The MicraTM (Medtronic USA) Transcatheter Pacing System (TCP) is a 0.8 cm³, 2.0 grams self-contained unit that has the pulse generator, sensing and pacing electrodes fully contained within a single unit. The device is 25.9mm long and has an outer diameter of 6.7mm (Figure 1b). This device is delivered via a catheter through the femoral vein and is directly implanted inside the right ventricle of the heart where it is

ABSTRACT

Background: Cardiac pacemakers improve survival and quality of life in patients with atrioventricular (AV) block. However, conventional pacemakers carry a small risk of both acute and chronic lead and pacemaker generator complications. Leadless pacemakers negate these risks by not having a pacing lead and a subcutaneous generator. We report our Groote Schuur Hospital experience with the Medtronic Micra transcatheter pacing system (TPS).

Methods: We report a consecutive case series of patients that received the Micra leadless pacemaker. The Micra transcatheter pacemaker, a single chamber ventricular pacemaker, is inserted using a TPS via the femoral vein into the right ventricle. Implantation data were obtained, and medical records were reviewed for the 6 weeks and 1-year follow-up visits.

Results: A total of 5 patients were implanted with a Micra leadless pacemaker from 11 March 2015 - 2 November 2016. Four patients were male and 1 female, with an average age of 64 years. Four patients received the pacemaker for a second- or third-degree AV block and 1 patient received the pacemaker for unexplained syncope and right bundle branch block. The Micra leadless pacemaker was successfully implanted in all patients with no acute implantation-related complications. One-year follow-up was available for 4 patients with good pacing thresholds, sensitivity and impedance. One patient demised after 9 months post Micra implantation due to unrelated causes (acute myeloid leukaemia).

Conclusion: The Micra leadless pacing system is safe and effective and shows good short-term results in a real-world, resource-limited setting. This form of pacing offers a viable option for patients who require pacing for AV block, especially in patients with vascular access problems or who are at high risk of lead or pacemaker generator complications.
fixed by nitinol tines. \(^{(9)}\) The MicraTM was designed to negate the complications related to conventional pacemakers, i.e. pocket and lead-related problems. Prospective studies have shown good safety and performance endpoints of the MicraTM in patients that require permanent pacemaker implantation with very low adverse events. Herein we present a case series of the first MicraTM leadless pacemakers to be implanted in South Africa.

METHODS

Consecutive patients implanted with a MicraTM from 1 January 2015 - 31 December 2016 were included. All the devices were implanted in the Department of Medicine, Division of Cardiology at Groote Schuur Hospital. The MicraTM was delivered into the right ventricle with a deflectable delivery catheter via a 23 French internal diameter/27 French outer diameter femoral sheath in the right femoral vein (Figure 2a). The sheath is advanced using a guidewire and a dilator into the right atrium. \(^{(15)}\) The guidewire and dilator are then removed and a steerable delivery system catheter with the MicraTM preloaded and tethered is then advanced into the right ventricle (Figure 2b). \(^{(15)}\) The MicraTM is deployed by retraction of the device containing cup at the distal end of the delivery catheter positioned against the right ventricular endocardium and is fixed into the myocardium by protraction of nitinol tines. Once the device is placed in the right ventricle and adequate fixation is confirmed, sensitivity, pacing thresholds and impedance are measured. \(^{(15)}\)

RESULTS

A total of five patients had the MicraTM implanted. The indications for MicraTM implantation were complete heart block in a patient with previous pocket sepsis, lead malfunction in a patient with superior vena cava obstruction with complete heart block, symptomatic 2:1 atrioventricular (AV) block, symptomatic Mobitz I AV block, and, lastly, a patient with right bundle branch block and first-degree AV block presenting with syncope (Table 1). The MicraTM was successfully implanted in all 5 patients via the right femoral vein. All patients had a 1-year follow-up, except for patient number 4 who died before his 1-year follow-up from Acute Myeloid Leukemia (AML). All the other patients were clinically well at 1-year follow-up post MicraTM implantation.

The ranges of ventricular pacing thresholds at implantation, 6 weeks and 1 year were 0.25 - 0.75V, 0.38 - 0.5V and 0.38 - 0.75V (all with a pulse width of 0.24ms) respectively (Figure 3). The ranges of R wave amplitudes at implantation, 6 weeks and 1 year were 11.4 - 20mV, 4.8 - 20mV and 16 - 18.1mV respectively (Figure 5). The ranges of pacing impedances at implantation, 6 weeks and 1 year were 690 - 970Ω, 530 - 810Ω and 550 - 670Ω respectively (Figure 4).
There were no acute or chronic implantation-related complications.

