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WHAT ARETHE CHANCES?

At the heart of statistics lies the need to accurately estimate the
probability that a given event, feature, or phenotype falls within
or outside the expected range. Normality in biomedicine is
traditionally defined as the likelihood that an observation falls
within an expected range, based on sample data and probability
models.® For example, the effect of a new treatment or therapy
applied to the general population can be inferred by measuring
the outcomes in a small subset of the population, and testing the
null hypothesis that there will be no effect in the population.
This hypothesis is tested with mathematical models based on
certain features of the dataset that quantify the probability (if
the study were repeated many times) that the same treatment
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As the complexity and volume of biological and clinical
data increase, traditional statistical methods, such as
logistic regression, discriminant analysis, analysis of
variance (ANOVA), and multivariate analysis, often fall
short of capturing the intricate patterns needed for
accurate prediction and classification. Here, we
explore alternative analytical frameworks rooted in
modern machine learning (ML) techniques that offer
enhanced capabilities for diverse biomedical appli-
cations. For example, these frameworks demonstrate
superior predictive performance for cardiac events
compared with classical logistic regression. However,
challenges, interpretability, and future directions are
important considerations when facing this new
frontier. Moreover, systematically integrating these
advanced computational tools into routine clinical and
epidemiological research is imperative. This co-
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or therapy effect observed in the study sample will be detected

to the same extent in the larger, general population.

Herein lies the key difference between traditional statistical
methods and ML: both inference and probability are based on
mathematical models, whilst ML uses algorithms to identify
patterns within existing data to make predictions about other
datasets. Although traditional statistical tools, such as t-tests,
simple correlations, and standard regression, remain essential for
hypothesis-driven analyses, effect estimation, and transparent
inference, they often assume linear relationships (never the case
in biology), limited interactions, and relatively simple datasets
with few features or attributes (referred to as low-dimensional
datasets in ML).C4

However, contemporary biological and clinical datasets are often
large and high-dimensional, with numerous variables or features,
where each feature becomes a dimension. These datasets can
also be heterogeneous, combining omics, imaging, continuous
physiological monitoring, and longitudinal electronic health


https://orcid.org/0000-0002-3765-2040
https://orcid.org/0000-0001-7645-9780
https://doi.org/10.24170/23-1-7883

record data, where the true relationships are likely nonlinear,
interactive, and highly context-dependent.®) ML methods,
including neural networks (NN), tree-based ensembles, and
kernel methods (see “Definitions”), are specifically designed to
model such complex structures, leading to more accurate
predictions and enabling the discovery of clinically relevant
patterns that may not be apparent using traditional methods
alone.®®

DEFINITIONS OF MACHINE LEARNING (ML)
ML is a set of computational methods that actively learn and
identify patterns from data to make predictions, connections, or
uncover structure, without explicitly programmed, fixed decision
rules. These models are trained on clinical data, including
laboratory results, imaging, waveforms, and health records, to
predict outcomes like disease presence, deterioration risk, and
treatment response.® Unlike the classical inferential statistics
discussed in the previous section, ML emphasises predictive
performance and flexibility, allowing correlated variables and
complex, multidirectional relationships to be considered
simultaneously.”

Neural networks and deep learning

Artificial NNs are a widely used subset of ML methods inspired
by how biological neurons process signals, consisting of layers of
interconnected “nodes” that transform input data using learned
weights and nonlinear activation functions.®” When many layers
are stacked, the resulting deep NNs (deep learning) can
automatically learn increasingly abstract, multidirectional
representations and relationships from complex, raw data
without manual feature engineering.”'® Consequently, deep
learning has exceeded expert-level performance in tasks such as
medical image classification, disease detection on radiographs,
and protein structure prediction, demonstrating its capacity to
handle high-dimensional, unstructured biomedical data.

WHEN AND HOW TO APPLY MACHINE
LEARNING IN BIOMEDICINE

ML is particularly appropriate when the primary goal is
prediction, pattern recognition, or classification (predicting
disease risk, identifying biological marker patterns, stratifying
patients, or detecting pathology in images), especially in the
presence of many predictors, potential nonlinearities, and
interactions.”® It is well-suited to high-dimensional omics data,
medical imaging, waveform data (electrocardiography [ECG],
electroencephalogram, continuous blood pressure), and rich
electronic health record datasets, where traditional models may
overfit or fail to capture structure, provided that sufficient
sample size, careful validation, and appropriate regularisation are
used.

