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WHAT ARE THE CHANCES?
At the heart of statistics lies the need to accurately estimate the 

probability that a given event, feature, or phenotype falls within 

or outside the expected range. Normality in biomedicine is 

traditionally defined as the likelihood that an observation falls 

within an expected range, based on sample data and probability 

models.(2) For example, the effect of a new treatment or therapy 

applied to the general population can be inferred by measuring 

the outcomes in a small subset of the population, and testing the 

null hypothesis that there will be no effect in the population. 

This hypothesis is tested with mathematical models based on 

certain features of the dataset that quantify the probability (if 

the study were repeated many times) that the same treatment 

or therapy effect observed in the study sample will be detected 
to the same extent in the larger, general population.

Herein lies the key difference between traditional statistical 
methods and ML: both inference and probability are based on 
mathematical models, whilst ML uses algorithms to identify 
patterns within existing data to make predictions about other 
datasets. Although traditional statistical tools, such as t-tests, 
simple correlations, and standard regression, remain essential for 
hypothesis-driven analyses, effect estimation, and transparent 
inference, they often assume linear relationships (never the case 
in biology), limited interactions, and relatively simple datasets 
with few features or attributes (referred to as low-dimensional 
datasets in ML).(3,4)

However, contemporary biological and clinical datasets are often 
large and high-dimensional, with numerous variables or features, 
where each feature becomes a dimension. These datasets can 
also be heterogeneous, combining omics, imaging, continuous 
physiological monitoring, and longitudinal electronic health 
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epidemiological research is imperative. This co-
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record data, where the true relationships are likely nonlinear, 
interactive, and highly context-dependent.(5) ML methods, 
including neural networks (NN), tree-based ensembles, and 
kernel methods (see “Definitions”), are specifically designed to 
model such complex structures, leading to more accurate 
predictions and enabling the discovery of clinically relevant 
patterns that may not be apparent using traditional methods 
alone.(5,6)

DEFINITIONS OF MACHINE LEARNING (ML)
ML is a set of computational methods that actively learn and 
identify patterns from data to make predictions, connections, or 
uncover structure, without explicitly programmed, fixed decision 
rules. These models are trained on clinical data, including 
laboratory results, imaging, waveforms, and health records, to 
predict outcomes like disease presence, deterioration risk, and 
treatment response.(6) Unlike the classical inferential statistics 
discussed in the previous section, ML emphasises predictive 
performance and flexibility, allowing correlated variables and 
complex, multidirectional relationships to be considered 
simultaneously.(7)

Neural networks and deep learning
Artificial NNs are a widely used subset of ML methods inspired 
by how biological neurons process signals, consisting of layers of 
interconnected “nodes” that transform input data using learned 
weights and nonlinear activation functions.(8,9) When many layers 
are stacked, the resulting deep NNs (deep learning) can 
automatically learn increasingly abstract, multidirectional 
representations and relationships from complex, raw data 
without manual feature engineering.(7,10) Consequently, deep 
learning has exceeded expert-level performance in tasks such as 
medical image classification, disease detection on radiographs, 
and protein structure prediction, demonstrating its capacity to 
handle high-dimensional, unstructured biomedical data.

WHEN AND HOW TO APPLY MACHINE 
LEARNING IN BIOMEDICINE
ML is particularly appropriate when the primary goal is 
prediction, pattern recognition, or classification (predicting 
disease risk, identifying biological marker patterns, stratifying 
patients, or detecting pathology in images), especially in the 
presence of many predictors, potential nonlinearities, and 
interactions.(7,8) It is well-suited to high-dimensional omics data, 
medical imaging, waveform data (electrocardiography [ECG], 
electroencephalogram, continuous blood pressure), and rich 
electronic health record datasets, where traditional models may 
overfit or fail to capture structure, provided that sufficient 
sample size, careful validation, and appropriate regularisation are 
used.

