. 

CHD is a complex heterogeneous genetic disorder associated 

with both familial and sporadic inheritance patterns (Figure 1). 

Familial CHD mutations can be inherited in an autosomal domi-

nant, autosomal recessive, or X-linked manner, and can manifest 

in a variety of clinical phenotypes.(51) Advances in genetic tech-

nology such as WES and CMAs have led to the identification 

of numerous defective genes implicated in CHD. It has been 

postulated that several hundred genes may be involved in 
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CHD pathogenesis, with many still to be discovered.(9,52) Vari-

ants across the frequency spectrum can affect CHD, from 

common variants with low but cumulative impacts, to rare 

mutations or CNVs with high impact.

For the majority of cases CHD occurs sporadically, with only 

2% of CHD cases exhibiting familial disease.(50) Sporadic CHD 

may arise as a result of de novo genetic events, which include 

single-gene mutations, point mutations such as SNVs, chromo-

somal aberrations, and smaller CNVs of particular chromo-

somal regions. It is important to note that CHD is usually 

oligogenic or complex in its genetics and can result from a 

combination of these genetic factors.(5,53,54)

SINGLE GENE MUTATIONS ASSOCIATED WITH 

CONGENITAL HEART DISEASE

Traditional genetic techniques such as linkage analysis and 

candidate gene approaches have enabled the discovery of 

numerous causative genes implicated in CHD pathogenesis. 

However, these techniques rely on multiple affected family 

members and an understanding of the underlying molecular 

pathways of cardiac development, which may be challenging in 

CHD. Previous studies have identified rare causal mutations in 

genes encoding cardiac transcription factors such as NKX2-5, 

GATA4, and TBX5 in patients with non-syndromic CHD.(55-57) 

These transcription factors control critical events during car-

diac development and regulate genes important for cardio-

myocyte differentiation, proliferation, and apoptosis.(55,58) Addi-

tionally, genes that encode structural proteins including cardiac 

actins and myosins have been linked to CHD.  

CHD has been attributed to Mendelian syndromes in 3% - 5% 

of cases.(40) For example, truncating mutations in the T-box 

transcription factor, TBX5, have been linked to Holt-Oram 

syndrome, a Mendelian disease often associated with cardiac 

abnormalities.(36) Haploinsufficiency of the transcription factor 

TBX1 is a common finding in individuals with DiGeorge syn-

drome and is responsible for many of the associated cardio-

vascular phenotypes.(59) The NOTCH signalling pathway gene 

NOTCH1 has been identified as a major susceptibility gene 

for defects such as bicuspid aortic valve, aortic stenosis, and 

TOF.(10,60) Mutations in the NOTCH1 ligand JAG1, and 

NOTCH2 have been associated with Alagille syndrome, an 

autosomal dominant disorder linked to CHD.(61) The complex 

nature of CHD genetics, in which one gene can give rise to 

more than one type of CHD, and one CHD can be caused 

by mutations in more than one gene, has made establishing 

phenotype-genotype correlations a major challenge.(49)

CHROMOSOMAL ABNORMALITIES 

ASSOCIATED WITH CONGENITAL 

HEART DISEASE

A chromosomal abnormality occurs when chromosomal mate-

rial is lost or gained and can cause a range of genetic disorders 

if dosage-sensitive genes are affected.(40) Chromosomal abnor-

malities contribute to approximately 8% - 20% of CHD 

cases.(9,53) The chromosomal causes of CHD can be divided into 

2 categories: gross chromosomal anomalies (or aneuploidies), 

and smaller CNVs (Figure 2).(40)

FIGURE 1: Typical inheritance patterns in CHD. 

A. Complex inheritance, in which CHD is infl uenced by genetic 

factors, as well as environmental and epigenetic factors. 

B. De novo inheritance, in which sporadic mutations (or chromo-

somal rearrangements) may cause CHD. (Illustration by Nicole 

A. Saacks).
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ANEUPLOIDIES

Aneuploidy is typically defined as an abnormal number of chro-

mosomes.(8) Chromosomal aneuploidies were the first genetic 

causes of CHD to be discovered and continue to play an 

important role in CHD pathology today.(5,44) The most com-

mon aneuploidy is Trisomy 21 (T21 or Down syndrome). This 

genetic syndrome affects approximately 1 in 800 individuals 

and is the most common chromosomal disorder seen in indi-

viduals with CHD.(8) Cardiac complications are the most com-

mon cause of death amongst T21 syndrome patients,(62) and 

approximately 40% - 50% of individuals with T21 syndrome 

have an associated cardiac defect. T21 syndrome patients com-

monly present with an atrial septal defect (ASD), ventricular 

septal defect (VSD), PDA, atrioventricular septal defect, or 

TOF.(8) Turner syndrome (TS) results as a partial or complete 

loss of the X chromosome in females,(54) and 33% of cases 

occur in conjunction with CHD, usually on the left side of the 

heart.(5) Bicuspid aortic valve is the most common heart defect 

associated with TS, with a prevalence of 15% - 30%, followed 

by coarctation of the aorta which has a prevalence of 7% - 18%. 