However, when the main objective is to estimate interpretable
effect sizes, test specific mechanistic hypotheses, or communicate
simple associations, conventional regression and related statistical
models remain preferable. In these cases, ML can be used as a
complementary tool, applied initially to optimise traditional
methods, rather than as a replacement. Table | provides an

extensive summary of traditional statistical methods, their uses,
the ML alternative, and examples in biomedical applications. For
instance, a systematic review of the application of different ML
approaches to analyse ECG data found that ECG deep-learning
models are increasingly clinically relevant; however, their
reporting is highly variable, and few publications provide
sufficient detail for methodological reproduction or model
validation by external groups.('”

TYPES OF MACHINE LEARNING TASKS AND
DATA

Most biomedical ML applications fall into 3 broad paradigms: (1)
supervised learning, where models are trained on labelled
outcomes (e.g. disease vs. no disease) to perform prediction or
classification; (2) unsupervised learning, which discovers
structure, such as clusters or latent patterns in unlabelled data;
and (3) semi- or self-supervised approaches that leverage both
labelled and unlabelled data.® Supervised methods are widely
used for diagnostic and prognostic models, mortality risk
prediction, and treatment response modelling, while
unsupervised methods underpin patient subtyping, endotype
discovery, and exploratory analysis of high-dimensional biological
measurements.®® Deep learning extends these paradigms to
unstructured data, such as images, free text, and raw signals,
allowing direct modelling from pixels, narrative notes,
dimensional data, or waveforms when sufficient data and
computational resources are available.

INTEGRATING MACHINE LEARNING IN
CLINICAL PRACTICE AND CLASSIC
STATISTICS

For clinical researchers and clinicians, the key is not to abandon
traditional statistics, but to integrate ML and NN methods
where they add clear value, such as improving risk stratification,
automating image interpretation, or identifying novel patient
subgroups. Rigour remains essential; model development should
include careful preprocessing, transparent variable selection,
appropriate cross-validation or external validation, and attention
to calibration, fairness, and interpretability, particularly when
models influence patient care.®'® As biomedical data become
more complex and abundant, ML and NNs provide a powerful,
complementary, informative toolkit that can augment and
provide richness, rather than replace established statistical
approaches, setting the stage for more precise, data-driven, and
individualised medicine. There are already many easily accessible
tools available, many of which are free and open source (such as
Python-based libraries). However, their use depends on
experience, coding capabilities, dataset type, and available
hardware (Figure 1 illustrates a broad overview of the different
ML tools and their applications).

Nonetheless, it is important to note that traditional statistical
adjustments are often required when using ML and NNs to
ensure reliable performance, generalisation, and interpretability,
particularly in biomedicine. Moreover, incorporating more
traditional statistical techniques may also address ML’s sensitivity
to data quality by focusing on issues such as overfitting through
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TABLE |I: Comparing traditional statistics to machine learning alternatives.('*2?

Traditional method
and aim

Two-sample t-test
(continuous outcome, 2
groups for univariate
analysis), multiple linear
regression for continuous
outcomes (if normally
distributed)

One-way ANOVA
(continuous outcome,
multiple groups)

Pearson/Spearman
correlation (pairwise
association) or a partial
correlation

Simple/multiple linear
regression (continuous
outcome)

Logistic regression (binary
outcome)

Multinomial/ordinal logistic
regression (multi-class
outcomes)

Cox proportional hazards
regression (time-to-event
outcome)

({7 a%ART“

Typical

biomedical use
Compare the mean of
a biomarker or
physiological measure
between 2 groups
(biomarker levels in
cases vs. controls).

Compare mean
outcome across several
treatment or exposure
groups (e.g. comparing
mean blood pressure
across 3 drug
regimens).

Quantify the association
between 2 continuous
variables (e.g. CRP and
disease severity score)
but does not account
for the bidirectionality
of biological systems.
Model a continuous
clinical outcome (e.g.
lung function, ejection
fraction) as a function
of several predictors
with interpretable
coefficients.