However, when the main objective is to estimate interpretable 
effect sizes, test specific mechanistic hypotheses, or communicate 
simple associations, conventional regression and related statistical 
models remain preferable. In these cases, ML can be used as a 
complementary tool, applied initially to optimise traditional 
methods, rather than as a replacement. Table I provides an 

extensive summary of traditional statistical methods, their uses, 
the ML alternative, and examples in biomedical applications. For 
instance, a systematic review of the application of different ML 
approaches to analyse ECG data found that ECG deep-learning 
models are increasingly clinically relevant; however, their 
reporting is highly variable, and few publications provide 
sufficient detail for methodological reproduction or model 
validation by external groups.(11)

TYPES OF MACHINE LEARNING TASKS AND 
DATA
Most biomedical ML applications fall into 3 broad paradigms: (1) 
supervised learning, where models are trained on labelled 
outcomes (e.g. disease vs. no disease) to perform prediction or 
classification; (2) unsupervised learning, which discovers 
structure, such as clusters or latent patterns in unlabelled data; 
and (3) semi- or self-supervised approaches that leverage both 
labelled and unlabelled data.(8) Supervised methods are widely 
used for diagnostic and prognostic models, mortality risk 
prediction, and treatment response modelling, while 
unsupervised methods underpin patient subtyping, endotype 
discovery, and exploratory analysis of high-dimensional biological 
measurements.(5,6) Deep learning extends these paradigms to 
unstructured data, such as images, free text, and raw signals, 
allowing direct modelling from pixels, narrative notes, 
dimensional data, or waveforms when sufficient data and 
computational resources are available.

INTEGRATING MACHINE LEARNING IN 
CLINICAL PRACTICE AND CLASSIC 
STATISTICS
For clinical researchers and clinicians, the key is not to abandon 
traditional statistics, but to integrate ML and NN methods 
where they add clear value, such as improving risk stratification, 
automating image interpretation, or identifying novel patient 
subgroups. Rigour remains essential; model development should 
include careful preprocessing, transparent variable selection, 
appropriate cross-validation or external validation, and attention 
to calibration, fairness, and interpretability, particularly when 
models influence patient care.(6,10) As biomedical data become 
more complex and abundant, ML and NNs provide a powerful, 
complementary, informative toolkit that can augment and 
provide richness, rather than replace established statistical 
approaches, setting the stage for more precise, data-driven, and 
individualised medicine. There are already many easily accessible 
tools available, many of which are free and open source (such as 
Python-based libraries). However, their use depends on 
experience, coding capabilities, dataset type, and available 
hardware (Figure 1 illustrates a broad overview of the different 
ML tools and their applications).

Nonetheless, it is important to note that traditional statistical 
adjustments are often required when using ML and NNs to 
ensure reliable performance, generalisation, and interpretability, 
particularly in biomedicine. Moreover, incorporating more 
traditional statistical techniques may also address ML’s sensitivity 
to data quality by focusing on issues such as overfitting through 
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TABLE I: Comparing traditional statistics to machine learning alternatives.(13-20)

Traditional method  
and aim

Typical  
biomedical use

ML/NN alternative  
for a similar aim

When the ML alternative 
is useful

Example biomedical 
application*

Two-sample t-test 
(continuous outcome, 2 
groups for univariate 
analysis), multiple linear 
regression for continuous 
outcomes (if normally 
distributed)

Compare the mean of 

a biomarker or 

physiological measure 

between 2 groups 

(biomarker levels in 

cases vs. controls).

Regularised regression 
(e.g. Lasso/ridge), 
tree-based models 
(e.g. random forest, 
gradient boosting), 
including group 
indicator plus 
additional covariates.

When there are many 

correlated biomarkers or 

covariates, and the goal is to 

predict group membership or 

an outcome (rather than only 

test the mean difference), and to 

capture nonlinear relationships.

Predicting tuberculosis treatment 

failure using multiple clinical and 

demographic variables where 

simple mean differences are 

insufficient; random forest or 

NNs can model complex risk 

patterns.

One-way ANOVA 
(continuous outcome, 
multiple groups)

Compare mean 

outcome across several 

treatment or exposure 

groups (e.g. comparing 

mean blood pressure 

across 3 drug 

regimens).

Supervised learning 
models with 
categorical group 
variables plus 
covariates (e.g. 
gradient-boosted 
trees, random forest, 
NNs) predicting 
continuous outcomes.

When interest is in predicting 

the outcome under different 

treatment or exposure 

conditions, while incorporating 

many patient-level features, and 

when interactions and nonlinear 

dose–response relationships 

may exist.

Modelling systolic blood pressure 

response to different 

antihypertensive regimens using 

numerous baseline characteristics 

with gradient boosting to identify 

subgroups with the largest 

benefit.