These cardiac anomalies can lead to serious complications 

for individuals with TS, including aortic dilation and dissec-

tion.(63) CHD is observed in 60% - 80% of individuals with 

trisomy 13 (Patau syndrome) and trisomy 18 (Edwards syn-

drome).(5) Another common aneuploidy is Klinefelter syndrome. 

Approximately 50% of males born with Klinefelter syndrome 

have an associated CHD, usually presenting with PDA or an 

ASD.(54) A selection of well-established chromosomal abnor-

malities associated with CHD is shown in Table II.

COPY NUMBER VARIATION

Copy number variation is a type of structural genetic variation 

whereby segments of the genome are duplicated or deleted. 

CNVs are a subgroup of structural variants comprising inser-

tions, deletions and complex rearrangements of any size. In this 

review, CNVs are defined as microdeletions/microduplica-

tions of the genome that are larger than 1 kilobase (kb) in size 

and affect the dosage of one or more genes. CNVs typically 

arise from nonallelic homologous recombination (NAHR) during 

meiosis (Figure 3),(64) although other mechanisms responsible 

for CNV generation include non-homologous end-joining, fork 

stalling, template switching, and L1-mediated retro-transposi-

tion; these are discussed in detail elsewhere.(64,65)

Genomic microduplications and microdeletions can range in 

size from 1 kb to several mega-bases and are a common source 

FIGURE 2: Chromosomal causes of CHD. 

Representation of typical chromosomal alterations. Chromosomes are depicted in light orange, and regions of deletion or duplication are in 

dark orange (Illustration by Nicole A. Saacks).
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of genetic variation associated with many Mendelian diseases 

and genetic disorders.(66) Emerging evidence has indicated 

that CNVs are important contributors to numerous disorders 

including cancer,(67) neuropsychiatric disorders,(68) neuro-

developmental disorders,(69) and congenital defects including 

CHD.(41) CNV mutations can be inherited or de novo and can 

lead to altered copies of dosage-sensitive genes, the effects of 

which range from benign to fatal depending on the function of 

the genes implicated.(70) Large CNVs comprising several million 

base pairs can be detected by cytogenetic analyses and/or 

fluorescence in situ hybridisation (FISH), whereas smaller CNVs 

are identified using high-resolution microarrays that can detect 

single nucleotide polymorphisms and CNVs.(44)

CNVs occur frequently amongst healthy individuals, making up 

about 12% of the genome of the average person.(71) Although 

the majority of CNVs have no phenotypic consequence in 

healthy individuals, microduplications and/or microdeletions 

that implicate dosage-sensitive genes can be detrimental. If 

critical genetic regulatory elements are disrupted, dependent 

genes may be over- or under-expressed which can significantly 

contribute to disease pathogenesis.(21) It is therefore important 

TABLE II: Chromosomal abnormalities associated with congenital heart disease.*

Chromosomal anomaly Locus Most common CHD

Chromosomal aneuploidies

Trisomy 8 mosaicism Chromosome 8 VSD, PDA, CoA, TAPVR, TrA

Trisomy 9 mosaicism Chromosome 9 PDA, LSVC, VSD, TOF, pulmonary atresia, DORV

Patau syndrome Chromosome 13 (Trisomy 13) ASD, VSD, PDA, HLHS

Edwards syndrome Chromosome 18 (Trisomy 18) ASD, VSD, PDA, TOF, DORV, TGA, CoA, BAV