Model probability of an
event (e.g. disease
presence, treatment
failure) as a function of
predictors, with odds
ratios for
interpretability.

Model categorical
outcomes with more
than 2 levels (e.g.
disease stage |-V,
NYHA class).

Model hazard of events
(e.g time to death, time
to readmission) using
covariates, providing
hazard ratios and
survival curves.

ML/NN alternative
for a similar aim

Regularised regression
(e.g. Lasso/ridge),
tree-based models
(e.g. random forest,
gradient boosting),
including group
indicator plus
additional covariates.

Supervised learning
models with
categorical group
variables plus
covariates (e.g.
gradient-boosted
trees, random forest,
NNs) predicting
continuous outcomes.

Nonlinear regression,
kernel methods (e.g.
support vector
regression), or flexible
feature importance
measures from
tree-based models.

Regularised regression
(Lasso, elastic net),
random forest
regression, gradient
boosting machines, or
feedforward NNs.

Tree-based classifiers
(random forest,
gradient boosting),
support vector
machines, or deep
NNs.

Multi-class random
forests, gradient-
boosted trees (e.g.
XGBoost), multi-class
support vector
machines, or
multi-class NNs.

Random survival
forests, gradient
boosting for survival
(e.g. survival
XGBoost), and
survival NNs (e.g.
DeepSurv).

When the ML alternative
is useful

When there are many
correlated biomarkers or
covariates, and the goal is to
predict group membership or
an outcome (rather than only
test the mean difference), and to
capture nonlinear relationships.

When interest is in predicting
the outcome under different
treatment or exposure
conditions, while incorporating
many patient-level features, and
when interactions and nonlinear
dose—response relationships
may exist.

When relationships are
suspected to be nonlinear or
involve interactions with other
features, ML models can
estimate variable importance
and partial dependence instead
of a single correlation coefficient.
When there are many
predictors, multicollinearity, or
nonlinear effects and
interactions, ML can improve
prediction and automatically
select or weight variables while
controlling overfitting.

When accurate classification or
risk stratification is prioritised,
particularly with many variables,
nonlinear interactions, or
complex feature sets (e.g.
combined clinical and laboratory
data).

When there are high-
dimensional predictors and
complex decision boundaries
between classes, or when using
heterogeneous inputs (e.g.
imaging plus tabular data).

When proportional hazards or
linear effects may be violated,
when many predictors and
nonlinearities are present, or
when prediction of individualised
risk trajectories is prioritised
over simple hazard ratios.

Example biomedical
application*

Predicting tuberculosis treatment
failure using multiple clinical and
demographic variables where
simple mean differences are
insufficient; random forest or
NNs can model complex risk
patterns.

Modelling systolic blood pressure
response to different
antihypertensive regimens using
numerous baseline characteristics
with gradient boosting to identify
subgroups with the largest
benefit.

Exploring complex associations
between continuous glucose
monitor metrics and
cardiovascular risk markers, using
random forest to capture
nonlinear effects rather than a
single correlation per pair.

Predicting heart disease severity
or exercise capacity from
numerous clinical, lab, and imaging
features with random forest
regression often achieves better
predictive performance than

standard linear models.

Predicting risk of treatment failure
in tuberculosis or cardiovascular
disease using multiple
demographic, clinical, and lab
features; studies show that
random forests or gradient
boosting can outperform logistic
regression in some datasets for
discrimination metrics.

Classifying heart failure stage or
severity class from combined EHR
data using gradient-boosted trees
to optimise multi-class
discrimination beyond a

parametric ordinal model.

Predicting breast cancer survival
or lung cancer prognosis using
high-dimensional clinical and
molecular predictors with
random survival forests or survival
gradient boosting, sometimes
outperforming classical Cox

models in discrimination.



TABLE I: Continued

Chi-squared test/Fisher’s
exact test (categorical
association)

Principal components
analysis for dimension
reduction

Cluster analysis (k-means,
hierarchical clustering)

Repeated-measures
ANOVA/linear mixed
models (longitudinal
continuous outcomes)

Test association
between 2 categorical
variables (e.g. genotype
vs. disease status,
treatment vs. response
categories) in
contingency tables.