Pearson/Spearman 
correlation (pairwise 
association) or a partial 
correlation

Quantify the association 

between 2 continuous 

variables (e.g. CRP and 

disease severity score) 

but does not account 

for the bidirectionality 

of biological systems.

Nonlinear regression, 
kernel methods (e.g. 
support vector 
regression), or flexible 
feature importance 
measures from 
tree-based models.

When relationships are 

suspected to be nonlinear or 

involve interactions with other 

features, ML models can 

estimate variable importance 

and partial dependence instead 

of a single correlation coefficient.

Exploring complex associations 

between continuous glucose 

monitor metrics and 

cardiovascular risk markers, using 

random forest to capture 

nonlinear effects rather than a 

single correlation per pair.

Simple/multiple linear 
regression (continuous 
outcome)

Model a continuous 

clinical outcome (e.g. 

lung function, ejection 

fraction) as a function 

of several predictors 

with interpretable 

coefficients.

Regularised regression 
(Lasso, elastic net), 
random forest 
regression, gradient 
boosting machines, or 
feedforward NNs.

When there are many 

predictors, multicollinearity, or 

nonlinear effects and 

interactions, ML can improve 

prediction and automatically 

select or weight variables while 

controlling overfitting.

Predicting heart disease severity 

or exercise capacity from 

numerous clinical, lab, and imaging 

features with random forest 

regression often achieves better 

predictive performance than 

standard linear models.

Logistic regression (binary 
outcome)

Model probability of an 

event (e.g. disease 

presence, treatment 

failure) as a function of 

predictors, with odds 

ratios for 

interpretability.

Tree-based classifiers 
(random forest, 
gradient boosting), 
support vector 
machines, or deep 
NNs.

When accurate classification or 

risk stratification is prioritised, 

particularly with many variables, 

nonlinear interactions, or 

complex feature sets (e.g. 

combined clinical and laboratory 

data).

Predicting risk of treatment failure 

in tuberculosis or cardiovascular 

disease using multiple 

demographic, clinical, and lab 

features; studies show that 

random forests or gradient 

boosting can outperform logistic 

regression in some datasets for 

discrimination metrics.

Multinomial/ordinal logistic 
regression (multi-class 
outcomes)

Model categorical 

outcomes with more 

than 2 levels (e.g. 

disease stage I–IV, 

NYHA class).

Multi-class random 
forests, gradient-
boosted trees (e.g. 
XGBoost), multi-class 
support vector 
machines, or 
multi-class NNs.

When there are high-

dimensional predictors and 

complex decision boundaries 

between classes, or when using 

heterogeneous inputs (e.g. 

imaging plus tabular data).

Classifying heart failure stage or 

severity class from combined EHR 

data using gradient-boosted trees 

to optimise multi-class 

discrimination beyond a 

parametric ordinal model.

Cox proportional hazards 
regression (time-to-event 
outcome)

Model hazard of events 

(e.g. time to death, time 

to readmission) using 

covariates, providing 

hazard ratios and 

survival curves.

Random survival 
forests, gradient 
boosting for survival 
(e.g. survival 
XGBoost), and 
survival NNs (e.g. 
DeepSurv).

When proportional hazards or 

linear effects may be violated, 

when many predictors and 

nonlinearities are present, or 

when prediction of individualised 

risk trajectories is prioritised 

over simple hazard ratios.

Predicting breast cancer survival 

or lung cancer prognosis using 

high-dimensional clinical and 

molecular predictors with 

random survival forests or survival 

gradient boosting, sometimes 

outperforming classical Cox 

models in discrimination.
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Do you want to use code?

No

Is your dataset 
very large?

Yes

AWS 
SageMaker 

Canvas

No

KNIME, 
RapidMiner, 
DataRobot 
(AutoML)

What type of data?

Images

GCP AutoML, 
Azure ML 

Studio

Text/tables

KNIME, 
AutoML

Yes

What type of data?

Images

TensorFlow/ 
Keras, 

PyTorch (DL)

Text/tables

XGBoost, 
LightGBM, 
CatBoost, 
scikit-learn

Do you need deep 
learing?

