
Cardiac myosin binding protein C, 
adrenergic stimulation and cardiac 
contractility

In the cardiac muscle thick filament, the primary regulator of 

contractility is cMyBPC. This integral thick filament protein was 

discovered in the early 1970’s,(53) yet more than 30 years later its 

structural and functional roles are still being solved. Such investiga-

tion is clinically relevant, as genetically encoded defects in cMyBPC 

are the most common cause of familial hypertrophic cardiomyo-

pathy (HCM).

cMyBPC is located in the C-zone of the A-band in a structurally 

regular pattern of 7 to 9, 43nm-apart, transverse stripes.(8) The 

43nm spacing of these stripes dictates that only every third level  

of myosin heads in the C-zone is associated with a cMyBPC 

molecule. This and the number of myosin heads that fall outside  

the C-zone, limit the number of myosin heads that can interact 

directly with cMyBPC.(37) Each stripe is composed of 2 to 4  
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Cardiac contractility is largely determined by nervous input to the 

heart and circulating chemical messengers, but mechanisms intrin-

sic to the myocardium also contribute to these control systems.(31) 

These systems are multilayered and complex, and are ultimately 

regulated by the parameters that affect cross-bridge cycling within 

the sarcomere, that precisely organised repeating contractile unit 

found within all striated muscle, at the molecular level. These  

include the flow of Ca2+ through compartments of the cell as well 

as the interactions between components of the thick and thin fila-

ments of the sarcomere. Upon β-adrenergic stimulation, particular 

proteins within the cardiomyocyte, including cardiac troponin I and 

cardiac myosin binding protein C (cMyBPC), undergo orchestrated 

functional changes that together comprise the positive inotropic 

and lusitropic effects caused by β-adrenoreceptor activation.  

These effects serve to enhance cardiac output: the positive ino-

tropic effect boosts myocyte contractility by optimising Ca2+ 

homeostasis, mainly via phosphorylation of Ca2+-handling pro- 

teins, while the positive lusitropic effect accelerates myocyte 

relaxation, thereby facilitating an increase in cardiac output via 

elevation of heart rate.(21,31,51,58)

Myosin binding protein c remained a perplexing although 

integral component of the sarcomeric thick filament until 

the discovery that genetic defects in its corresponding gene 

is a frequent cause of hypertrophic cardiomyopathy. basic 

science investigation subsequently revealed that it is one  

of the most potent regulators of cardiac contractility. Phos-

phorylation of its N-terminus upon adrenergic stimulation, 

causes increased order in myosin heads as well as increased 

AtPase activity, Fmax and ca2+-sensitivity of contraction,  

while its dephosphorylation upon cholinergic stimulation or 

during low flow ischaemia leads to changes in the sarcomeric 

thick filament that diminish interaction between myosin 

heads and actin. this dynamic flux in phosphorylation upon 

adrenergic stimulation is not only crucial to normal cardiac 

function and structure, but also vital for protection against 

ischaemic injury. Genetically-driven deficiency or inadequacy 

in cMybPc leads to severe cardiac dysfunction and structural 

changes, including cardiac hypertrophy and dilation, and 

particularly attenuates the adaptive increase in left ventri-

cular contractility that follows on β-adrenergic stimulation 

or pressure overload, resulting in decreased systolic function, 

and reduced cardiac output. SAHeart 2010; 7:38-47
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cMyBPC molecules and represents about 2 percent of the protein 

mass in the myofibril. 

structure                                                                     

Three isoforms of myosin binding protein C, encoded by three 

distinct genes, viz. fast skeletal (fsMyBPC; ~128 kDa), slow skeletal 

(ssMyBPC; originally described as MyBPX; ~128 kDa), and cardiac 

muscle isoforms (cMyBPC; ~137 kDa) have been identified.(8) 

Myocardial cells were thought to contain only the cardiac isoform 

throughout development and in adulthood,(12) but ssMyBPC has 

been shown to be present in moderate amounts in the right  

atrium and interatrial septum of adult human heart muscle.(5) 

Although the three isoforms share a similar structure of immu-

noglobulin (Ig) and fibronectin type domains, the cardiac isoform 

has 3 distinguishing structural differences from the skeletal iso-

forms, viz. an extra Ig domain at the N-terminal (C0), a proline-rich 

insert in the central C5 domain and three functional phos-

phorylation sites located in the MyBPC motif, a compact domain 

located between the N-terminal domains C1 and C2 (Figure 1).(38) 

These sites have relative sensitivities to the kinases that are  

present in the cardiac cell, as well as a hierarchy of phosphorylation. 