Reduce dimensionality
of correlated
continuous variables
(e.g. many metabolic
markers) to a smaller
set of uncorrelated
components for
visualisation or
downstream modelling.

Unsupervised grouping
of patients or features
based on similarity,
often to identify
phenotypes or
subgroups without
outcome labels.

Analyse trajectories
over time (e.g. repeated
blood pressure or
biomarker measures)
and test group or time
effects with random
effects for subjects.

Supervised classifiers
(e.g. random forest,
gradient boosting,
naive Bayes) using
categorical predictors
to model outcome
probabilities directly.

Nonlinear dimension
reduction, such as
autoencoders (NNs),
t-SNE, or UMAP
(although not all are
predictive models).

Model-based
clustering (Gaussian
mixture models),
density-based
clustering (DBSCAN),
or deep clustering
approaches (IDEC)
that couple NNs
(auto-encoders) with
clustering objectives.

Recurrent NNs,
temporal
convolutional
networks, or
sequence models (e.g.
transformers) for
time series; random
forest or boosting
with engineered
longitudinal features.

When there are multiple
categorical predictors and their
interactions matter for outcome
prediction, rather than simply
testing the independence of a
single pair.

When the underlying structure
is believed to be nonlinear or
manifold-like, and the aim is to
discover latent patterns or
clusters in high-dimensional data
(e.g. omics, imaging-derived
features).

When clusters may be
non-spherical, overlapping, or
embedded in high-dimensional
nonlinear spaces, a richer
structure is expected than can
be captured by distance-based
methods alone.

When temporal patterns are
complex, sampling is irregular, or
large-scale time series from
wearables or ICUs are available,
and the aim is to predict future
events or detect deterioration
rather than only test mean
trajectory differences.

Predicting antibiotic resistance
profile or treatment response
category from multiple categorical
predictors (e.g. pathogen type,
prior exposure, comorbidities)
using gradient boosting rather
than separate chi-squared tests.

Discovering patient subtypes in
multi-omics cancer data using
autoencoders to learn
low-dimensional representations,
then clustering patients to identify
molecularly distinct disease
phenotypes.

Phenomapping in heart failure or
sepsis, using high-dimensional
clinical and biomarker data with
advanced ML clustering methods
to identify clinically meaningful
subgroups that differ in prognosis
or treatment response.

Early prediction of sepsis or
decompensation in ICU patients
using multichannel vital sign time
series with recurrent or
convolutional NN, enabling
continuous risk scoring beyond
traditional mixed-model analyses.

* Artificial intelligence (Perplexity) was used to identify biomedical application examples (listed in the last column) in literature (cited at the top)

ANOVA: analysis of variance, CRP: C-reactive protein, DBSCAN: Density-Based Spatial Clustering of Applications with Noise, EHR: electronic health record, ICU: intensive care
unit, IDEC: Improved Deep Embedded Clustering, ML: machine learning, NN: neural network, NYHA: New York Heart Association Functional Classification, t-SNE: t-distributed
stochastic neighbour embedding, UMAP: uniform manifold approximation and projection.

Do you want to use code?

No Yes
| |
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AWS KNIME, 6P AutoML, TensorFlow/  JoBoost,  TensorFlow/
RapidMiner, KNIME, LightGBM, PyTorch .
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Canv DataRobot Studi AutoML PyTorch (DL) CatBoost, (for complex
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FIGURE I: This schematic (generated with ChatGPT using specific prompts to identify the most used Al tools, followed by a
prompt to organise the data according to the ability to code) shows the types of ML tools that can be used based on data type
and coding experience. Amazon (AWS) SageMaker Canvas is a no-code ML service for data processing and model building.
Scikit-learn works very well for tabular biomedical data (e.g. clinical variables, lab tests, biomarker panels), whilst XGBoost/

LightGBM is best for high-performance models on structured biomedical datasets. For DL purposes, TensorFlow with Keras
is very good, with a user-friendly interface. PyTorch offers greater flexibility and is most commonly used in academic
environments to build custom biomedical DL architectures. KNIME is often used as a data analytics, reporting, and integration
platform, integrating various components for ML and data mining through its modular data pipeline.

