Chemical and Sensorial Characterization of Tropical Syrah Wines Produced at Different Altitudes in Northeast of Brazil

  • J.B. de Oliveira LEAF, Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa
  • R. Egipto LEAF, Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa
  • O. Laureano LEAF, Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa
  • R. de Castro LEAF, Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa
  • G.E. Pereira Embrapa Uva e Vinho/Semiárido, BR-428, Km 152, s/n - Zona Rural, Petrolina - PE, 56302-970, Brazil
  • J.M. Ricardo-da-Silva LEAF, Linking Landscape, Environment, Agriculture and Food. Instituto Superior de Agronomia, Universidade de Lisboa

Abstract

Over the years, viticulture has expanded to new regions outside the temperate zones, such as Northeast Brazil, India, Thailand, Myanmar, Vietnam, Bangladesh and Venezuela, characterized by the production of tropical wines. It is important for the productive sector to comprehend the effects of grapevine interaction with the characteristics of each new region on wines composition. In this study, the composition of wines of Syrah from two regions with different altitudes in Northeast Brazil were analyzed by different methodologies to characterize chemical compounds as sugar, acids, minerals, phenolics (anthocyanins, flavonols, stilbenes and condensed tannins) and the sensory profile. The wines of the Bahia region (1100 m of altitude) obtained high concentrations for chemical parameters related to color, monomeric anthocyanins, stilbenes and monomeric and oligomeric tannins. Wines of the low altitude region, Pernambuco (350 m of altitude) were characterized by higher concentrations of flavonols (kaempferol, isorhamnetin, quercetin and rutin) and polymerized tannins. The chemical composition of wines from the two studied regions was influenced by altitude. A trend towards higher concentrations in most for phenolic compounds analyzed was observed in wines from the higher altitude region during the two years of study. Regarding the sensory profile, fruity, floral, herbaceous and empyreumatic attributes aromatic obtained highest scores in wines of the 350 m altitude region, the other attributes were dependent on the year of harvest.

Downloads

Download data is not yet available.

References

Adams, D.O. and Scholz, R.C. 2008. Tannins – the problem of extraction. Proceedings of the 13th Australian Wine Industry Technical conference (Blair, R.J. et al. eds.), Australian Society for Viticulture and Oenology: Adelaide p. 160–164.

Agatonovic-Kustrin, S., Hettiarachchi, C. G., Morton, D. W., Razic, S. 2015. Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high-resolution plate imaging. J. Pharm. Biomed. Anal. 102, 93–99. https://doi.org/10.1016/j.jpba.2014.08.031

Amerine, M. A., Ough, C.S. 1980. Methods for Analysis of Musts and Wines. Wiley, New York, (pp. 246).

Andrade, R. H. S., Nascimento, L. S., Pereira, G. E., Hallwass, F., Paim A. P. S. 2013. Anthocyanic composition of Brazilian red wines and use of HPLC-UV–Vis associated to chemometrics to distinguish wines from different regions. Microchem. J. 110, 256 - 262. https://doi.org/10.1016/j.microc.2013.04.003

Belmiro, T.M.C., Pereira, C.F., Paim, A.P.S. 2017. Red wines from South America: content of phenolic compounds and chemometric distinction by origin. Microchem. J. Doi: 10.1016/j.microc.2017.03.018.

Boulton, R. 1980. The general relationship between potassium, sodium and pH in grape juice and wine. Am. J. Enol.Viticult. 31, 182-186.

Boulton, R. 2001. The copigmentation of anthocyanins and its role in the color of red wine: A Critical Review. Am. J. Enol.Viticult. 52, 67-80.

Coulter, A. D., Godden, P. W., Petrorius, I, S. 2004. Succínic acid. Wine Ind. J. 19, 16-25.

Cunha, T. J. F.; Petrere, V. G., Silva, D. J., Mendes, A. M. S., Melo, R. F. de, Oliveira Neto, M. B. de; Silva, M. S. L. da, Alvarez, I. A. 2010. Principais solos do semiárido tropical brasileiro: caracterização, potencialidades, limitações, fertilidade e manejo. In: SA, I. B.; Silva, P. C. G. da. Semiárido brasileiro: pesquisa, desenvolvimento e inovação. Petrolina: Embrapa Semiárido, p. 50-87.