Yes

TensorFlow/ 
PyTorch 

(for complex 
models)

No

scikit-learn

FIGURE 1: This schematic (generated with ChatGPT using specific prompts to identify the most used AI tools, followed by a 
prompt to organise the data according to the ability to code) shows the types of ML tools that can be used based on data type 
and coding experience. Amazon (AWS) SageMaker Canvas is a no-code ML service for data processing and model building. 
Scikit-learn works very well for tabular biomedical data (e.g. clinical variables, lab tests, biomarker panels), whilst XGBoost/
LightGBM is best for high-performance models on structured biomedical datasets. For DL purposes, TensorFlow with Keras 
is very good, with a user-friendly interface. PyTorch offers greater flexibility and is most commonly used in academic 
environments to build custom biomedical DL architectures. KNIME is often used as a data analytics, reporting, and integration 
platform, integrating various components for ML and data mining through its modular data pipeline.
AutoML: automated machine learning, AI: artificial intelligence, DL: deep learning, ML: machine learning.

TABLE I: Continued

Chi-squared test/Fisher’s 
exact test (categorical 
association)

Test association 
between 2 categorical 
variables (e.g. genotype 
vs. disease status, 
treatment vs. response 
categories) in 
contingency tables.

Supervised classifiers 
(e.g. random forest, 
gradient boosting, 
naive Bayes) using 
categorical predictors 
to model outcome 
probabilities directly.

When there are multiple 
categorical predictors and their 
interactions matter for outcome 
prediction, rather than simply 
testing the independence of a 
single pair.

Predicting antibiotic resistance 
profile or treatment response 
category from multiple categorical 
predictors (e.g. pathogen type, 
prior exposure, comorbidities) 
using gradient boosting rather 
than separate chi-squared tests.

Principal components 
analysis for dimension 
reduction

Reduce dimensionality 
of correlated 
continuous variables 
(e.g. many metabolic 
markers) to a smaller 
set of uncorrelated 
components for 
visualisation or 
downstream modelling.

Nonlinear dimension 
reduction, such as 
autoencoders (NNs), 
t‑SNE, or UMAP 
(although not all are 
predictive models).

When the underlying structure 
is believed to be nonlinear or 
manifold-like, and the aim is to 
discover latent patterns or 
clusters in high-dimensional data 
(e.g. omics, imaging-derived 
features).

Discovering patient subtypes in 
multi-omics cancer data using 
autoencoders to learn 
low-dimensional representations, 
then clustering patients to identify 
molecularly distinct disease 
phenotypes.

Cluster analysis (k-means, 
hierarchical clustering)

Unsupervised grouping 
of patients or features 
based on similarity, 
often to identify 
phenotypes or 
subgroups without 
outcome labels.

Model-based 
clustering (Gaussian 
mixture models), 
density-based 
clustering (DBSCAN), 
or deep clustering 
approaches (IDEC) 
that couple NNs 
(auto-encoders) with 
clustering objectives.

When clusters may be 
non-spherical, overlapping, or 
embedded in high-dimensional 
nonlinear spaces, a richer 
structure is expected than can 
be captured by distance-based 
methods alone.

Phenomapping in heart failure or 
sepsis, using high-dimensional 
clinical and biomarker data with 
advanced ML clustering methods 
to identify clinically meaningful 
subgroups that differ in prognosis 
or treatment response.

Repeated-measures 
ANOVA/linear mixed 
models (longitudinal 
continuous outcomes)

Analyse trajectories 
over time (e.g. repeated 
blood pressure or 
biomarker measures) 
and test group or time 
effects with random 
effects for subjects.

Recurrent NNs, 
temporal 
convolutional 
networks, or 
sequence models (e.g. 
transformers) for 
time series; random 
forest or boosting 
with engineered 
longitudinal features.

When temporal patterns are 
complex, sampling is irregular, or 
large-scale time series from 
wearables or ICUs are available, 
and the aim is to predict future 
events or detect deterioration 
rather than only test mean 
trajectory differences.

Early prediction of sepsis or 
decompensation in ICU patients 
using multichannel vital sign time 
series with recurrent or 
convolutional NNs, enabling 
continuous risk scoring beyond 
traditional mixed-model analyses.