AutoML: automated machine learning, Al: artificial intelligence, DL: deep learning, ML: machine learning.
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TABLE II: Pros and cons of machine learning in biomedical research.(*'5!820

Dimension

Data complexity and scale

Prediction and pattern
recognition

Personalisation and

precision

Efficiency and automation

Discovery and hypothesis
generation

Interpretability and
transparency

Data access, privacy, and
governance

Technical and resource
demands

Evaluation, validation, and
reproducibility

Workflow and culture

Pros (advantages)

Can handle high-dimensional, heterogeneous data
(imaging, omics, waveforms, EHR) without requiring
simple, prespecified linear relationships, making it
well-suited to modern, multimodal biomedical datasets
that are complex, nonlinear, and often contain many
correlated predictors.

Often achieves superior performance to traditional
models for tasks such as disease risk prediction,
image-based diagnosis, and outcome forecasting when
datasets are sufficiently large and well-curated,
detecting subtle patterns (e.g. in retinal or radiology
images) that are difficult for humans or simple models
to capture.

Enables more granular risk stratification, identification
of high-risk subgroups, and personalised treatment
strategies by integrating many clinical, biological, and
behavioural predictors, supporting precision medicine
and biomarker-based trial design or response
prediction.

Once trained and validated, models can process large
data volumes rapidly, automating repetitive tasks such
as image triage, signal screening, or EHR-based early
warning scores, potentially freeing clinicians and
researchers to focus on interpretation, study design,
and patient-facing decisions.

Facilitates data-driven discovery of new patterns,
phenotypes, and interactions (e.g. phenomapping,
unsupervised clustering of omics or imaging),
suggesting novel hypotheses, biomarkers, or
mechanistic leads that can be tested with targeted
experiments or classical statistical models.

Some ML methods (e.g. regularised linear models,
shallow trees, generalised additive models, or post-hoc
explainability tools) can provide variable importance,
partial dependence, and other insights that
complement traditional effect estimates, aiding
understanding of complex relationships.

Can encourage the development of high-quality,
well-curated research datasets and data infrastructures,
and motivate federated or privacy-preserving methods
that analyse distributed data without centralising
identifiable information.

Stimulates multidisciplinary collaboration between
clinicians, statisticians, computer scientists, and
engineers; open-source tools and pre-trained models
(e.g for imaging or NLP) can lower entry barriers for
research groups.

When done well, rigorous cross-validation, temporal
validation, and external validation across sites can yield
models with strong, well-characterised generalisation
performance and well-calibrated risk estimates that
stand up to prospective testing.

Offers potential to streamline research pipelines (e.g.
automated feature extraction from images, structured
data from free text) and clinical workflows (e.g. triage,
prioritisation), and can augment human expertise in a
complementary way.

Cons (limitations/risks)

Strongly dependent on data quality, completeness, and
representativeness; noisy labels, missingness, site effects, and small
or biased samples can severely degrade performance and
undermine external validity, especially when training data do not
reflect the target population.

Prone to overfitting if model complexity is high relative to the
effective sample size, if feature engineering is careless, or if
validation is weak; internal metrics can appear excellent while true
generalisation to new settings or hospitals is poor, leading to overly
optimistic published results.

Personalisation can exacerbate bias if subgroup models are derived
from small or unbalanced strata; models may encode and amplify
structural inequities (e.g. underrepresented ethnic groups or sexes)
unless fairness and subgroup performance are explicitly evaluated
and corrected.

Automation can encourage over-reliance on algorithmic outputs,
with the risk that clinicians or researchers defer to model
predictions without adequate scrutiny; poorly integrated tools can
increase workload or alert fatigue rather than reduce it, and errors
may propagate at scale.

Data-driven discoveries can be difficult to interpret mechanistically,
and spurious clusters or associations are common when multiple
testing and validation issues are not handled rigorously; there is a
risk of “pattern hunting” without sufficient biological grounding or
prespecified questions.

Many high-performing models, especially deep NN, behave as
“black boxes” with limited transparency about how predictions are
generated, which complicates mechanistic understanding,
communication with clinicians and regulators, and formal adoption
into guidelines or decision pathways.