DISCUSSION

Ever since the first fully implantable cardiac pacemaker was implanted in 1958, the shortcomings of conventional pacing secondary to pocket and lead-related complications have been evident.\(^{16}\) Investigational work on a miniaturised fully implantable cardiac pacemaker started as early as the 1970s.\(^{17,18}\) More than 30 years later, leadless and miniaturised cardiac pacing has become clinically available.

Three of the 5 patients included in this series were inserted as part of the Micra transcatheter Pacing study, which was a prospective, non-randomised single-study group multicentre landmark study to evaluate safety and efficacy of this new technology. In brief, 725 patients with a class I or class II indication for cardiac pacing and who were considered suitable for single-chamber ventricular demand (VVI) pacing

FIGURE 2: (A) The white arrow depicts a 27 French outer diameter sheath in the inferior vena cava via the right femoral vein. (B) The yellow arrow depicts a steerable delivery catheter with Micra™ preloaded (black arrow). (C) Micra™ is deployed in the right ventricle apex by retraction of the device containing cup. (D) Micra™ attached to the right ventricular endocardium by nitinol tines (white arrow).
were implanted with a Micra TPS.\(^{19}\) The device was successfully implanted in 99.2% of the patients. These patients achieved a 96% freedom from major complications (95% Confidence Interval [CI], 93.9 - 97.3; \(p <0.001\)) and this was statistically significant when compared with the safety performance goal of 83%\(^{19}\). These investigators defined primary efficacy as the percentage of patients with low thresholds and stable pacing capture at 6 months (≤2.0V at 0.24ms and an increase of ≤1.5V from implantation). The rate of primary efficacy was 98.3% (95% CI, 96.1 - 99.5; \(p <0.001\) when com-

<table>
<thead>
<tr>
<th>Patient No</th>
<th>No 1</th>
<th>No 2</th>
<th>No 3</th>
<th>No 4</th>
<th>No 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Birth</td>
<td>7 September 1934</td>
<td>14 August 1955</td>
<td>9 July 1951</td>
<td>16 April 1941</td>
<td>2 August 1970</td>
</tr>
<tr>
<td>Age (years)</td>
<td>80</td>
<td>61</td>
<td>64</td>
<td>73</td>
<td>46</td>
</tr>
<tr>
<td>Indication for PPM</td>
<td>RBBB, 1st degree AV block with Syncope</td>
<td>Post AVR CHB</td>
<td>Symptomatic Mobitz I AV block with frequent PVCs</td>
<td>Symptomatic 2:1 AV block</td>
<td>Complete Heart Block</td>
</tr>
<tr>
<td>Indications for Micra</td>
<td>RBBB, 1st degree AV block with Syncope</td>
<td>Lead Malfunction Obstructed SVS</td>
<td>Symptomatic Mobitz I AV block with frequent PVCs</td>
<td>Symptomatic 2:1 AV block</td>
<td>Multiple Pocket Sepsis</td>
</tr>
<tr>
<td>Background Med History</td>
<td>Myasthenia Gravis COPD Systemic HPT</td>
<td>Rheumatic AS AVR in 1984</td>
<td>Rheumatic MS/AR DVR and CABG 1995 Systemic HPT</td>
<td>Acute Myeloid Leukemia COAD Alcoholic Liver Disease</td>
<td>Nil</td>
</tr>
<tr>
<td>Chronic Medications</td>
<td>CCB HCTZ Aza</td>
<td>Warfarin Statin</td>
<td>Warfarin CCB ACEi HCTZ Statin</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>Last Follow-up</td>
<td>17 April 2018</td>
<td>16 November 2017</td>
<td>13 September 2016</td>
<td>9 June 2015</td>
<td>8 December 2016</td>
</tr>
<tr>
<td>Months since Implantation</td>
<td>Doing Well</td>
<td>Doing Well</td>
<td>Doing Well</td>
<td>AML for Palliative Care Demised 20/12/2015</td>
<td>Doing well</td>
</tr>
</tbody>
</table>

TABLE I: Clinical details and indications for a permanent pacemaker.

![Pacing threshold](image)

FIGURE 3: Micra thresholds at implantation, 6 weeks and 1 year.
pared with the efficacy performance goal of 80%) among 292 patients at 6 months. These data confirmed the safety and efficacy of the Micra TPS at 6 months. Registry data have subsequently confirmed the safety, efficacy and limited complication rates of the Micra TPS in the real world setting, with patient follow-up to 12 months.

In this case series, we report the first consecutive 5 patients implanted with a Micra TPS leadless pacemaker in South Africa. These patients represent the first patients to receive this ground-breaking technology in our country. The Micra TPS was successfully implanted in all patients. There were no implantation-related complications or device-related compli-
Conflict of interest: none declared.

REFERENCES