* Artificial intelligence (Perplexity) was used to identify biomedical application examples (listed in the last column) in literature (cited at the top).
ANOVA: analysis of variance, CRP: C-reactive protein, DBSCAN: Density-Based Spatial Clustering of Applications with Noise, EHR: electronic health record, ICU: intensive care 
unit, IDEC: Improved Deep Embedded Clustering, ML: machine learning, NN: neural network, NYHA: New York Heart Association Functional Classification, t-SNE: t-distributed 
stochastic neighbour embedding, UMAP: uniform manifold approximation and projection.
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TABLE II: Pros and cons of machine learning in biomedical research.(13,15,18-20)

Dimension Pros (advantages) Cons (limitations/risks)

Data complexity and scale Can handle high-dimensional, heterogeneous data 
(imaging, omics, waveforms, EHR) without requiring 
simple, prespecified linear relationships, making it 
well-suited to modern, multimodal biomedical datasets 
that are complex, nonlinear, and often contain many 
correlated predictors.

Strongly dependent on data quality, completeness, and 
representativeness; noisy labels, missingness, site effects, and small 
or biased samples can severely degrade performance and 
undermine external validity, especially when training data do not 
reflect the target population.

Prediction and pattern 

recognition

Often achieves superior performance to traditional 
models for tasks such as disease risk prediction, 
image-based diagnosis, and outcome forecasting when 
datasets are sufficiently large and well-curated, 
detecting subtle patterns (e.g. in retinal or radiology 
images) that are difficult for humans or simple models 
to capture.

Prone to overfitting if model complexity is high relative to the 
effective sample size, if feature engineering is careless, or if 
validation is weak; internal metrics can appear excellent while true 
generalisation to new settings or hospitals is poor, leading to overly 
optimistic published results.

Personalisation and 

precision

Enables more granular risk stratification, identification 
of high-risk subgroups, and personalised treatment 
strategies by integrating many clinical, biological, and 
behavioural predictors, supporting precision medicine 
and biomarker-based trial design or response 
prediction.

Personalisation can exacerbate bias if subgroup models are derived 
from small or unbalanced strata; models may encode and amplify 
structural inequities (e.g. underrepresented ethnic groups or sexes) 
unless fairness and subgroup performance are explicitly evaluated 
and corrected.

Efficiency and automation Once trained and validated, models can process large 
data volumes rapidly, automating repetitive tasks such 
as image triage, signal screening, or EHR-based early 
warning scores, potentially freeing clinicians and 
researchers to focus on interpretation, study design, 
and patient-facing decisions.

Automation can encourage over-reliance on algorithmic outputs, 
with the risk that clinicians or researchers defer to model 
predictions without adequate scrutiny; poorly integrated tools can 
increase workload or alert fatigue rather than reduce it, and errors 
may propagate at scale.

Discovery and hypothesis 

generation

Facilitates data-driven discovery of new patterns, 
phenotypes, and interactions (e.g. phenomapping, 
unsupervised clustering of omics or imaging), 
suggesting novel hypotheses, biomarkers, or 
mechanistic leads that can be tested with targeted 
experiments or classical statistical models.

Data-driven discoveries can be difficult to interpret mechanistically, 
and spurious clusters or associations are common when multiple 
testing and validation issues are not handled rigorously; there is a 
risk of “pattern hunting” without sufficient biological grounding or 
prespecified questions.

Interpretability and 

transparency

Some ML methods (e.g. regularised linear models, 
shallow trees, generalised additive models, or post-hoc 
explainability tools) can provide variable importance, 
partial dependence, and other insights that 
complement traditional effect estimates, aiding 
understanding of complex relationships.

Many high-performing models, especially deep NNs, behave as 
“black boxes” with limited transparency about how predictions are 
generated, which complicates mechanistic understanding, 
communication with clinicians and regulators, and formal adoption 
into guidelines or decision pathways.

Data access, privacy, and 

governance

Can encourage the development of high-quality, 
well-curated research datasets and data infrastructures, 
and motivate federated or privacy-preserving methods 
that analyse distributed data without centralising 
identifiable information.

Requires access to large, often linked patient-level datasets, raising 
substantial issues around consent, privacy, re-identification risk, data 
ownership, and security; regulatory and ethical constraints may 
limit data sharing and multicentre validation, reducing 
reproducibility and generalisability.

Technical and resource 

demands

Stimulates multidisciplinary collaboration between 
clinicians, statisticians, computer scientists, and 
engineers; open-source tools and pre-trained models 
(e.g. for imaging or NLP) can lower entry barriers for 
research groups.

Robust model development and deployment demand specialised 
expertise in data engineering, ML, and software practices; deep 
learning can be computationally expensive, requiring substantial 
hardware, maintenance, and monitoring infrastructure that not all 
groups possess.