A Ca2+/calmodulin-dependent kinase (CamK), which co-purifies 

with cMyBPC, phosphorylates only the middle site;(8,60) this step is  

a prerequisite for protein kinase A (PKA) phosphorylation of  

the remaining sites upon β-adrenergic stimulation.(11) Since the 

middle site is phosphorylated by CamK-II, Ca2+ plays an important 

role in cMyBPC phosphorylation. McClellan and colleagues(29) 

speculated that the phosphorylation of this site was possibly 

constitutive in vivo, as it may be tied to the normal dynamic flux  

of Ca2+ in the myocytes. 

Dephosphorylation of cMyBPC occurs in response to cholinergic 

agonists such as acetylcholine.(15) In vitro studies in chicken have 

shown that this occurs predominantly via protein phosphatase-

2A,(47) which is involved in the dephosphorylation of other 

sarcomeric proteins and has been shown to co-purify with  

cMyBPC.(48) It is not known whether there is a specific order  

for dephosphorylation of cMyBPC. 

sArcoMeric ArrANGeMeNt                                      

We have previously proposed that cMyBPC is arranged around  

the backbone of the thick filament in a “trimeric collar”, in  

which 3 staggered cMyBPC molecules form a ring/collar around  

the thick filament (Figure 2), which is thought to be stabilised by 

specific interactions that have been demonstrated between  

domains C5 and C8, and domains C7 and C10,(33) as well as the 

constitutive interaction between domain C10 and the myosin 

rod.(39) This model predicts that domains C0C4, forming the N-

terminal of MyBPC, has sufficient length to reach out from  

the thick filament to take part in interactions previously suggested 

FiGure 1: schematic representation showing the modular organisation of cmyBPC into distinct domains. some domains have been shown to 
direct the binding of cmyBPC to other proteins within the sarcomere (represented by solid black lines), while other domains have been implicated 
in protein interactions but not yet confirmed (shown in broken black lines). cmyBPC is made up of two particular types of protein domains,  
viz. immunoglobulin domains (shown in yellow circles) and fibronectin domains (shown in blue squares), which are sometimes connected by linker 
sequences (shown in solid blue lines), such as those between domains C0 and C1, and between domains C4 and C5. The cardiac version of myBPC 
also differs from the skeletal muscle forms of myBPC by the presence of amino-acid insertions, viz. the cardiac-specific insert in domain C5 (shown 
as a red rectangle) and the phosphorylation sites between domains C1 and C2 (shown as grey octagons within the myBPC motif).    
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to occur with the myosin crossbridge(9,17,61) and thin filaments.(24,43,52) 

It is through these interactions, mediated via its N-terminal, that 

cMyBPC regulates muscle contractility.

iNterActioNs with MyosiN ANd ActiN               

Firstly, cMyBPC binds to the S2 region of myosin in a reversible 

fashion that is dependent on the phosphorylation status of the 

MyBPC motif. When dephosphorylated, the C1C2 region binds  

the proximal 126 residues of myosin S2, but upon phosphorylation 

of the MyBPC motif, the binding is abrogated.(13) Residues within 

domain C2(1) and Ser-273/Ser-282 within the MyBPC motif of 

cMyBPC act synergistically to form an extended myosin S2 

“interaction interface”.(20) At activating Ca2+ concentrations, when 

cMyBPC is fully phosphorylated, increased maximum force has 

been observed.(29) These results suggest that cMyBPC phos-

phorylation, regulated by intracellular Ca2+ levels (to activate  

CamK-II) and β-adrenergic stimulation (to activate PKA), deter-

mines the state of interaction of cMyBPC with myosin S2 and the 

regulation of cross-bridge cycling,(29) possibly by implementing a  

tethering-effect on the myosin heads.