Curvelo-Garcia, A. S.; Barros, P. 2015. Química enológica- métodos analíticos. Avanços recentes no controlo da qualidade de vinhos e de outros produtos vitivinícolas. Editora Publindústria, edições técnicas, Portugal.

Cruz-Rus, E., Botella, M.A., Valpuesta, V. & Gomez-Jimenez, M.C., 2010. Analysis of genes involved in ascorbic acid biosynthesis during growth and ripening of grape berries. J. Plant Physiol. 167, 739-748. https://doi.org/10.1016/j.jplph.2009.12.017

Dallas, C., Ricardo-da-Silva J. M., Laureano, O. 1996. Products formed in model wine solutions involving anthocyanins, procyanidin B2 and acetaldehyde. J. Agric. Food Chem. 44, 2402-2407.

DeBolt, S., Cook, D.R. & Ford, C.M. 2006. L-Tartaric acid synthesis from vitamin C in higher plants. Proceedings of the National Academy of Sciences, 103, 5608-5613. https://doi.org/10.1073/pnas.0510864103

De Freitas, V. & Mateus, N. 2001. Structural features of procyanidin interactions with salivary proteins. J. Agric. Food Chem.49, 940-945.

Embrapa Solos. 2006. Solos do Nordeste brasileiro. Site: www.uep.cnps.embrapa.br/solos/index.html Accessed in 23/04/2017.

Fang Fang, Jing-Ming Li, Ping Zhang, Ke Tang, Wei Wang, Qiu-Hong Pan, Wei-Dong Huang. 2008. Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Res. Int. 41, 53–60. https://doi.org/10.1016/j.foodres.2007.09.004

Fei He, Mu L., Yan G.-L., Liang N.-N., Pan Q.-H., Wang J., Reeves M.J., Duan. C.-Q. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 12, 9057–9091. DOI:10.3390/molecules15129057

Fernández, V., Berradre, M., Sulbarán, B., Rodríguez, O., G., Peña, J. 2009. Chemical characterization and mineral content in Venezuelan commercial wines. Rev. Fac. Agron. (LUZ) 26, 382-397.

Geue, J. P., Bramley, B. R.; Jeffery, D. W., Francis, I. L. 2011. In Proceedings of the 14th Australian Wine Industry Technical Conference; Blair, R., Lee, T., Pretorius, S., Eds.; pp. 317.

Granato, D., Katayama, F.C.U., Castro, I.A. 2010. Assessing the association between phenolic compounds and the antioxidant activity of Brazilian red wines using chemometrics. Food Sc. Technol. 43, 1542 - 1549. https://doi.org/10.1016/j.lwt.2010.05.031

Granato, D., Katayama, F. C. U., Castro, I. A. 2011. Phenolic composition of South American red wines classified according to their antioxidant activity, retail price and sensory quality. Food Chem. 129, 366-373. DOI: 10.1016/j.foodchem.2011.04.085

Glories, Y. & Saucier, C. 2000. Tannin evolution from grape to wine. Effects on wine taste. In the ASEV 50th Anniversary Annual Meeting; Ratz, J., Ed.; ASEV: Davis, CA.

Gutiérrez, I. H., Lorenzo, E. S., Espinosa, A. V. 2005. Phenolic

composition and magnitude of copigmentation in Young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel and Syrah. Food Chem. 92, 269–283.

Hanlin, R. L., Hrmova, M., Harbertson, J.F., Downey, M. O. 2010. Review: Condensed tannin and grape cell wall interactions and their impact on tannin extractability into wine. Aust. J. Grape Wine 16, 173–188. https://doi.org/10.1111/j.1755-0238.2009.00068.x

Iland, P.G. & Coombe, B.G. 1988. Malate, tartrate, potassium, and sodium in flesh and skin of Shiraz grapes during ripening: Concentration and compartmentation. Am. J. Enol.Viticult. 39, 71-76.

Jirayus, W., Kanok-Orn, I., Korakod, I. 2007. Phenolic compounds and antioxidative properties of selected wines from the northeast of Thailand. Food Chem. 104, 1485–1490.

Kramling, T. E. & Singleton V. L. 1969. An estimate of the non-flavanoid phenol in wines. Am. J. Enol.Viticult. 20, 86-92.