Requires access to large, often linked patient-level datasets, raising
substantial issues around consent, privacy, re-identification risk, data
ownership, and security; regulatory and ethical constraints may
limit data sharing and multicentre validation, reducing
reproducibility and generalisability.

Robust model development and deployment demand specialised
expertise in data engineering, ML, and software practices; deep
learning can be computationally expensive, requiring substantial
hardware, maintenance, and monitoring infrastructure that not all
groups possess.

Many published biomedical ML studies use small datasets, weak
validation, optimistic performance metrics, and incomplete
reporting, hindering reproducibility and inflating expectations; code,
trained models, and data are often not fully shared, limiting
independent verification and re-use.

Integration into existing research and clinical workflows can be
challenging, requiring changes in processes, training, and culture;
scepticism from clinicians, concerns about medico-legal liability, and
misalignment with clinical priorities can slow or block adoption,
even for technically strong models.

EHR: electronic health record, ML: machine learning, NN: neural network.
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TABLE Illl: When to use traditional methods versus machine learning.

Aspect

Primary goal

Typical assumptions

Data size and
dimensionality

Data type

Example: prognosis/risk
prediction

Example: diagnostic
classification (tabular
data)

Example: medical

imaging

Example: omics/
high-throughput biology

Example: longitudinal/

monitoring data

Strengths

Limitations

When to prefer

Traditional statistical methods (e.g. t-test,
linear/logistic/Cox regression, correlations)
Estimate and test associations or effects (e.g.
exposure—outcome relationships, hazard ratios), with
emphasis on inference and interpretability.
Prespecified model form (often linear), limited
interactions, relatively low number of predictors
versus sample size, and structured noise assumptions
(e.g. normality, proportional hazards).

Best when the number of observations is much
larger than the number of predictors, and variables
are carefully selected a priori (e.g. classical cohort
studies, public health surveys).

Structured, tabular data with clearly defined variables
(e.g. age, blood pressure, lab values, questionnaire
scores).

Cox regression model to estimate hazard ratios for
mortality in a cardiovascular cohort using a small
panel of risk factors (age, blood pressure, cholesterol,
smoking) and to quantify their independent effects.
Logistic regression using a limited set of clinical
variables (e.g. body mass index, fasting glucose, blood
pressure) to estimate odds of metabolic syndrome
and test specific risk factor hypotheses.

Linear measurements and simple thresholds (e.g.
lesion size, ejection fraction) analysed with standard
statistics to compare groups or assess associations
with outcomes.

Multiple regression or univariate testing with
correction for multiple comparisons to relate a small
subset of preselected genes or proteins to an
outcome, mainly for hypothesis-driven analysis.
Mixed-effects models or repeated-measures
ANOVA to test average trajectories over time (e.g.
HbA1c or blood pressure trends) and assess group
differences with interpretable coefficients.
Transparent modelling, explicit effect estimates (odds
ratios, hazard ratios), strong theory for inference and
uncertainty quantification, easier to audit and
communicate to clinicians and regulators.

May underperform when relationships are nonlinear
or highly interactive, or when many correlated
predictors are present; performance can degrade in
very high-dimensional settings.

Hypothesis-driven work where quantifying and
testing specific associations is primary, datasets are
moderate in size and dimensionality, and
interpretability is paramount (e.g. guideline

development, mechanistic research).

ML/NNs (including deep learning)

Maximise predictive accuracy or pattern recognition (e.g. classify,
risk-stratify, detect structure), often with less emphasis on explicit
parameter interpretation.

Flexible, data-driven function classes that can capture nonlinearity and
complex interactions, with fewer parametric assumptions but a stronger

need for regularisation and validation.

Particularly advantageous for high-dimensional data (e.g. genomics,
radiomics, multi-omics, rich EHR data) where the number of predictors

can rival or exceed the sample size.

Can handle both structured and unstructured data, such as images, free
text, waveforms, and sensor streams, often directly from raw inputs
(pixels, time series).

Gradient boosting or deep learning model using dozens to hundreds of
variables from EHRs to predict in-hospital deterioration or 30-day
mortality, focusing on accurate risk stratification rather than individual
effect sizes.