However, it is not only via its interaction with myosin S2 that 

cMyBPC regulates contractility. Early studies have shown that 

cMyBPC interacted with actin in both regulated and unregulated 

filaments,(35,62) producing links between actin and myosin and 

increasing actin-activated myosin-ATPase activity in vitro.(22,35,36)  

It has been suggested that this interaction involves a region  

between domains C0 and C1.(24) Furthermore, Razumova and 

colleagues(43) showed that the C1C2 region of cMyBPC also 

interacts with actin to affect cross-bridge kinetics (reducing actin 

filament velocity at high Ca2+ concentrations), without a require-

ment for myosin S1 or S2.(50) Interestingly, Herron and colleagues(17) 

showed that N-terminal fragments of cMyBPC containing the  

pro-ala-rich linker sequence between C0 and C1 was able to  

switch on the thin filament by a mechanism different from that of 

Ca2+. The precise mechanism for this Ca2+-independent activating 

effect of N-terminal cMyBPC on force production and crossbridge 

cycling remains to be established.

Thus, N-terminal domains of cMyBPC interact with both thick and 

thin filaments and can therefore modulate actomyosin contacts 

through these interactions directly.(50) It has been suggested that 

cMyBPC could give rise to an internal load by tethering myosin  

S2 to the thick filament, thereby limiting myosin head position and/

or mobility, and limiting cross-bridge formation,(33) or via its inter-

action with the thin filament when cMyBPC is phosphorylated.(23) 

Such an internal load would serve a useful function if cMyBPC 

stores some of the energy generated during systole to assist in  

the filling of the heart during diastole.(23) The effect of cMyBPC  

to slow cross-bridge formation may appear to be deleterious to 

contractile function; however slowed rates of cross-bridge cycling 

may be beneficial in vivo by prolonging systolic ejection and 

increasing contractile efficiency by minimising ATP utilisation, as  

well as promoting diastolic filling rates.(24)

Removal of the constraint either by MyBPC deficiency, such as 

occurs in some forms of cardiomyopathy, or its phosphorylation 

under adrenergic stimulation, would bring the myosin head in  

CArdiAC myosin BindinG ProTEin C

FiGure 2: Based on protein interaction studies, we have pro-
posed a trimeric collar model to explain the arrangement of 
cmyBPC within the thick filament of the sarcomere. in this model, 
three cmyBPC molecules form a belt or collar around the thick 
filament (shown as a yellow rod), with domains C5-C7 of one 
molecule interacting with domains C8-C10 of the next in an 
overlapping, parallel arrangement.(33) in this model, we also propose 
that the n-terminal domains (C0-C4) extend into the interfilament 
space between thick filaments, where the cmyBPC motif would be 
available to interact with the region of myosin that supports the 
myosin head, viz. the myosin s2 region (myosin and additional thick 
filaments not shown). [image taken from moolman-smook(33)]  
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closer proximity to actin, thereby enhancing the probability of  

cross-bridge formation and increasing power output,(16) contract-

ility,(42) and Vmax,
(18) as well as lowering viscous load.(42) 

FuNctioN oF cMybPc                                                  

Thick filament formation 

In vitro evidence suggests that cMyBPC plays an important role in 

the formation of myofibrils in skeletal and cardiac muscle.(8) Purified 

myosin can self-assemble into thick filaments in the absence of 

cMyBPC; however, only in the presence of the normal content of 

cMyBPC do synthetic thick filaments resemble native thick fila-

ments in their thickness, length, bare-zone and distribution of  

myosin heads.(8,19,28,49) However, while in vitro experiments indi-

cated that cMyBPC may play a role in thick filament formation, 

murine knockout models of cMyBPC did not show a lack of 

sarcomere formation.(14,30) Rather, transgenic mice with no cMyBPC 

expression are viable and have regular sarcomere striations such  

as the Z-line, A-band and M-line, but these sarcomeric features  

are frequently misaligned.(14) 

Thick filament stability

Moreover, evidence suggests that cMyBPC phosphorylation pro-

vides thick filament stability(25) showed that cMyBPC exists in 2 

different forms that produced either stable or unstable thick 

filaments.(25) The stable form had well-ordered myosin heads and 

required cMyBPC phosphorylation, while the unstable form was 

associated with disordered myosin heads and unphosphorylated 

cMyBPC. Unphosphorylated cMyBPC was more easily prote- 

olysed even within intact cardiac cells, causing cMyBPC and  

myosin to be released, and myofilaments deficient in cMyBPC  

were fragmented by shear force that is well tolerated by the  

stable form.(25) 

cmyBPC and cardiac function

While the presence of cMyBPC is not absolutely required for 

sarcomere formation, the lack of cMyBPC(14,40,54,55,56) and decreased 

levels of cMyBPC phosphorylation(45) in the myocardium have  

been implicated in both systolic and diastolic dysfunction. 