La Torre, G. L., Saitta, M., Vilasi, F., Pellicanò, T., Dugo, G. 2006. Direct determination of phenolic compounds in Sicilian wines by liquid chromatography with PDA and MS detection. Food Chem. 94, 640–650.

Lawless, H. T., Horne, J., & Giasi, P. 1996. Astringency of organic acids is related to pH. Chem. Senses 21, 397-403.

Leeuw, R. V., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. 2014. Antioxidant capacity and phenolic composition of red winesfrom various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 36, 40–50. https://doi.org/10.1016/j.jfca.2014.07.001.

Li Z., Pan Q., Jin Z., Mu L., Duan C. 2011. Comparison on phenolic compounds in Vitis vinifera cv. Cabernet Sauvignon wines from five wine-growing regions in China. Food Chem. 125, 77–83. https://doi.org/10.1016/j.foodchem.2010.08.039

Lima, L.L.A., Pereira, G.E., Guerra, N.B. 2011. Physicochemical characterization of tropical wines produced in the Northeast of Brazil. Acta Hortic. 910, 131-134. https://doi.org/10.17660/ActaHortic.2011.910.10

Liang, N.-N.; He, F.; Bi, H.-Q.; Duan, C.-Q.; Reeves, M.J.; Wang, J. 2012. Evolution of flavonols in berry skins of different grape cultivars during ripening and a comparison of two vintages. Eur. Food Res. Technol. 235, 1187–1197. DOI 10.1007/s00217-012-1850-4

Lucena, A. P. S., Nascimento, R. J. B., Maciel, J. A. C., Tavares, J. X., Barbosa-Filho, J. M., & Oliveira, E. J. 2010. Antioxidant activity and phenolics content of selected Brazilian wines. J. Food Compos. Anal. 23, 30–36. https://doi.org/10.1016/j.jfca.2009.08.004

Monagas M., Núñez V., Bartolomé B., Gómez-Cordovés C. 2003. Anthocyanin-derived pigments in Graciano, Tempranillo and Cabernet Sauvignon wines produced in Spain. Am. J. Enol.Viticult. 54, 163-169.

Natividade, M. M. P., Corrêa, L. C., Souza, S. V. C., Pereira, G. E. & Lima, L. C. O. 2013. Simultaneous analysis of 25 phenolic compounds in grape juice for HPLC: Method validation and characterization of São Francisco Valley samples. Microchem. J. 110, 665–674. https://doi.org/10.1016/j.microc.2013.08.010

Nordbo, H., Darwish, S., & Bhatnagar, R. S. 1984. Salivary viscosity and lubrication: influence of pH and calcium. Scand. J. Dent. Res. 92, 306-314.

O.I.V. 2014. Recueil des methodes internacionales d’analyse des vins et des moûts. Office Internacional de la vigne et du vin, Paris, France.

Oliveira, J. B., Silva, G. G., Araújo, A. J. B., Lima, L.L.A, Ono, E. O., Castro, R., Cruz, A., Santos, J., Pereira, G.E. 2012. Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil. 9th Congrès International des Terroirs vitivinicoles, France.

Ortega-Regules, A., Romero-Cascales, I., Ros-García, J. M., López-Roca, J. M., Gómez-Plaza, E. 2006. A first approach towards the relationship between grape skin cell-wall composition and anthocyanin extractability. Anal. Chim. Acta, 563, 26-32.

Padilha, C. V. S., Biasoto, A. C. T., Corrêa, L. C., Lima, M. S., Pereira, G. E. 2016. Phenolic compounds profile and antioxidant activity of commercial tropical red wines (Vitis vinifera L.) from São Francisco Valley, Brazil. J. Food Biochem. DOI: 10.1111/jfbc.12346.

Pereira, G.E., Soares, J.M., Guerra, C.C., Lira, M.M.P., Lima, M.V.D. de, Santos, J.de O. 2007. Caractérisation de vins rouges tropicaux produits au Nord-Est du Brésil. In Proceedings of the 59th Congresso Alemão de Viticultura e 8ºSimpósio Internacional Inovações em Enologia, Stuttgart-Alemanha.