Down syndrome Chromosome 21 (Trisomy 21) AVSD, ASD, VSD, TOF, TGA

Turner syndrome  Chromosome X (Monosomy X) CoA, BAV, AS, HLHS

Klinefelter syndrome Chromosome X (47- XXY) MVP, PDA, ASD

Copy number variants

1p36 deletion 1p36 PDA, VSD, ASD, BAV, Ebstein anomaly

1q21.1 microduplication 1q21.1 TOF, TGA, ASD, pulmonary atresia

1q41q42 microdeletion 1q41q42 BAV, ASD, VSD, TGA

1q43q44 microdeletion 1q43q44 VSD, CoA, HLHS

2q31.1 microdeletion 2q31.1 VSD, ASD, PDA

2q37 microdeletion 2q37 VSD, ASD, CoA

Wolf-Hirschhorn syndrome 4p ASD, VSD, PDA, aortic atresia, dextrocardia, TA, TOF

Cri-du-chat syndrome 5p VSD, ASD, PDA

Williams-Beuren syndrome 7q11.23 deletion AS and PS, PPS

8p23.1 deletion 8p23.1 AVSD, PS, VSD, TOF

Kleefstra syndrome 9q34.3 deletion ASD, VSD, TOF, PA stenosis

Jacobsen syndrome 11q deletion HLHS, AS, VSD, CoA

15q11.2 microdeletion 15q11.2 TOF, BAV

15q24 microdeletion 15q24 PDA, PA stenosis, PS

16p11.2p12.2 microdeletion 16p11.2p12.2 TOF, BAV, pulmonary atresia

17q21 microdeletion 17q21 PS, ASD, VSD, BAV

Alagille syndrome 20p12 deletion Peripheral PA hypoplasia, TOF, PS

22q11.2 deletion 22q11.2 IAA type B, TrA, TOF

22q11.2 duplication 22q11.2 TOF, HLHS, VSD, PS, TrA

Phelan-McDermid syndrome 22q13 microdeletion PDA, VSD, ASD, TAPVR

*Adapted from Blue, et al.,(40) Pierpont, et al.,(8) and Soemedi, et al.(11)

AS = aortic stenosis, ASD = atrial septal defect, AVSD =  atrioventricular septal defect, BAV =  bicuspid aortic valve, CoA = coarctation of the aorta, DORV = double-outlet right 

ventricle, HLHS = hypoplastic left heart syndrome, IAA type B = interrupted aortic arch type B, LSCV = persistent left superior vena cava, MVP = mitral valve prolapse, PA = pulmonary 

artery, PDA = patent ductus arteriosus, PPS = peripheral pulmonary stenosis, PS = pulmonary valve stenosis, TA = tricuspid atresia, TAPVR = total anomalous pulmonary venous 

return, TGA = transposition of the great arteries, TOF =  tetralogy of Fallot, TrA - truncus arteriosus, VSD = ventricular septal defect.
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to differentiate pathogenic CNVs from likely benign CNVs 

that are commonly found in the general population.

In the context of CHD, researchers and clinicians have defined 

CNV pathogenicity according to the following criteria: a CNV 

overlapping a known disease-associated region or known 

dosage-sensitive CHD gene; a CNV located in a gene-rich 

region; a CNV that comprises a large deletion or duplication; a 

de novo mutation or a CNV associated with a specific pheno-

type within a family and/or a rare CNV found in less than 1% 

of healthy individuals.(72) CNVs are categorised as variants of 

uncertain clinical signif icance when insuff icient evidence of 

pathogenicity is available at the time of reporting. 

The discovery of pathogenic and potentially pathogenic CNVs 

associated with CHD has significantly improved our under-

standing of the aetiology of the disease.(8) Investigation of the 

role of CNVs in CHD pathology has led to the identification of 

numerous dosage-sensitive genes that are critical for cardiac 

development. Previous studies of large CHD cohorts have 

detected a1.8-fold to 3.9-fold greater burden of CNVs in 

CHD cases compared to controls, with large, rare, gene-con-

taining CNVs having a greater impact on CHD.(11,21,41,68)

COPY NUMBER VARIATION IN SYNDROMIC 

CONGENITAL HEART DISEASE

Cardiac defects commonly occur in conjunction with a multi-

tude of genetic disorders (syndromic CHD) characterised by 

large CNVs (Table II). The most common microdeletion in 

humans is 22q11.2 deletion syndrome, caused by a deletion 

that is not visible by standard karyotyping on the long (q) arm 

of chromosome 22 as a result of NAHR.(5) The cardiac phen-

otype for 22q11.2 deletion syndrome varies but usually pre-

sents with TOF, truncus arteriosus, and/or interrupted aortic 

arch- type B.(15) It appears that deletion of TBX1 is the primary 

causal mechanism to the clinical phenotype associated with the 

syndrome.(73) Additional well-characterised CHD-associated 

CNVs include a deletion at 7q11.23, which causes Williams-

Beuren syndrome,(51) a deletion at 11q24-25, which results in 

FIGURE 3: Nonallelic homologous recombination.