Further animal studies showed that homozygous and hetero- 

zygous cMyBPC-null mice exhibited different cardiac disorders.(3) 

Heterozygous mice developed asymmetric septal hypertrophy 

associated with fibrosis at 10 to 11 months of age, without 

impairment of left ventricular function. This type of hypertrophy, 

although without myofiber disarray, is similar to human HCM.  

On the other hand, homozygous mice expressing a C8C10-

truncated cMyBPC exhibited neonatal onset of dilated cardio-

myopathy with prominent histopathology of myocyte hypertrophy, 

myofibrillar disarray, fibrosis, dystrophic calcification, left ventri- 

cular (LV) dilation and reduced contractile function, which mani-

fested in depressed systolic contractility with diastolic dysfunction, 

as well as reduced systolic LV chamber stiffness.(30,40) The reduced 

stiffness is attibuted to the complete lack of cMyBPC, which, if 

present, would have provided structural support via its strong 

interactions with myosin and the giant sarcomeric support  

protein, titin. The structural integrity afforded by these inter- 

actions may be responsible for as much as 50% of the normal 

longitudinal stiffness between crossbridges and the sarcomeric  

M-line. Functionally, the overly compliant cMyBPC-deficient myo-

cardium of these transgenic mice may not be able to provide the 

requisite transmural wall stress at normal LV chamber dimensions 

to accommodate normal LV pressure and would therefore be 

expected to dilate.(41) 

In addition, Palmer and colleagues(41) showed that cMyBPC appeared 

less important for initiating force development than for sustaining 

force and muscle stiffening so that systole can extend normally 

throughout ejection. Without it, chambers are capable of only a 

very short eject period: time to peak elastance is reduced, with 

premature relaxation starting shortly after ejection and resulting in 

reduced cardiac output. This reduced elastance appeared to be 

fairly specific to cMyBPC-deficient hearts, as it was not mimicked in 

other models of cardiac dysfunction such as autoimmune myo-

carditis and myocardial stunning. These findings(40,41) suggested that 

cMyBPC provided mechanical stability to the myofilament lattice  

in such a manner as to significantly influence the transmission of 

force across the sarcomere and sustain systolic stiffening.(41)

In a long-term follow-up study of transgenic mice expressing trun-

cated cMyBPC that lacked C-terminal domains, cardiac hyper- 

trophy was observed in adults older than one year.(65) When these 

were stressed either by physical exercise or chronic β-adrenergic 

stimulation, bradycardia and sudden death was observed, while 

unstressed transgenic animals had a normal life span. This suggests 
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that the unstressed heart was able to compensate effectively for 

the intrinsic mechanical and kinetic deficits resulting from cMyBPC 

defects, but that functional deficits presented at the whole organ 

level upon exposure to stress. These findings are similar to what  

has been observed in human subjects, where mutations in the 

cMyBPC-encoding gene, MYBPC3, are often, but not always, 

associated with late onset and benign phenotype.(65) 

Phosphorylation patterns of cMyBPC have also been shown to 

have a significant effect on the whole-heart function and cardiac 

haemodynamics.(45) In various mouse models of cardiac stress, 

cMyBPC was extensively phosphorylated under basal conditions 

and became dephosphorylated during the development of heart 

failure or pathological hypertrophy, with the trisphosphorylated 

form largely or completely absent in the advanced stages of heart 

failure.(45) This phenomenon appeared to be independent of the 

type of cardiac stress, as pressure overload, ischaemic-reperfusion 

injury, and various genetic alterations in the cardiac machinery all 

resulted in significantly decreased phosphorylation. In mice engi-

neered to express a non-phosphorylatable form of cMyBPC, 

hearts- appeared overtly normal with no cardiac hypertrophy  

and/or dilation. However, sarcomeric patterns were ill-defined  

with altered H-zones and M-lines, and genes associated with a 

hypertrophic response (such as atrial-natriuretic factor, β-MHC, 

brain natriuretic peptide, and skeletal β-actin) were up-regulated. 