Pereira, G.E.; Santos, J. de O.; Guerra, C.C.; Alves, L.A. 2008a. Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil. In: VIIème Congrès International des Terroirs Viticoles, Nyon-Suisse.

Pereira, G. E. & Bassoi, L. H. 2008b. Production of Syrah wines in tropical conditions of northeast Brazil. In: International Syrah Symposium. France, Anais, 45-49 p.

Pereira, G.E., Araújo, A.J.B., Santos de O., J., Oliveira, S.V., Nascimento, R.L., Quintino, C., Vanderlinde, R., Lima, L.L.A. 2011. Chemical and aromatic characteristics of Brazilian tropical wines. II International Symposium on Tropical Wines, Brazil.

Perez-Maldonado, R. A., Norton, B. W., & Kerven, G. L. 1995. Factors afecting in vitro formation of tannin-protein complexes. J. Sci. Food Agric. 69, 291-298.

Revilla, E., Alonso, E., Kovac, V. 1997. The Content of Catechins and Procyanidins in Grapes and Wines as Affected by Agroecological Factors and Technological Practices. Wines, chapter 7, 69–80. DOI: 10.1021/bk-1997-0661.ch007

Reynolds, A. G. 2010. Managing wine quality. Vol 1: viticulture and wine quality. CRC press, pp.120.

Ribéreau-Gayon, P., Stonestreet, E. 1965. Dosage des tannins du vin rouge et determination de leur structure. Anal. Chim. 2, 627-631.

Ribéreau-Gayon P. 1970. Le dosage des composés phénoliques totaux dans les vins rouges. Anal. Chim. 52, 627-631.

Ribéreau-Gayon, P. 1973. Interprétation chimiques de la couleur des vins rouges. Vitis 12, 119-142.

Ribéreau-Gayon, P. 1982. The Anthocyanin s of Grapes and Wines. New York: Academic Press. Pages 209–244.

Riberéau-Gayon, P., Dubourdieu, D., Donèche, B., Lonvaud, A. 2006. Handbook of Enology: the microbiology of wine and vinifications, Vol. 1 (2nd Edition), John Wiley & Sons, Chichester, UK.

Ricardo-da-Silva, J.M., Rosec J.P., Bourzeix M., Heredia, N. 1990. Separation and quantitative determination of grape and wine procyanidins by high performance reversed phase liquid chromatography. J. Sci. Food Agric.53, 85-92.

Ricardo-da-Silva, J. M., Rigaud, J., Cheynier, V., Cheminat, A., Moutounet, M. 1991a. Procyanidin dimers and trimers from grape seeds. Phytochem. 30, 1259-1264.

Ricardo-da-Silva, J. M., Cheynier, V., Souquet, J. M., & Moutounet, M. 1991b. Interaction of grape seed procyanidins with various proteins in relation to wine fining. J. Sci. Food Agric. 57, 111-125.

Ricardo-da-Silva, J. M., Belchior, A.P., Spranger, M. I., Bourzeix, M. 1992. Oligomeric procyanidins of three grapevine varieties and wines from Portugal. Sci.aliments, 12, 223-237.

Rigaud, J., Pérez-Ilzarbe, J., Ricardo-da-Silva, J. M., Cheynier, V. 1991. Micro method for the identification of proanthocyanidin using thiolysis monitored by high performance liquid chromatography. J. Chromatogr. 540, 401-405.

Roggero, J.P., Coen, S. & Ragonnet, B. 1986. High performance liquid chromatography survey on changes in pigment content in ripening grapes of Syrah. An approach to anthocyanin metabolism. Am. J. Enol.Viticult. 37, 77-83.

Ronald J. S. 2008. Wine Science. Principles and application. 3ª Edition. California, Elsevier. pp.776.

Satisha, J., Dasharath, P. O., Amruta, N. V., Smita, R. M., Ajay K. S., Ramhari G. S. 2013. Influence of canopy management practices on fruit composition of wine grape cultivars grown in semi-arid tropical region of India. Afr. J. Agric. Res., 26, 3462-3472. DOI: 10.5897/AJAR2013.7307

Singleton, V. L., & Noble, A. C. 1976. Wine flavor and phenolic substances. In G. Charalambous, & I. Katz, A.C.S Symposium Series, 26: Phenolic, sulfur and nitrogen compounds in food Favours (pp. 47-70). Washington, DC: ACS.