Random forest or support vector machine using a richer set of features
(e.g. labs, vitals, comorbidities, medication history) to classify patients at
high risk of developing diabetes or metabolic syndrome, optimised for
sensitivity/specificity.

Convolutional NN trained on large sets of labelled computed tomography,
magnetic resonance imaging, or X-ray images to detect lung nodules or
classify tumours, often achieving radiologist-level accuracy in identifying
malignancy.

Regularised models, tree-based ensembles, or deep learning applied to
genome-wide or proteomic profiles to predict drug response or discover

molecular subtypes of cancer or other diseases.

Recurrent or temporal convolutional NN trained on continuous
wearables or ICU monitoring data (e.g. heart rate, rhythm, glucose
sensors) to detect early signs of sepsis, arrhythmia, or decompensation in
real time.

Captures complex nonlinear patterns and interactions, scales to large and
heterogeneous datasets, excels at prediction and pattern discovery, and

can directly ingest raw or minimally processed data.

Models can be less interpretable, prone to overfitting without rigorous
validation, and resource-intensive; performance advantages over
well-specified traditional models are not guaranteed in small or simple
datasets.

Prediction- or classification-focused problems with complex, high-
dimensional, or unstructured data, where improving accuracy, risk
stratification, or pattern discovery is central (e.g. imaging artificial

intelligence, multi-omics risk scores, EHR-based early warning systems).

ANOVA: analysis of variance, EHR: electronic health record, ICU: intensive care unit, ML: machine learning, NN: neural network.

(\\7 aAEART®



regularisation, where all variables are taken into account, even
though they might not have the same effect (which is accounted
for with Lasso and ridge regression in traditional statistics and
adjusted R* metrics to penalise unnecessary complexity).("
Similarly, cross-validation and bootstrapping used in traditional
statistics provide confidence intervals for model predictions,
mitigating variance in high-dimensional biological data, like multi-
omics. At the same time, feature selection via principal
component analysis or elastic nets reduces noise in
heterogeneous datasets, thereby improving representativeness
before NN training. For example, batch effect correction using
variance analysis is essential to adjust for technical heterogeneity
in large sequencing datasets, enabling accurate cell clustering
with deep learning models.

PRACTICAL IMPLICATION FOR BIOMEDICAL
RESEARCH

When grounded in high-quality data, rigorous validation, and
well-posed clinical or biological questions, ML can markedly
improve  discovery, prediction, and personalisation in
biomedicine. Simultaneously, it must be integrated with domain
expertise and conventional statistical reasoning, rather than
treated as a stand-alone solution. ML excels at modelling
complex, high-dimensional heterogeneous data and can enhance
disease prediction, image-based diagnosis, patient stratification,
and biomarker discovery. Yet, its performance is highly
dependent on data quality and representativeness, and many
powerful models are opaque, limiting mechanistic insight and
trust."? For example, the data quality of cross-sectional dataset
tests used for drug efficacy prediction is of utmost importance,
as batch effects and heterogeneity can decrease accuracy during
training and affect real-world biomedical data.

Opaque models, like NN, limit mechanistic insight. For instance,
“black box” predictions in genomics data hinder trust and
biological interpretability, prompting “visible ML” that
incorporates pathways for transparency. Thus, as with traditional
statistics, ensuring excellent initial data quality through rigorous
preprocessing, batch effect correction, and representative
sampling is paramount when applying NNs or ML techniques in
biomedicine, as it directly bolsters model accuracy, generalisation
to real-world scenarios, and overall trustworthiness beyond
opaque predictions.

Biomedical ML also raises challenges around bias, generalisability,
privacy, consent, and secure data infrastructure, and often
requires specialist expertise in data engineering and model
development. Without careful validation and governance,
models are vulnerable to overfitting and overly optimistic
performance claims, which remain major concerns in the current
literature. Table Il summarises the advantages and the limitations/
risks of ML in biomedical research.

CONCLUSION

It is important to know when to use ML, and when traditional
methods will suffice (summarised in Table Ill), while including the
type of analysis that will be performed in the planning stages of

(\\7 EI%ART@

the study, ensuring that the data complies with the analysis
requirements, and improving the outcome and applications of
biomedical studies, overall.
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