Moreover, contraction and relaxation were significantly decreased, 

indicating that the capacity for cMyBPC phosphorylation is essen-

tial for normal cardiac function.(45) Reduced cMyBPC phosphoryla-

tion has been reported in human atrial fibrillation(6) and in failing 

human hearts,(7) which forms part of the picture of attenuated  

β-adrenergic responsiveness (desensitisation) during heart failure. 

This may be mainly as a result of decreased β1-adrenoreceptor 

number and function and thus attenuated PKA activity(27,57) but likely 

contributes to the downwards spiral of contractile dysfunction. 

While dephosphorylated cMyBPC may be associated with disease 

either as cause or consequence, cMyBPC phosphorylation can 

actually protect the myocardium from ischaemic injury: the hearts 

of transgenic mice engineered to express a constitutively phos-

phorylated form of cMyBPC were resistant to ischaemia-reper-

fusion injury.(46) Taken together, these studies show that, while 

cMyBPC is not absolutely essential for sarcomere formation, it is 

necessary for the integrity of sarcomere structure and its phos-

phorylation in response to adrenergic stimulation is crucial for 

normal systolic and diastolic cardiac function. 

PAthoPhysioloGicAl MechANisM oF                

cMybPc deFects

The mechanism by which mutant cMyBPC protein causes dys-

function, either via haploinsufficiency (too little protein) or  

“poison” peptide (a dysfunctional protein), has also been investi-

gated, but have yielded contradictory results(64) showed that  

mutant cMyBPC (lacking only the C-terminal myosin-binding 

domain C10) was stably expressed and, although it was incor-

porated into the sarcomere, it was not restricted to its normal 

position within the A-band, while mutant cMyBPC protein lacking 

both the myosin and titin-binding domains (domains C8 through 

C10) was not detectable.(30,40,63) The absence of cMyBPC protein  

in some of these models precludes the possibility that the trun-

cated MyBPC always acts as a “poison” peptide and the cardio-

myopathy observed must therefore be due to the mechanical 

consequences of the absence or insufficient levels of cMyBPC.(40)

What may these mechanical consequences be? It has been shown 

that structural changes occur in the thick filament upon cMyBPC 

phosphorylation, with different degrees of cMyBPC phosphoryla-

tion resulting in distinct changes in the appearance of isolated  

thick filaments. In the absence of cMyBPC phosphorylation, the 

thick filament had a disordered structure (myosin heads extending 

at different angles from the backbone). The addition of the first 

phosphate to cMyBPC induced a change from the disordered 

structure to a tight structure (myosin heads lying along the back-

bone). With the addition of the second and third phosphates,  

by PKA, greater order of myosin heads and looser packing of  

myosin, concomitant increase in thick filament diameter in the 

region of the sarcomere which houses cMyBPC, was observed.(26,59) 

In the fully phosphorylated state, the myosin heads appeared 

extended from the thick filament backbone, closer to the thin 

filament surface, favouring interaction between the thick and thin 

filament.(26) 

Thus, the packing of myosin filaments and their heads are inti- 

mately linked to the state of cMyBPC phosphorylation, where the 

extent of phosphorylation correlates with an increased ability of 

CArdiAC myosin BindinG ProTEin C
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myosin heads to interact with the thin filament. Phosphorylation of 

cMyBPC also produces a change in flexibility of the cross-bridges.  