Singleton, V. L. 1995. Maturation of wines and spirits: comparisons, facts, and hypotheses. Am. J. Enol.Viticult. 46, 98-112.

Singleton, V. L., & Trousdale, E. K. 1992. Anthocyanin-tannin interactions explaining di€erences in polymeric phenols between white and red wines. Am. J. Enol.Viticult. 43, 63-70.

Soares, J.M., Leão, P.C.S. (Ed. Tec.). 2009. A vitivinicultura no semiárido brasileiro. Brasília: Embrapa Informação Tecnológica; Petrolina: Embrapa Semiárido.

Somers, T. C. 1971. The polymeric nature of wines pigments. Phytochem. 10, 2175-2186.

Somers, T. C.; Evans, M. E. 1977. Spectral evaluation of young red wines: anthocyanin equilibria, total phenolic, free and molecular SO2 «chemical age». J. Sci. Food Agric. 28, 279-287.

Sun, B. S., Leandro, M. C., Ricardo-da-Silva, J. M., Spranger, M. I. 1998a. Separation of grape and wine proanthocyanidins according to their degree of polymerisation. J. Agric. Food Chem. 46, 1390-1396.

Sun, B. S., Ricardo da Silva, J. M., Spranger, M. I. 1998b. Critical factors of the vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46, 4267-4274.

Sun, B., Ricardo-da-Silva, J. M., Spranger, M. I. 2001. Quantification of catechins and proanthocyanidins in several portuguese grapevine varieties and red wines. Cienc. Tec. Vitivinic. 16, 26-34.

Tauchen, J., Marsik P., Kvasnicova, M., Maghradze, D., Kokoska, L., Vanek T., Landa, P. 2015. In vitro antioxidant activity and phenolic composition of Georgian, Central and West European wines. J. Food Compos. Anal. 41, 113–121. https://doi.org/10.1016/j.jfca.2014.12.029

Themelis, D. G., Tzanavaras, P. D., Anthemidis, A. N., Stratis, J. A. 1999. Direct, selective flow injection spectrophotometric determination of calcium in wines using methylthymol blue and an on-line cascade dilution system. Anal. Chim. 402, 259–266.

Timberlake, C. F. & Bridle, P. 1976. The effect of processing and other factors on the colour characteristics of some red wines. Vitis, 15, 37-49.

Tonietto, J., Carbonneau, A. 1999. “Análise mundial do clima das regiões vitícolas e de sua influência sobre a tipicidade dos vinhos: a posição da viticultura brasileira comparada a 100 regiões em 30 países”. Anais: IX Congresso Brasileiro de Viticultura e Enologia, Bento Gonçalves-RS. Embrapa Uva e Vinho, p.75-90.

Tonietto, J., Pereira, G. E. 2011. “The development of the viticulture for a high quality tropical wine production in the world”. In: 17th International Symposium of the Group of International Experts of Vitivinicultural Systems for Cooperation, Asti. Proceedings. Asti: Le Progrès Agricole et Viticole, p. 25-28.

Vidal, S., Courcoux, P., Francis, L., Kwiatkowski, M., Gawel, R., Williams, P., Waters, E.J. and Cheynier, V. 2004. Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual. Prefer. 15, 209–217.

Vidal, S., Vuchot, P. 2005. Conhecimento e controlo dos compostos aromáticos e fenólicos dos vinhos. Revista Internet de Viticultura e Enologia, 7, 11.

Walker, R.R., Clingeleffer, P.R., Kerridge, G.H., Rühl, E.H., Nicholas, P.R. and Blackmore, D.H. 1998. Effecs of the rootstock Ramsey (Vitis champini) on íon and organic acid composition of grapes and wine, and on wine spectral characteristics. Aust. J. Grape Wine 4, 100–110.

Zeng, L., Teissèdre, P., Jourdes M. 2016. Structures of polymeric pigments in red wine and their derived quantification markers revealed by high-resolution quadrupole time-of-flight mass spectrometry. Rapid Commun. J.Mass Spectrom. 30, 81–88. DOI: 10.1002/rcm.7416

Published
2019-04-26
Section
Articles