NAHR is a form of recombination between 2 DNA regions with high sequence similarity, and 1 of the major mechanisms underlying CNV 

formation. This unequal crossing over results in reciprocal deletion and duplication of the intervening sequence. If this occurs during meiosis, 

resultant offspring can inherit a CNV. A, B and C represent different genes. LCR = low copy repeats. (Illustration by Nicole A. Saacks).
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Jacobsen Syndrome,(74) a deletion at 8p23, which leads to 

haploinsuff iciency of GATA4, resulting in a variety of CHD 

phenotypes with neurodevelopmental delay,(75) and a 1p36 

deletion, which commonly occurs in conjunction with a septal 

defect, and is associated with orofacial malformations, micro-

cephaly, and mental retardation.(51) The majority of these ge-

netic disorders cannot be identif ied by conventional kary-

otyping and require CMA or FISH for an accurate diagnosis.(21)

COPY NUMBER VARIATION IN NON-

SYNDROMIC CONGENITAL HEART DISEASE

Non-syndromic CHD can occur in isolation or in conjunction 

with ECAs such as neurodevelopmental delay and/or dys-

morphism. Several studies have demonstrated that CNV is a 

significant contributory factor to the development of CHD 

with ECAs. For example, Thienpont, et al.(76) found a rare 

causative CNV in 17% of 60 CHD patients, including CNVs in 

regions of known cardiac transcription factors (NKX2-5 and 

NOTCH1), suggesting an association between CNV and CHD. 

A similar study by Richards, et al.(77) identified rare CNVs in 

25% of 40 patients with CHD who showed normal karyotypes. 

Half of the cohort presented with isolated CHD and the other 

half had CHD with ECAs. However, causative CNVs were 

only detected in study subjects who presented with CHD and 

ECAs. Syrmou, et al.(78) detected CNVs in 37 of 55 individuals 

with CHD (67%); 81% of the CNV-positive CHD patients 

presented with ECAs. Collectively, these studies demonstrate 

the important role of CNVs in the development of CHD with 

ECAs, and that the genes implicated in CHD tend to have 

multiple phenotypic effects. These studies also indicate that 

CMAs can be a useful tool to identify causative CNVs in indi-

viduals presenting with CHD and ECAs when the standard 

karyotype appears normal.(77)

Most CHD cases (up to 85%) occur in isolation without ECAs. 

However, the role of CNVs in isolated CHD has been mini-

mally explored. Identifying isolated CHD is often challenging, as 

ECAs can be easily missed, or not yet present at the time of 

diagnosis, especially in very young study populations. Longi-

tudinal studies with carefully phenotyped study subjects are 

required to define the role of CNV in isolated CHD.(21) Previous 

large-scale studies have investigated CNVs in cohorts which 

include patients with isolated CHD and patients with CHD and 

ECAs. Soemedi, et al.(79) found that a duplication of the gap-

junction gene GJA5 increased the risk of TOF by ten-fold. This 

study also showed that microdeletions of the 1q21.1 region 

corresponded to a population-attributable risk of approxi-

mately 1% for TOF. Furthermore, a large-scale genome-wide 

investigation of CNV data from 2 256 individuals with CHD, 

283 trio CHD-affected families, and 1 538 controls was per-

formed by Soemedi, et al. (11) This study showed that rare dele-

tions account for 3% - 4% of the population attributable risk 

for TOF and other CHDs.(11) Tomita-Mitchell, et al.(41) explored 

the effect of CNVs in 945 individuals diagnosed with CHD and 

detected pathogenic CNVs in 4.3% of their study subjects 

(excluding 135 patients with syndromic CHD-associated chro-

mosomal abnormalities). Additionally, Erdogan, et al.(80) identi-

fied de novo causative CNVs in 3% of 105 patients with isolated 

CHD presenting with varied phenotypes. Many of the identified 

CNVs contained genes important for cardiac development, 

and/or genes critical for correct left-right patterning of the heart 

according to animal models. A recent study by Kim, et al.(81) 

identified large pathogenic CNVs (>300kb) that were signi-

ficantly associated with increased postoperative mortality in 

non-syndromic CHD patients.