Evaluation, validation, and 

reproducibility

When done well, rigorous cross-validation, temporal 
validation, and external validation across sites can yield 
models with strong, well-characterised generalisation 
performance and well-calibrated risk estimates that 
stand up to prospective testing.

Many published biomedical ML studies use small datasets, weak 
validation, optimistic performance metrics, and incomplete 
reporting, hindering reproducibility and inflating expectations; code, 
trained models, and data are often not fully shared, limiting 
independent verification and re-use.

Workflow and culture Offers potential to streamline research pipelines (e.g. 
automated feature extraction from images, structured 
data from free text) and clinical workflows (e.g. triage, 
prioritisation), and can augment human expertise in a 
complementary way.

Integration into existing research and clinical workflows can be 
challenging, requiring changes in processes, training, and culture; 
scepticism from clinicians, concerns about medico-legal liability, and 
misalignment with clinical priorities can slow or block adoption, 
even for technically strong models.

EHR: electronic health record, ML: machine learning, NN: neural network.
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TABLE III: When to use traditional methods versus machine learning.

Aspect Traditional statistical methods (e.g. t-test, 

linear/logistic/Cox regression, correlations)

ML/NNs (including deep learning)

Primary goal Estimate and test associations or effects (e.g. 

exposure–outcome relationships, hazard ratios), with 

emphasis on inference and interpretability.

Maximise predictive accuracy or pattern recognition (e.g. classify, 

risk-stratify, detect structure), often with less emphasis on explicit 

parameter interpretation.

Typical assumptions Prespecified model form (often linear), limited 

interactions, relatively low number of predictors 

versus sample size, and structured noise assumptions 

(e.g. normality, proportional hazards).

Flexible, data-driven function classes that can capture nonlinearity and 

complex interactions, with fewer parametric assumptions but a stronger 

need for regularisation and validation.

Data size and 

dimensionality

Best when the number of observations is much 

larger than the number of predictors, and variables 

are carefully selected a priori (e.g. classical cohort 

studies, public health surveys).

Particularly advantageous for high-dimensional data (e.g. genomics, 

radiomics, multi-omics, rich EHR data) where the number of predictors 

can rival or exceed the sample size.

Data type Structured, tabular data with clearly defined variables 

(e.g. age, blood pressure, lab values, questionnaire 

scores).

Can handle both structured and unstructured data, such as images, free 

text, waveforms, and sensor streams, often directly from raw inputs 

(pixels, time series).

Example: prognosis/risk 

prediction

Cox regression model to estimate hazard ratios for 

mortality in a cardiovascular cohort using a small 

panel of risk factors (age, blood pressure, cholesterol, 

smoking) and to quantify their independent effects.

Gradient boosting or deep learning model using dozens to hundreds of 

variables from EHRs to predict in-hospital deterioration or 30-day 

mortality, focusing on accurate risk stratification rather than individual 

effect sizes.

Example: diagnostic 

classification (tabular 

data)

Logistic regression using a limited set of clinical 

variables (e.g. body mass index, fasting glucose, blood 

pressure) to estimate odds of metabolic syndrome 

and test specific risk factor hypotheses.

Random forest or support vector machine using a richer set of features 

(e.g. labs, vitals, comorbidities, medication history) to classify patients at 

high risk of developing diabetes or metabolic syndrome, optimised for 

sensitivity/specificity.

Example: medical 

imaging

Linear measurements and simple thresholds (e.g. 

lesion size, ejection fraction) analysed with standard 

statistics to compare groups or assess associations 

with outcomes.

Convolutional NN trained on large sets of labelled computed tomography, 

magnetic resonance imaging, or X‑ray images to detect lung nodules or 

classify tumours, often achieving radiologist-level accuracy in identifying 

malignancy.

Example: omics/

high‑throughput biology

Multiple regression or univariate testing with 

correction for multiple comparisons to relate a small 

subset of preselected genes or proteins to an 

outcome, mainly for hypothesis-driven analysis.

Regularised models, tree-based ensembles, or deep learning applied to 

genome-wide or proteomic profiles to predict drug response or discover 

molecular subtypes of cancer or other diseases.

Example: longitudinal/

monitoring data

Mixed-effects models or repeated-measures 

ANOVA to test average trajectories over time (e.g. 