It is not yet clear how this occurs, but changes in flexibility of the 

crossbridges could modulate cross-bridge detachment rate, and 

changes in the distance from its actin-binding sites as a result of 

altered packing of myosin rods modulate the attachment rate.(60) 

Disordering of the arrangement of surface myosin heads and 

declining contractility are coincident with dephosphorylation of 

cMyBPC, while rephosphorylation leads to recovery of both cross-

bridge order and contractility.(26)

HCm-causing mutations

We had previously found that domain C5 of a cMyBPC molecule 

bound to domain C8 of another cMyBPC molecule (Ka=1x105  

M-1), and similarly, that domain C7 bound to domain C10 (Ka=1x105 

M-1), supporting the trimeric collar model for the quaternary 

arrangement of monophosphorylated cMyBPC, and consistent with 

the dimensions of the thick filament backbone in the corresponding 

narrow conformation. However, as the thick filament backbone is 

known to expand upon adrenergic stimulation and maximal 

phosphorylation of cMyBPC, a trimeric cMyBPC collar would have 

to accommodate this change by abrogating intermolecular inter-

actions between domains C5:C8, C6:C9 and C7:C10 and either 

completely breaking the collar apart or assuming a looser con-

formation in this activatory condition. We therefore explored the 

theoretical effect of cMyBPC phosphorylation on collar dimen-

sions.(26) Based on thick filament backbone dimensions in the  

“loose” conformation, and with domain C10 firmly anchored to 

myosin and possibly titin, interaction would shift from existing be-

tween central cMyBPC domains and extreme C-terminal domains 

(C9 and/or C10), to between the latter domains and N-terminal 

domains of cMyBPC in the vicinity of the C1C2 region.(4) When  

we tested for the possibility of such interactions using yeast two-

hybrid interaction assays, we showed that domain C3 interacted 

with domain C10 (Figure 3), suggesting that conditions exist under 

which domain C10 can interact with either C7 or C3. This data, 

coupled with the observed changes in the thick filament back  

bone diameter upon cMyBPC phosphorylation, led us to pro- 

pose a “loose” collar conformation for cMyBPC around the thick 

filament backbone during conditions of adrenergic stimulation, 

depicted in Figure 4. Upon PKA-dependent phosphorylation of 

cMyBPC, the “loose” collar would allow the thick filament to  

expand and adopt the loose structure which has been associated 

with increased crossbridge cycling.(26,29)

In support of this hypothesis, we also found, using yeast two-hybrid 

library screens, that a “bait” representing the native cMyBPC region 

of domains C1 through C2 (C1C2), and a bait representing the  

fully phosphorylated form of this region (C1P1P2P3C2) identified 3 

cMyBPC clones (P213, C412 and P62) as putative interactors of 

domains C1 through C2. The clone encoding the largest peptide 

(C412) corresponded to a fragment representing from about mid-

way through domain C5 to domain C10, the smallest clone (P62) 

represented an even more C-terminal region, encompassing mid-

way through domain C8 through to domain C10, while P213 was 

intermediate in size, encoding region C7 through C10. Co-immu-

noprecipitation experiments using these N- and C-terminal frag-

ments of cMyBPC showed that the trisphosphorylated bait 

C1P1P2P3C2 had a greater affinity for the C-terminal cMyBPC 

clones C412 and P62 than did the unphosphorylated bait C1C2 

(Figure 5). These results could be interpreted as follows: when  

the cMyBPC motif is phosphorylated, the C1 through C2 N-ter-

minal domains make direct contact with C-terminal domains 

(observed as C1P1P2P3C2 interacting strongly with C412 and P62, 

Figure 5), while, when the cMyBPC motif is unphosphorylated,  

an interaction between these domains and C-terminal domains is 

not favoured (observed as weak interactions of C1C2 with C412 

and P62, Figure 5). Although domain C3 was not part of the 

constructs used in this assay, the interaction observed between 

domains C3 and C10 in direct interaction assays by De Lange 

suggests that interactions of phosphorylated N-terminal domains 

with C-terminal domains are not perfectly juxtaposed; thus, the 

FiGure 3: yeast two-hybrid reporter gene activation by prey 
cmyBPC domains paired with bait domain C7. Growth of 
auxotrophic diploid yeast on selective medium indicates inter-
action of C7 with a prey domain. A representative direct protein-
protein interaction assay demonstrates that only the occurance of 
domain C10 activates the reporter genes in the presence of 
domain C7, as monitored by growth of the yeast.
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region of interaction with domain C10 may be staggered and 

include part of domain C2. This differential affinity of the N-term-

inal domains of cMyBPC for C-terminal domains (depending on  

the phosphorylation status of the cMyBPC motif) lent support  

for a hypothesised transition from the “tight” to “loose” collar 

conformation upon PKA-dependent phosphorylation to accom-

modate changes in the thick filament. When it is in this loose 

conformation, the myosin heads enter into a weakly bound state 

with actin, which in turn determines how many crossbridges will 

enter into the crossbridge cycle. Thus, maximum phosphorylation  

of MyBPC leads to enhanced contractility and increased Fmax.