Overall, these studies highlight the significant impact of CNV 

in CHD pathology and indicate that as genetic testing pro-

gresses, investigating and identifying pathogenic CNVs asso-

ciated with specific forms of CHD will become an increasingly 

useful tool in gene discovery and accurate CHD diagnosis. This 

is particularly important for patients with complex CHD and 

CHD with ECAs, whereby identifying additional anomalies 

not easily detected by standard karyotyping could significantly 

improve disease prognosis and patient outcome. Further-

more, exploring the role of CNVs in CHD will contribute to 

our understanding of healthy cardiac development and related 

perturbations, and provide knowledge relevant to clinical prac-

tice and potential therapeutic strategies.(82)

DISCOVERING GENES FOR CONGENITAL 

HEART DISEASE 

Over the years, many genes involved in cardiac development 

have been discovered. However, the complete process of car-

diogenesis is not fully understood.(52) Emerging sophisticated, 

high-throughput genetic technology such as next-generation 

sequencing has rapidly advanced the pace at which genes are 

being discovered. Next-generation sequencing technologies 

include gene panel tests, whole-genome sequencing, and WES. 

WES is a genomic technique that sequences all the protein-

coding regions of the genome and has been used to identify 

rare, causative SNVs in CHD-associated genes as well as pre-

viously unreported genes, in both small and large patient 

cohorts. For example, Page, et al.(10) used WES to detect unique 

pathogenic variants in a cohort of 829 non-syndromic TOF 

patients. Similarly, a study by Zaidi, et al.(83) performed WES on 

362 sporadic severe CHD patients, their parents, and 264 

control trios and found a significant excess of de novo damaging 

mutations in genes involved in cardiac development amongst 

the patients. 
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In the past, detection of aneuploidies and gross chromosomal 

aberrations has relied heavily on standard karyotyping. How-

ever, smaller CNVs are not easily detected by this method and 

require a higher resolution CMA analysis (Figure 4). CMA is a 

clinical genetic technique that includes single nucleotide poly-

morphism (SNP) arrays or comparative genomic hybridisation 

(CGH) and allows for the interrogation of rare CNVs known 

to be associated with a disease, as well as other emerging 

chromosomal deletions and duplications in the genome not 

visible by standard karyotyping.(84) Although the resolution of 

CMAs depends on many factors, array CGH and SNP arrays 

are usually able to detect CNVs upwards of 50 - 100kb in size 

(Figure 4). It is likely that 5% - 15% of nonsyndromic CHD is 

attributable to CNVs above 100kb, although the contribution 

of CNVs smaller than 50kb is unclear due to the limited resolu-

tion of these techniques (Figure 4). Sequencing technologies 

such as WES are only able to detect insertions or deletions less 

than 100bp in size, but the role of CNVs between 100bp and 

50kb may be delineated using long-read sequencing, which has 

not been utilised in CHD studies as yet. Nevertheless, CMA is 

becoming an increasingly important tool used in both prenatal 

and postnatal clinical genetic settings,(84) and has led to the 

identification of numerous pathogenic CNVs implicated in 

CHD discussed elsewhere.(41,76,77,79,80) The International Standard 

Cytogenomic Array Consortium recommends CMA as the 

first-tier cytogenetic diagnostic test for children born with con-

genital abnormalities including CHD, as it provides the most 

comprehensive coverage of the genome.(85)

GENETICS OF CONGENITAL HEART DISEASE 

IN SUB-SAHARAN AFRICA

CHD has been described as a “neglected” condition in South 

Africa, with an underestimated reported prevalence of 

approximately 2.35 per 1 000 live births.(3) In 2013, Zühlke, 

Mirabel, & Marijon provided evidence that suggested the 

burden of CHD is vastly underestimated as a result of poor 

prognoses for African children born with CHD.(26) There is a 

lack of African-based evidence on the genetic basis of cardio-

vascular disease in SSA due to poor funding and limited local 

expertise.(86) Consequently, the major genetic breakthroughs 

for CHD that have been seen in high-income countries of the 

world over the past few decades, have not been replicated in 

most LMICs including South Africa. 

The epidemiology of CHD in Africa shows a spectrum of CHD 

phenotypes with varied prevalence.(86) However, there are 

relatively few genomic studies in SSA CHD populations; these 

studies could contribute to our understanding of the epi-

demiological data, and how we manage and treat African 

children with CHD.(86) A comprehensive review of the available 

literature on the genetics of CHD in SSA revealed 4 indepen-

dent studies that used molecular genetic approaches to inves-

tigate the causes of CHD in African populations.(87-90) A genomic 

study in Rwanda was done in 2014 where echocardiography, 

standard karyotyping, and Multiplex Ligation-dependent Probe 

Amplification (MLPA) was performed on 125 patients with 

clinical features of genetic disorders. The study showed that 64 

of the 125 study subjects had CHD, and a genetic cause was 

FIGURE 4: Comparison of different CNV detection methods.