HbA1c or blood pressure trends) and assess group 

differences with interpretable coefficients.

Recurrent or temporal convolutional NNs trained on continuous 

wearables or ICU monitoring data (e.g. heart rate, rhythm, glucose 

sensors) to detect early signs of sepsis, arrhythmia, or decompensation in 

real time.

Strengths Transparent modelling, explicit effect estimates (odds 

ratios, hazard ratios), strong theory for inference and 

uncertainty quantification, easier to audit and 

communicate to clinicians and regulators.

Captures complex nonlinear patterns and interactions, scales to large and 

heterogeneous datasets, excels at prediction and pattern discovery, and 

can directly ingest raw or minimally processed data.

Limitations May underperform when relationships are nonlinear 

or highly interactive, or when many correlated 

predictors are present; performance can degrade in 

very high-dimensional settings.

Models can be less interpretable, prone to overfitting without rigorous 

validation, and resource-intensive; performance advantages over 

well-specified traditional models are not guaranteed in small or simple 

datasets.

When to prefer Hypothesis-driven work where quantifying and 

testing specific associations is primary, datasets are 

moderate in size and dimensionality, and 

interpretability is paramount (e.g. guideline 

development, mechanistic research).

Prediction- or classification-focused problems with complex, high-

dimensional, or unstructured data, where improving accuracy, risk 

stratification, or pattern discovery is central (e.g. imaging artificial 

intelligence, multi-omics risk scores, EHR-based early warning systems).

ANOVA: analysis of variance, EHR: electronic health record, ICU: intensive care unit, ML: machine learning, NN: neural network.
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regularisation, where all variables are taken into account, even 
though they might not have the same effect (which is accounted 
for with Lasso and ridge regression in traditional statistics and 
adjusted R² metrics to penalise unnecessary complexity).(11) 
Similarly, cross-validation and bootstrapping used in traditional 
statistics provide confidence intervals for model predictions, 
mitigating variance in high-dimensional biological data, like multi-
omics. At the same time, feature selection via principal 
component analysis or elastic nets reduces noise in 
heterogeneous datasets, thereby improving representativeness 
before NN training. For example, batch effect correction using 
variance analysis is essential to adjust for technical heterogeneity 
in large sequencing datasets, enabling accurate cell clustering 
with deep learning models.

PRACTICAL IMPLICATION FOR BIOMEDICAL 
RESEARCH
When grounded in high‑quality data, rigorous validation, and 
well‑posed clinical or biological questions, ML can markedly 
improve discovery, prediction, and personalisation in 
biomedicine. Simultaneously, it must be integrated with domain 
expertise and conventional statistical reasoning, rather than 
treated as a stand‑alone solution. ML excels at modelling 
complex, high‑dimensional heterogeneous data and can enhance 
disease prediction, image‑based diagnosis, patient stratification, 
and biomarker discovery. Yet, its performance is highly 
dependent on data quality and representativeness, and many 
powerful models are opaque, limiting mechanistic insight and 
trust.(12) For example, the data quality of cross-sectional dataset 
tests used for drug efficacy prediction is of utmost importance, 
as batch effects and heterogeneity can decrease accuracy during 
training and affect real-world biomedical data.

Opaque models, like NNs, limit mechanistic insight. For instance, 
“black box” predictions in genomics data hinder trust and 
biological interpretability, prompting “visible ML” that 
incorporates pathways for transparency. Thus, as with traditional 
statistics, ensuring excellent initial data quality through rigorous 
preprocessing, batch effect correction, and representative 
sampling is paramount when applying NNs or ML techniques in 
biomedicine, as it directly bolsters model accuracy, generalisation 
to real-world scenarios, and overall trustworthiness beyond 
opaque predictions.

Biomedical ML also raises challenges around bias, generalisability, 
privacy, consent, and secure data infrastructure, and often 
requires specialist expertise in data engineering and model 
development. Without careful validation and governance, 
models are vulnerable to overfitting and overly optimistic 
performance claims, which remain major concerns in the current 
literature. Table II summarises the advantages and the limitations/
risks of ML in biomedical research.

CONCLUSION
It is important to know when to use ML, and when traditional 
methods will suffice (summarised in Table III), while including the 
type of analysis that will be performed in the planning stages of 

the study, ensuring that the data complies with the analysis 
requirements, and improving the outcome and applications of 
biomedical studies, overall.
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