We have previously shown that the HCM-causing missense muta-

tions Arg654His and Asp755Lys in domain C5 weaken the C5:C8 

interaction, suggesting that the tight MyBPC collar may be un- 

stable in their presence.(33) Similarly, we found that the Val894Met 

amino acid variation in C7 weakens its binding with C10 (Figure 6); 

this variant occurs in unaffected individuals too, but appears to 

exascerbate hypertrophy in individuals carrying another HCM-

causing mutation.(34) Thus, it would appear that hypertrophy-

associated variations in regions of cMyBPC that are involved in 

forming a tight trimeric collar may act by destabilising this collar 

formation, presumably promoting formation of the loose collar 

arrangement and promoting thick filament expansion. In this con-

formation, the formation of cross-bridges would be enhanced and 

the rate of ATP consumption in mutant sarcomeres increased.  

This therefore suggests that cMyBPC mutations, both those causing 

loss of the protein as well as those leading to defective proteins,  

fit into the same class of pathophysiological mechanism as HCM 

mutations in other genes that appear to act by increasing the cost 

CArdiAC myosin BindinG ProTEin C

FiGure 4: The hypothesised transition of the thick filament from the tight (A) to loose (B) structure upon β-adrenergic stimulation. Under non-
stimulated conditions, the myosin rods in the thick filament (shown in yellow) are tightly wound and in this tight structure, three cmyBPC molecules 
wrap around the thick filament in such a way that domains C5:C8, C6:C9 and C7:C10 of successive cmyBPC molecules interact according to the 
collar model. Upon β-adrenergic stimulation and trisphosphorylation of the cmyBPC motif, the myosin rods of the thick filament adopts a loose 
structure with a wider diameter which is proposed to be facilitated by the widening of the cmyBPC collar. Thus, domains C2 or C3 may now inter-
act with domain C10. image A taken from moolman-smook(33) and image B from de Lange.(4)
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of force production, suggesting that an inability to maintain energy 

homeostasis may underly many, if not all, forms of HCM.(32,44) 

In summary, closer investigation of this little understood protein of 

the sarcomere, driven by its role in HCM, has revealed one of the 

most potent regulators of cardiac contractility. Phosphorylation of 

its N-terminus upon adrenergic stimulation, causes increased order 

in myosin heads as well as increased ATPase activity, Fmax and Ca2+ 

sensitivity of contraction,(38) while its dephosphorylation upon cho-

linergic stimulation or during low flow ischaemia leads to changes in 

the sarcomeric thick filament that diminish interaction between 

myosin heads and actin. This dynamic flux in phosphorylation  

upon adrenergic stimulation is not only crucial to normal cardiac 

function and structure, but also vital for protection against ischaemic 

injury.(46) Genetically-driven deficiency or inadequacy in cMyBPC 

leads to severe cardiac dysfunction and structural changes, inclu-

ding cardiac hypertrophy and dilation, and particularly attenuates 

the adaptive increase in left ventricular contractility that follows  

on B-adrenergic stimulation or pressure overload,(2) resulting in 

decreased systolic function, and reduced cardiac output.

FiGure 5:  sds-PAGE gel showing co-immuno precipitation reactions between cmyBPC clones (C412 and P62) and baits (C1C2 and C1P1P2P3C2). 
Gels A and B show that cmyBPC clones interact much stronger with C1P1P2P3C2 bait than the C1C2 bait. The antibody used for immunoprecipi-
tation is shown at the bottom of the lane. 
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FiGure 6:  sds-PAGE gel showing co-immunoprecipitation re-
actions between cmyBPC domains C7 and C10, as well as the 
effect of the Val894met variant in C7 on this interaction. The 
Val894met variant appears to reduce the affinity of these two 
domains for each other, as evidenced by the lighter C10 band. The 
antibody used for immunoprecipitation is shown at the bottom of 
the lane.
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