Indicated are the sizes of CNVs that are detectable by each genetic technique. Karyotyping is limited to the detection of whole and partial 

chromosomal aneuploidy, while FISH, array CGH and SNP array can be used to detect smaller CNVs. Sequencing technologies such as whole-

exome sequencing and whole-genome sequencing can only detect small insertions or deletions (approximately 100 bp).   

CGH = comparative genomic hybridisation, CNV = copy number variation, FISH = fl uorescence in situ hybridisation, kb = kilobase, 

SNP = single nucleotide polymorphism (Illustration by Timothy F. Spracklen).
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found for 61 of the 64 subjects, although this high detection 

rate may have been influenced by the selection of participants 

with signs of genetic syndromes. Of the 22 patients who pre-

sented with normal karyotypes, MLPA, and FISH analyses 

enabled Teteli and colleagues to detect a 7q11.23 duplication, 

a 13qter deletion, and a 22q11.2 deletion within the study 

cohort.(88) Two years later, De Decker, et al.(87) used FISH to 

determine the prevalence of 22q11.2 deletion syndrome in 

children with CHD at Red Cross War Memorial Children’s 

Hospital in Cape Town. This genetic study identified deletions 

at the 22q11.2 locus in six out of 125 patients (4.8%). Similarly, 

Wonkam, et al.(89) investigated the prevalence of 22q11.2 

deletion syndrome in CHD patients in Cameroon using MLPA 

and FISH. In this study, 22q11.2 deletion was detected in 2 of 

70 patients (2.8%). Both patients had conotruncal heart defects 

in conjunction with ECAs.(89) Most recently, a WES study of 

98 Nigerian CHD patients found disease-causing mutations in 

known CHD genes in 9% of the patient cohort, with 77.8% of 

the mutation-positive patients presenting with syndromic 

disease.(90) Collectively these studies illustrate the ability to 

diagnose syndromic CHD using standard karyotyping and FISH, 

and their relevance in genomic studies on the African content. 

However, except for the Nigerian WES study, these CHD 

investigations focussed mainly on individuals with known ge-

netic disorders which contribute to a small fraction of the total 

burden of CHD. 

To our knowledge, there has been minimal research into the 

genetic basis of non-syndromic CHD in Africa and imple-

menting techniques that can identify potential causative single-

gene mutations and CNVs in genes involved in cardiac develop-

ment is becoming increasingly important. Advanced genetic 

platforms including next-generation technologies (whole-

genome sequencing and WES) and high-resolution CMA allow 

for the interrogation of entire genomes and CNVs of all sizes 

in a single run.(86) Access to clinical genetic testing in Africa 

remains extremely limited. Although large-scale initiatives such 

as the Human, Hereditary and Health in Africa (H3Africa) con-

sortium seek to address the lack of genomic information from 

African populations and build capacity for research in the 

region,(91) translating genomic information to the clinical setting 

is a challenge. Issues include access to and cost of sequencing or 

genotyping arrays, limited knowledge of the role of genetics in 

healthcare, and the dearth of experts and genetic counsellors 

across Africa.(92,93) We are not aware of any genomic centres of 

excellence in Africa. However, using these genomic platforms 

to investigate the genetic underpinnings of CHD in Africa will 

provide valuable insight into the complexities of CHD, by vali-

dating the disease-causing genes found in other populations, 

refining disease-associated loci, and possibly identifying new 

genes that may contribute to CHD pathogenesis. 

CONCLUSION

Many large-scale genetics studies have demonstrated the con-

tribution of CNVs and single nucleotide variants to the devel-

opment of cardiac defects in individuals of European ancestry. 

While this approach has identified numerous pathogenic and 

likely pathogenic variants linked to CHD, to our knowledge, 

no study to date has investigated the contribution of rare 

CNVs to the development of CHD in African populations 

including South Africa. Improving our understanding of the 

genetic architecture and risk factors associated with CHD in 

patients of African descent is the first step toward improving 

the accuracy of CHD diagnosis, and a crucial step toward 

identifying potential measures to combat CVD. Moreover, 

exploring the genetics of CHD has the potential to improve 

the quality of life for children born with CHD in Africa, and will 

enable clinicians to identify familial inheritance patterns and 

predict recurrence risks and prognostic outcomes pre- and 

post-surgical intervention.
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